Comparing Alzheimer's risk in African Americans and the Yoruba

Adesola Ogunniyi, MD University of Ibadan Ibadan, Nigeria aogunniyi@com.ui.edu.ng

Rutgers University-Newark. Newark, NJ

Risk and Resilience to Alzheimer's Disease in African Americans Thursday, June 22, 2023

Disclosure

None

Community Engagement in Practice!

3rd Annual Free Classic Car Show, Bar-B-Que, and Men's Health Fair

Promoting Awareness of Alzheimer's Disease, Heart Health, and Sexual Health for Men

at Messiah Baptist Church, 13-17 Oak Street, East Orange, NJ

Outline

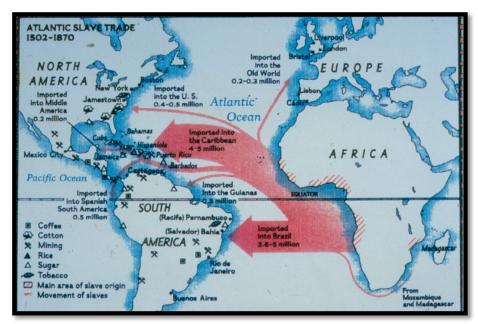
- Introduction
- Indianapolis-Ibadan Study

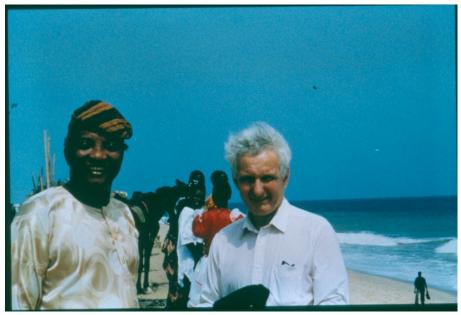
Findings from Observational Studies Biochemical assessments Genetic Studies

- Preliminary data from Newark-Nigeria Study
- Conclusion
- Acknowledgements

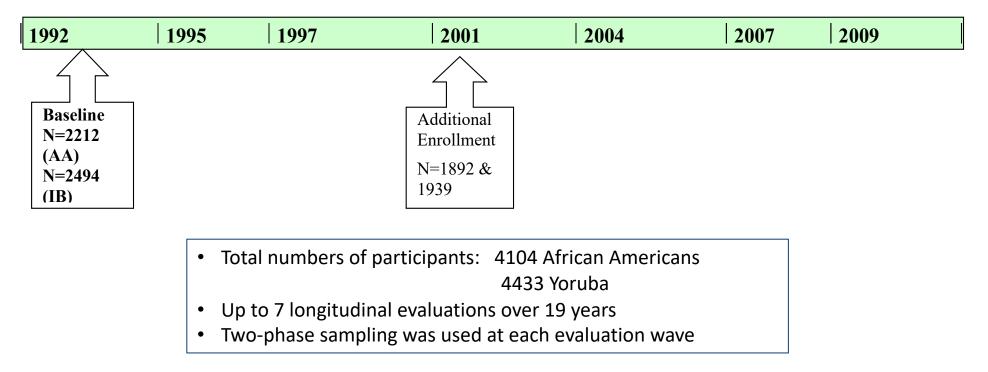
Benefits of cross-cultural Studies

- Much wider diversity of environmental exposures – (diet, climate, exposure to pathogens & cultural factors that lead to epigenetic adaptations)
- Unique opportunity for identifying risk factors
- Exploration of gene-environmental interactions

