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Abstract. The difference between integral and separable interaction of dimensions
is a classic problem in cognitive psychology (Garner 1970, American Psychologist, 25:
350–358, Shepard 1964, Journal of Mathematical Psychology, 1: 54–87) and remains
an essential component of most current experimental and theoretical analyses of
category learning (e.g. Ashby and Maddox 1994, Journal of Mathematical Psychology,
38: 423–466, Goldstone 1994, Journal of Experimental Psychology: General, 123:
178–200, Kruschke 1993, Connection Science, 5: 3–36, Melara et al. 1993, Journal 
of Experimental Psychology: Human Perception & Performance, 19: 1082–1104,
Nosofsky 1992, Multidimensional Models of Perception and Cognition, Hillsdale NJ:
Lawrence Erlbaum). So far the problem has been addressed through post hoc analysis
in which empirical evidence of integral and separable processing is used to �t human
data, showing how the impact of a pair of dimensions interacting in an integral or a
separable manner enters into later learning processes. In this paper, we argue that 
a mechanistic connectionist explanation for variations in dimensional interactions
can provide a new perspective through exploration of how similarities between stimuli
are transformed from physical to psychological space when learning to identify,
discriminate and categorize them. We substantiate this claim by demonstrating how
even a standard backpropagation network combined with a simple image-processing
Gabor �lter component provides limited but clear potential to process monochromatic
stimuli that are composed of integral pairs of dimensions differently from mono-
chromatic stimuli that are composed of separable pairs of dimensions. Interestingly,
the responses from Gabor �lters are shown already to capture most of the dimensional
interaction, which in turn can be operated upon by the neural network during a 
given learning task. In addition, we introduce a basic attention mechanism to back-
propagation