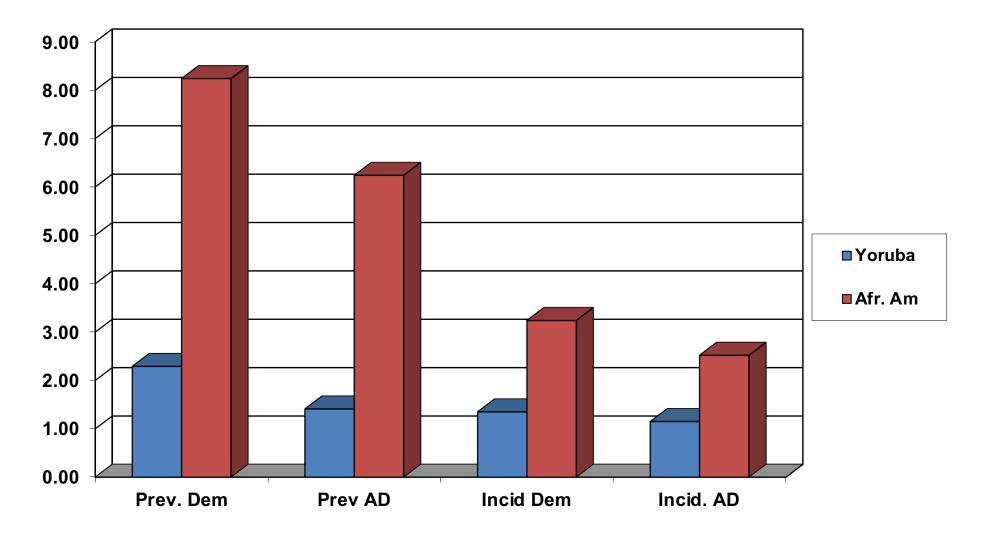




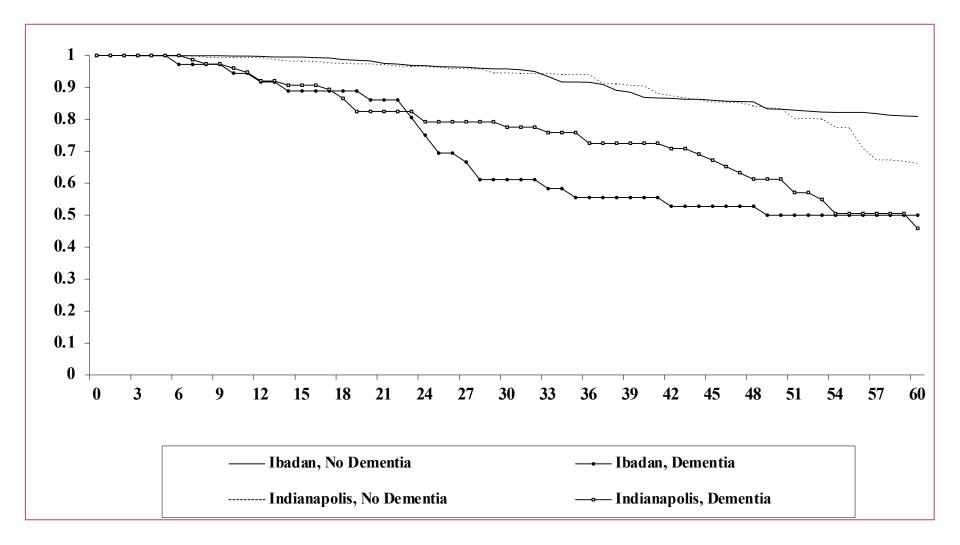
Indianapolis-Ibadan Study Hypothesis


 Identification of populations or communities with significantly lower or higher prevalence rates of AD could greatly enhance the search for environmental risk factors for AD"

Osuntokun et al (1992)

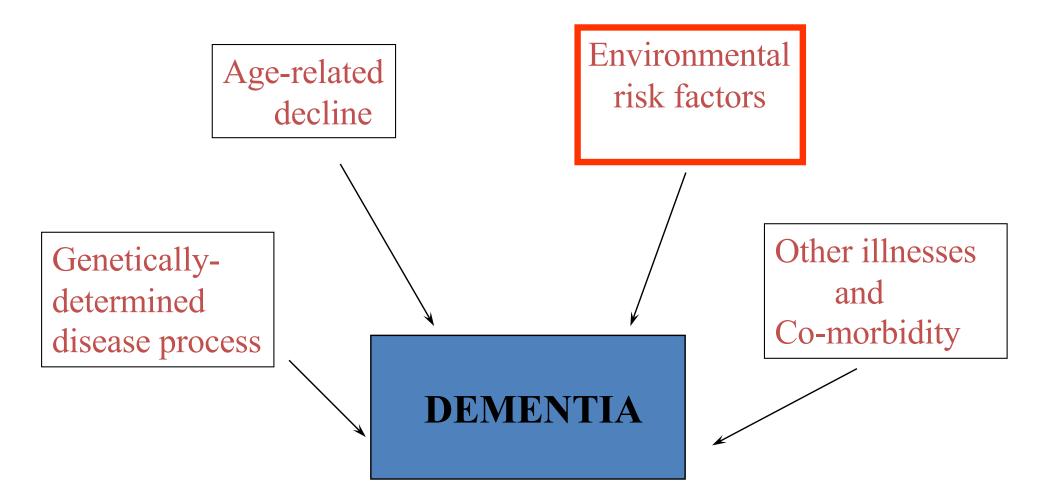


Project Timeline


Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. Hendrie HC, Ogunniyi A, Hall KS, Baiyewu O, Unverzagt FW, Gureje O, Gao S, Evans RM, Ogunseyinde AO, Adeyinka AO, Musick B, Hui SL. JAMA 2001 Feb 14:285(6):739-47.

Burden of Dementia in African Americans and Yoruba

Hendrie 1995, 2001


Baseline Survivor Function by Site and Dementia Status

Risk of dying (Dementia cases vs. Normal): Indy 2.05; Ibadan 2.83

Perkins AJ et al. Int. J. Geriatr Psychiatr 2002; 17: 566-73

Processes influencing clinical expression of dementia

Focus on Gene-Environment interactions

- Environment education, living experience
- Vascular factors
- Diet
- Genetic risk APOE, GWAS

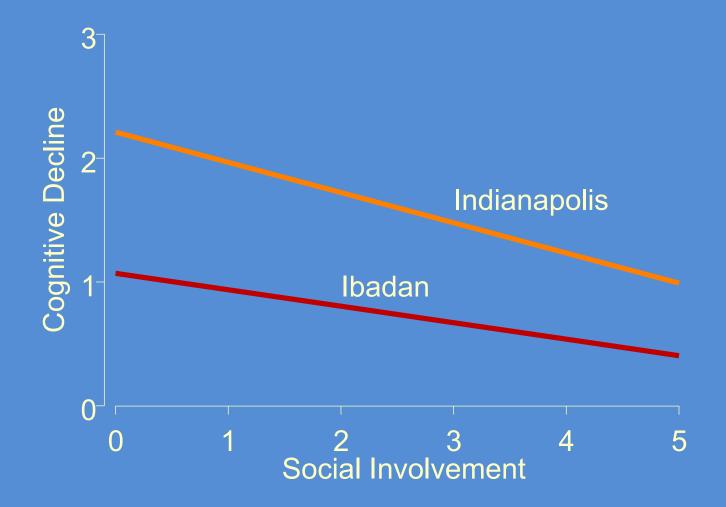
Search for environmental risk factors

Living Alone: Indianapolis 53.6%, Ibadan 7.4%

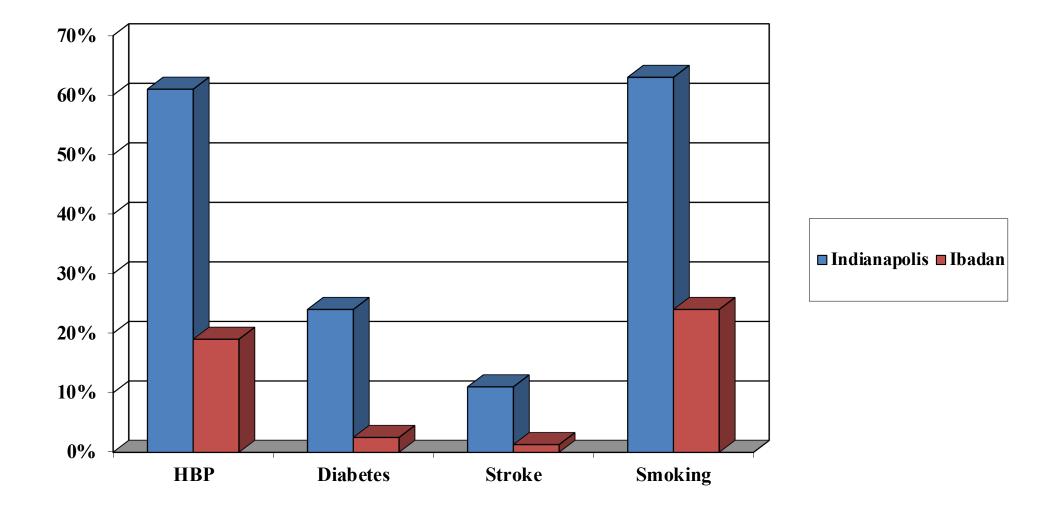
Bassuk Involvement Score

Presence of a spouse

Visits with at least 3 relatives or friends per month


Attendance at religious services once or more per month

Group membership


Regular recreational/social activities

Bassuk SS, Glass TA and Berkman LF. Social disengagement and incident cognitive decline in community-dwelling elderly persons. Annals of Internal Medicine 1999;131:165-173.

The Association of Social Involvement and Cognitive Decline at 7-Year Follow Up

Frequencies of self-reported vascular risk factors

Comparison of baseline vascular factors

	Ibadan	Indianapolis
Systolic BP (mm Hg)	135	146
Mean Cholesterol (mg/dl)	166	221

Ref. Ogunniyi et al, 2000; Hendrie et al. 2004

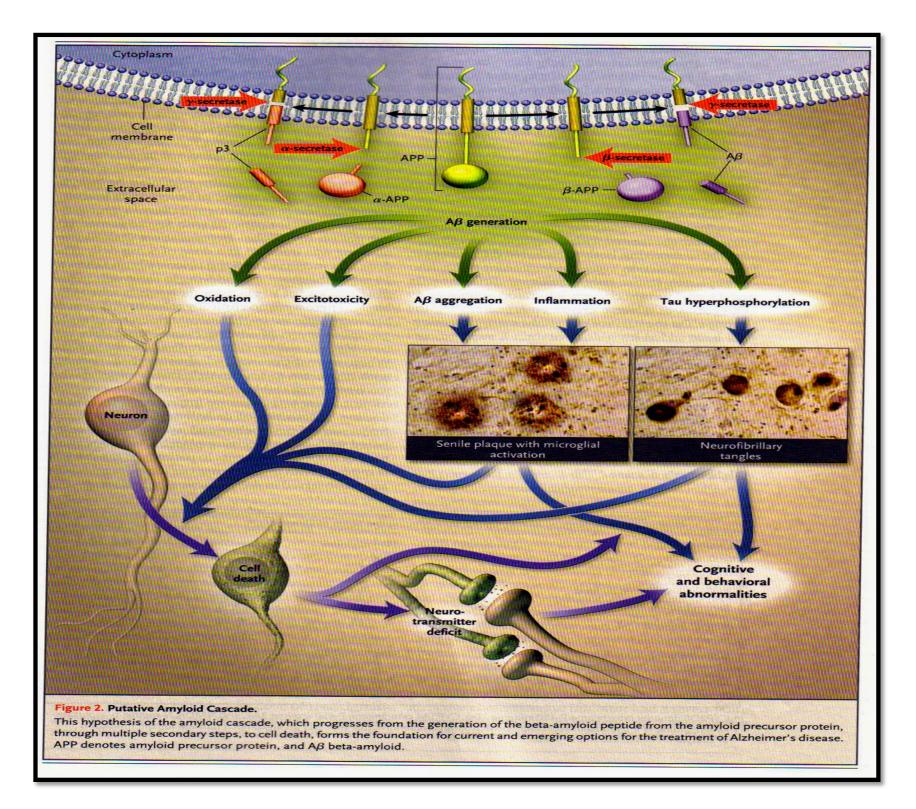
Means & Standard Deviations for Blood Pressure in Both Sites

	Indianapolis		Ibadan		
	Mean	<u>+</u> SD	Mean <u>+</u> SD		
Males	Systolic BP	Diastolic BP	Systolic BP	Diastolic BP	
65 – 74	148.49 <u>+</u> 20.89	82.03 <u>+</u> 12.46	149.48 <u>+</u> 29.34	85.39 <u>+</u> 15.81	
75 – 84	145.53 <u>+</u> 21.41	80.26 <u>+</u> 11.84	146.27 <u>+</u> 27.23	82.70 <u>+</u> 15.00	
85+	146.21 <u>+</u> 25.39	75.06 <u>+</u> 12.51	145.75 <u>+</u> 30.81	80.30 <u>+</u> 13.63	
Females					
65 – 74	144.27 <u>+</u> 21.78	79.83 <u>+</u> 11.60	152.76 <u>+</u> 32.53	85.71 <u>+</u> 15.48	
75 – 84	144.90 <u>+</u> 21.66	77.78 <u>+</u> 11.16	154.43 <u>+</u> 32.54	84.64 <u>+</u> 15.46	
85+	147.81 <u>+</u> 25.79	76.97 <u>+</u> 14.00	157.04 <u>+</u> 31.94	82.82 <u>+</u> 15.08	

73.41% of African Americans take anti-hypertension medications

Lipid measurements

Lipids (mg/dL)	Indianapolis	Ibadan
Cholesterol*	186.7	174.8
LDL*	112.8	106.7
HDL	51.2	50.0
Triglycerides*	113.4	89.5


P < 0.05

* Significant interaction with APOE $\epsilon4$ allele

Daily Diet of the Elderly Yoruba and African Americans: A Preliminary Analysis

	% Carbohydrates	% Fat	% Protein
Yoruba	78.4	9.5	12.1
African Americans	52	34	15
Restriction of the second of t			

Approach through disease mechanisms

Comparison of Biomarkers: AA vs. Yoruba

Mechanism	Test	AA	Yoruba	P value
Endothelial Dys.	E-selectin	44.5 (23.6)	37.9 (34)	<0.001
	PAI-1	21.9 (27.5)	39.5 (31.9)	<0.001
	Homocysteine	17.4 (7.4)	17.4 (6.9)	0.9
Oxidation	CRP	14.81 (26.6)	8.1 (18.9)	<0.001
	8-Isoprostane	586.3 (1283)	1270.3 (1585.5)	< 0.001
Insulin Res.	Metabolic Synd.	27%	7%	
	HOMA-IR	7.16	0.91	<0.001
<u>Atherogenesis</u>	Cholesterol	188.5 (38.6)	174.7 (40.9)	<0.001
	Triglycerides	104.7 (47)	89.5 (36.4)	<0.001
DNA synthesis	Folate	9.81 (8.4)	5.87 (6.7)	<0.001
	Vit B12	612.6 (352.7)	785.5 (310.2)	<0.001

PAI-1 – Plasminogen Activator Inhibitor-!; CRP – C-Reactive Protein; De HOMA-IR- Homeostasis Model Assessment (HOMA-IR); AA – African Americans

Deeg M et al. 2008

Homocysteine levels and dementia risk in Yoruba and African Americans

Hugh C. Hendrie,^{1,2,3} Olusegun Baiyewu,⁴ Kathleen A. Lane,⁵ Christianna Purnell,² Sujuan Gao,⁵ Ann Hake,⁶ Adesola Ogunniyi,⁷ Oye Gureje,⁴ Frederick W. Unverzagt,³ Jill Murrell,⁸ Mark A. Deeg⁹ and Kathleen Hall³

¹Indiana University Center for Aging Research, Indianapolis, Indiana, USA

STRACT

Background: High levels of homocysteine have been associated with increased risk for dementia although results have been inconsistent. There are no reported studies from the developing world including Africa.

Methods: In this longitudinal study of two community-dwelling cohorts of elderly Yoruba and African Americans, levels of homocysteine, vitamin B12 and folate were measured from blood samples taken in 2001. These levels were compared in two groups, participants who developed incident dementia in the follow-up until 2009 (59 Yoruba and 101 African Americans) and participants who were diagnosed as cognitively normal or in the good performance category at their last follow-up (760 Yoruba and 811 African Americans). Homocysteine levels were divided into quartiles for each site.

Results: After adjusting for age, education, possession of ApoE, smoking, and time of enrollment the higher quartiles of homocysteine were associated with a non-significant increase in dementia risk in the Yoruba (homocysteine quartile 4 vs. 1 OR: 2.19, 95% CI 0.95–5.07, p = 0.066). For the African Americans, there was a similar but non-significant relationship between higher homocysteine levels and dementia risk. There were no significant relationships between levels of vitamin B12 and folate and incident dementia in either site although folate levels were lower and vitamin B12 levers were higher in the Yoruba than in the African Americans.

Conclusions: Increased homocysteine levels were associated with a similar but non-significant increase in dementia risk for both Yoruba and African Americans despite significant differences in folate levels between the two sites.

y words : dementia, Alzheimer's disease, homocysteine, African Americans, Yoruba

²Regenstrief Institute Inc., Indianapolis, Indiana, USA

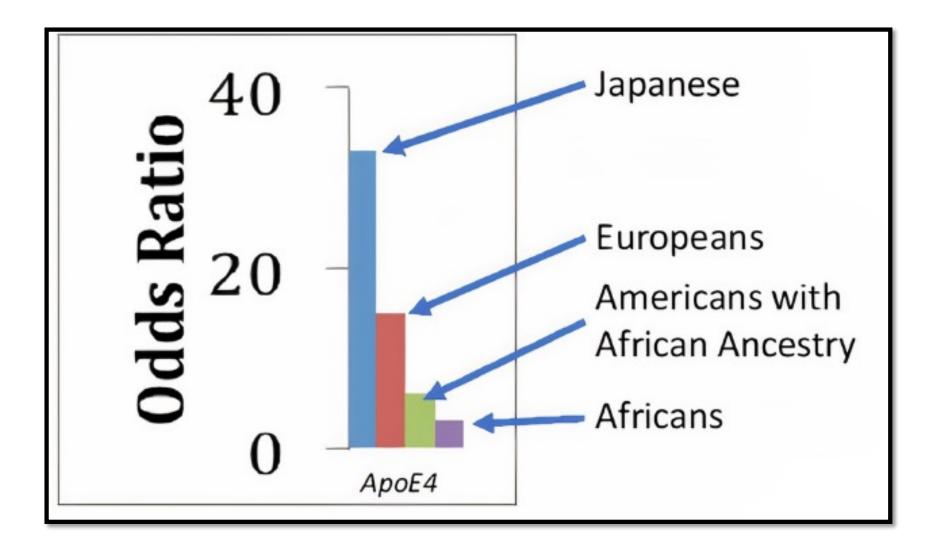
³Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA

⁴Department of Psychiatry, College of Medicine, University of Ibadan, Nigeria

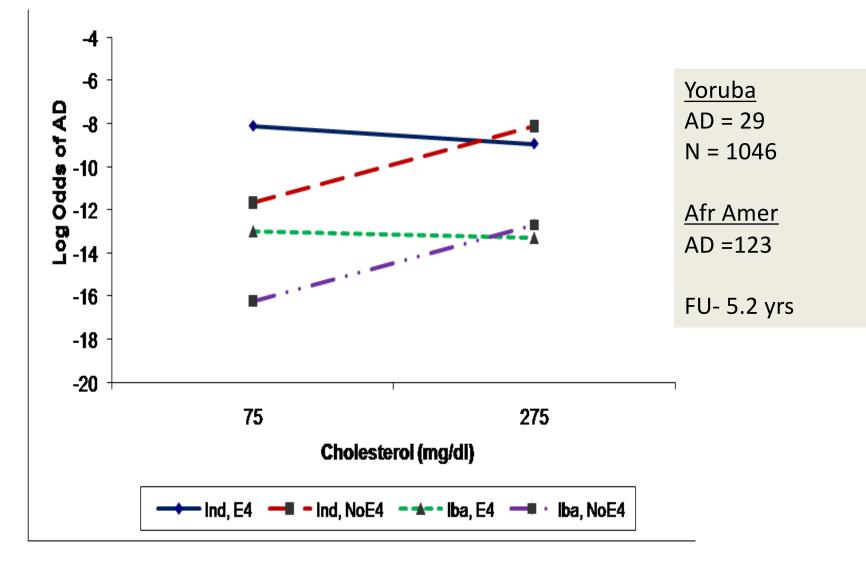
⁵ Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA

⁶Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA

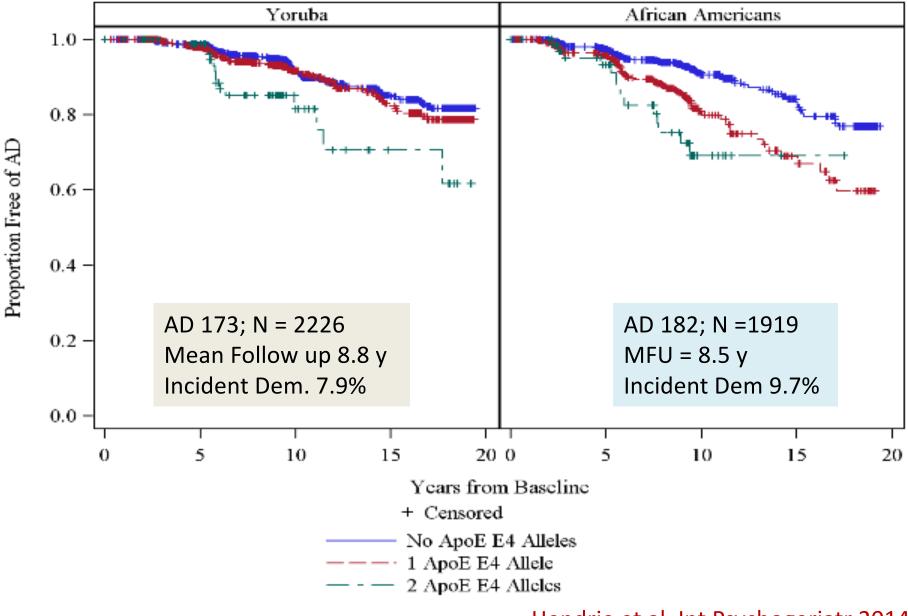
⁷Department of Medicine, College of Medicine, University of Ibadan, Nigeria


⁸Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA

⁹Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA


Interim Summary

- Prevalence of Dementia and AD higher in African Americans than in Yoruba
- Social involvement slows cognitive decline in both populations
- Vascular factors appear to have some role to play in disease pathogenesis but biomarker studies were inconclusive


APOE and AD

ApoE ε4 Genotype and Cholesterol Interaction Effects on AD in Indianapolis and Ibadan

Association between APOE and AD

Hendrie et al. Int Psychogeriatr 2014

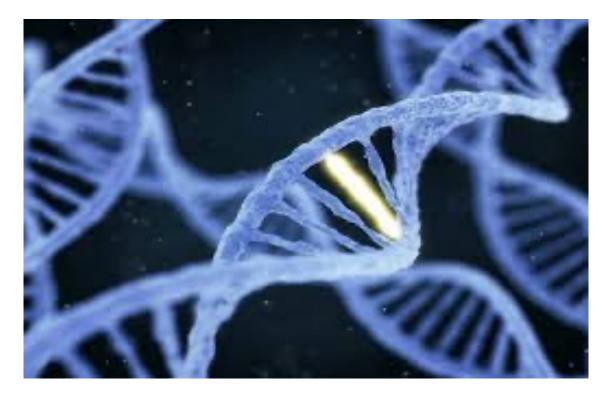
APOE and AD Risk

	Yoruba		African Americans		Caucasian*	
	HR 95% CI		HR	95% CI	OR	95% CI
Number of APOE ε4 alleles						
2 vs. 0	2.95	1.67-5.19	4.12	2.33-7.28	12.5	8.8-17.7
1 vs. 0	1.21	0.88-1.67	2.31	1.70-3.14	2.7	2.2-3.2

Hendrie HC, Murrell J, Baiyewu O, et al. APOE epsilon4 and the risk for Alzheimer disease and cognitive decline in African Americans and Yoruba. Int Psychogeriatr 2014;26:977-985.

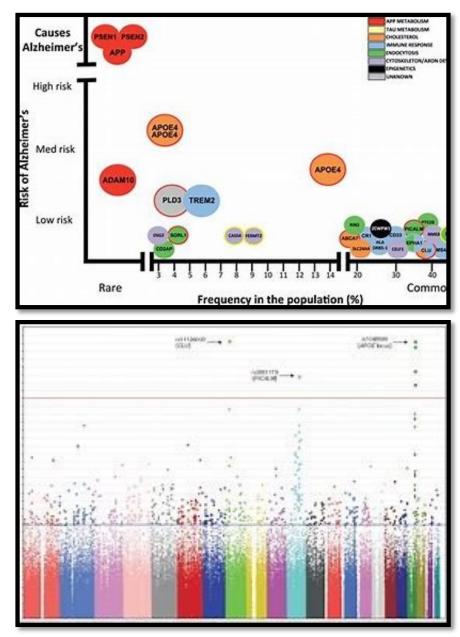
* Farrer LA, Cupples LA, Haines JL, et al. Effects of Age, Sex, and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer DiseaseA Meta-analysis. *JAMA*. 1997;278(16):1349–1356.

Interim Summary


- APOEe4 has a significant but weaker effect on incident AD in Yoruba than in African Americans.
- Although both have African ancestry, it appears that African Americans and Yoruba have different genes associated with AD risk.
- Environmental and genetic interactions are considered to be highly plausible but further research is needed to explore biological pathways underlying these associations.

Observed Phenotypic Variation

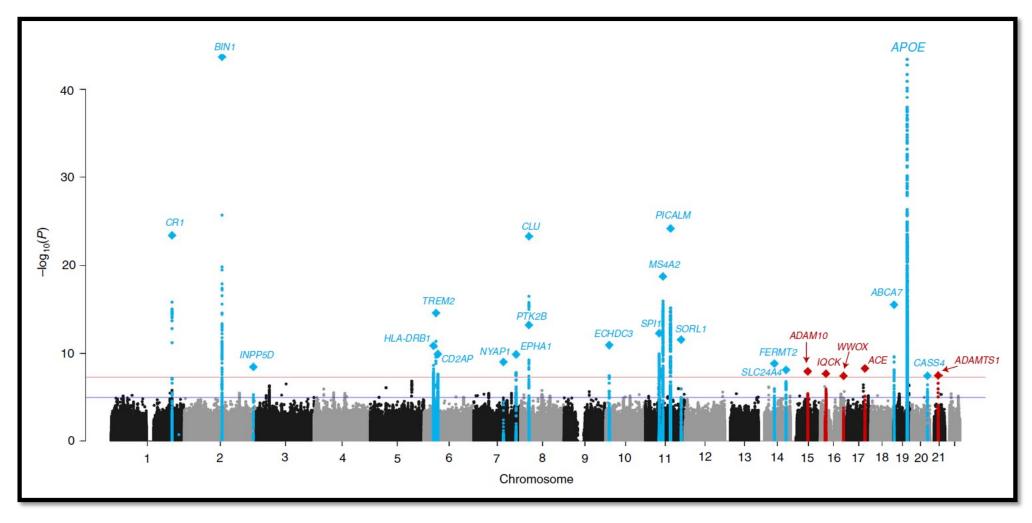
Genes	+Environment	+Gene/Gene	Gene/Environment
ΑΡΟΕε4	Vascular risk HBP	Other Genes involved	APOEε4/Lipid
? Other genes	Diet	APOEε4 Expression	
	Social interaction		


Are there differences in genes associated with AD?

Associations of Targeted Genetic Variants with Alzheimer's Disease in African Americans and Nigerians

GWAS for AD Genes

- Genome-wide association studies (GWAS) are useful for associating specific genetic variations with particular diseases through scanning the genomes from many different people and looking for genetic markers that can predict the presence of a disease
- No GWAS Data from Africa


Hazard Ratio (HR) Estimates Adjusting for Age, Sex, Education and APOE.

		African Americans			Yoruba			
SNPs	Closest Gene	HR	95% CI	p-value	HR	95% CI	p-value	
rs3752246	ABCA7	1.84	1.06 - 3.21	0.0306				
rs4147929	ABCA7	2.06	1.21- 3.50	0.0077				
rs9331949	CLU	0.59	0.29 - 1.20	0.1435	2.05	1.22 - 3.45	0.0069	
rs10498633	SLC24A4 /RIN3	0.87	0.58 - 1.30	0.4854	1.55	1.02 - 2.36	0.0401	
rs12881735	SLC24A4	0.88	0.59 - 1.32	0.5437	1.55	1.04 - 2.32	0.0316	

ABCA – ATP-Binding Cassette Subfamily 7

CLU – Clusterin; SLC – Solute Carrier Family 24

Risk Genes for AD

Kunkle BW et al. Nature Genetics 2019

PLOS GENETICS

RESEARCH ARTICLE

A locus at 19q13.31 significantly reduces the *ApoE* ε4 risk for Alzheimer's Disease in African Ancestry

Farid Rajabli¹, Gary W. Beecham^{1,2}, Hugh C. Hendrie³, Olusegun Baiyewu⁴, Adesola Ogunniyi⁴, Sujuan Gao⁵, Nicholas A. Kushch¹, Marina Lipkin-Vasquez¹, Kara L. Hamilton-Nelson¹, Juan I. Young^{1,2}, Derek M. Dykxhoorn^{1,2}, Karen Nuytemans^{1,2}, Brian W. Kunkle^{1,2}, Liyong Wang^{1,2}, Fulai Jin⁶, Xiaoxiao Liu⁶, Briseida E. Feliciano-Astacio⁷, Alzheimer's Disease Sequencing Project, Alzheimer's Disease Genetic Consortium, Gerard D. Schellenberg⁸, Clifton L. Dalgard⁹, Anthony J. Griswold^{1,2}, Goldie S. Byrd¹⁰, Christiane Reitz¹¹, Michael L. Cuccaro^{1,2}, Jonathan L. Haines¹², Margaret A. Pericak-Vance^{1,2}, Jeffery M. Vance^{1,2}*

1 John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America, 2 Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, United States of America, 3 Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America, 4 College of Medicine, University of Ibadan, Ibadan, Nigeria, 5 Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, United States of America, 6 Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America, 7 Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America, 8 Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 9 Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America, 10 Maya Angelou Center for Health Equity, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 11 Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, New York State, United

OPEN ACCESS

Citation: Rajabli F, Beecham GW, Hendrie HC, Baiyewu O, Ogunniyi A, Gao S, et al. (2022) A locus at 19q13.31 significantly reduces the *ApoE* €4 risk for Alzheimer's Disease in African Ancestry. PLoS Genet 18(7): e1009977. <u>https://doi.org/10.1371/</u> journal.pgen.1009977.

Summary

- In the African American sample, two variants in the adenosine triphosphate-binding cassette subfamily A member 7 (ABCA7) gene had significant associations with earlier AD onset. These ABCA7 variants were not observed in the Yoruba sample.
- In the Yoruba sample, one variant in the Clusterin gene (CLU) and two variants in the Solute Carrier family 24 member 4 gene (SLC24A4) were significantly associated with earlier AD onset.
- In the Yoruba sample, rs10498663 in SLC24A4 was significantly associated with higher levels of triglycerides

Cross-validation of risks for Alzheimer's disease in African Americans with Yoruba people of West Africa: Newark-Nigeria Dementia Study

AIMS OF THE STUDY

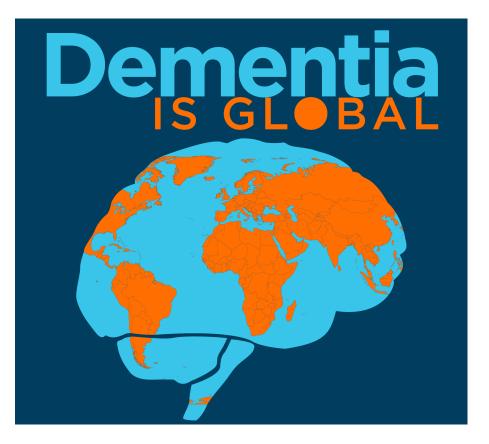
- To evaluate how variation in physical fitness is correlated with cognitive function and how this association is mediated by various health and lifestyle variables.
- To cross-validate the risk factors for AD in African Americans and in Yoruba people.

Cognitive Test Battery*

- MMSE (Mini-Mental State Examination)
- Wechsler Adult Intelligence Scale 4th Version (WAIS IV)
- Digit Span (Forward, Backward, & Sequencing)
- Rey Auditory Learning Test (RAVLT)
- GDS (Geriatric Depression Scale 15 items)
- Trail making A and B tests (Stick Design)
- STROOP (Color Naming, Color Interference and Word Reading) and Delayed recall (RAVLT after 20 minutes)
- Clock drawing
- Controlled Word Association (CWA) Naming
- Pittsburgh Sleep Quality Index
- Lifestyle, Physical Fitness and Activity Assessments
- Grit and Resilience
- Midlife Development Inventory (MIDI)

Other assessments

- Color Vision Testing
- Blood Pressure, Height, Weight measurement
- Rutgers Generalization Test
- Get Up and Go, 6-Minute Walking tests
- Pulse Oximetry
- Blood for Malaria Parasites; Plasma Glucose
- Sputum for genetic studies


Preliminary Results

- Total enrolled: 124 (51 Male (41.1%)
- Mean Age: 70.1 (7.2) years
- Any education: 89.5% (including 29% with 3^o education) (Previous I-I D Study: Indy Literacy 97.9%; Ibadan 15.2%)
- Widowed/Separated: 37.9%
- Presently working: 43.5%
- MMSE score > 24: 90.3%
- Frequencies: Hypertension: 42.7% (51% of them on treatment)
 Diabetes Mellitus 15.5%; Smoking: 1.6%
 Previous Stroke 1.6%

Frequencies of Selected Midlife Personality Traits

Traits	Frequency (%)
Organized, Helpful, Responsible, Self- disciplined, Sympathetic, Thorough	100
Friendly	99.2
Adventurous	64.5
Outgoing	57.3
Talkative	51.6
Worrying	49.2
Impulsive	35.5
Careless	28.2
Moody	14.5
Reckless	10.5

Concluding Remarks

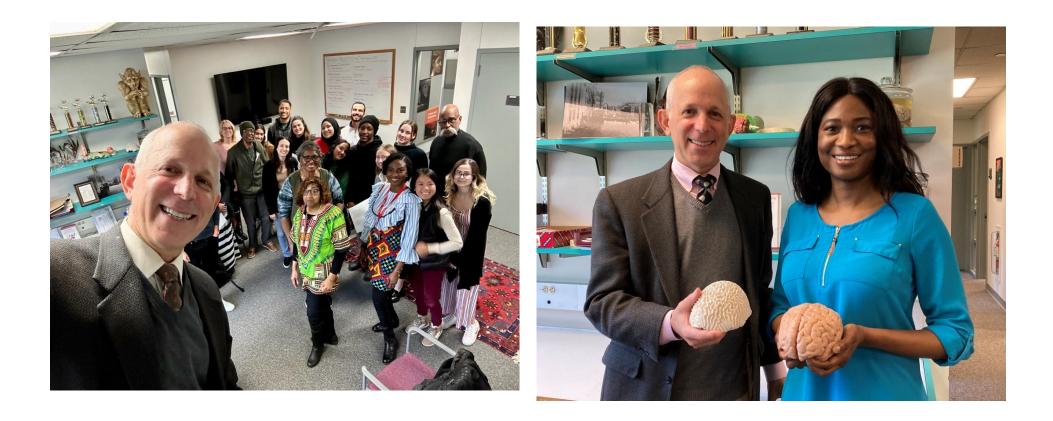
"Demography is not Destiny"

Mark Gluck

Conclusion contd.

- Lower dementia burden in the Yoruba
- Some differences in dementia risk in the two populations – vascular, genetic, etc.
- Resilience is worth exploring through clinical, imaging, neurobiobanking and "omic" studies

Members of the Indianapolis-Ibadan Research Teams


In loving memory

Benjamin O. Osuntokun (1935-1995) Kathleen S. Hall 1944-2022

Acknowledgement contd.

Acknowledgements

- The Indianapolis-Ibadan Dementia Project (Hendrie/Hall) NIH R01 AG09956
- Indiana ADC (Saykin) NIH P30 AG 10133
- Alzheimer's Association/F.M. Kirby Foundation (Pilot Research Grant IRG-95-084)
- Longitudinal interactive vascular exposure and Alzheimer Disease (LiveAD) (Gao) NIH R01 AG0145350
- Risk Factors for Future Cognitive Decline and Alzheimer's Disease in Older African Americans (Gluck) R01AG053961-05S2 (supplement)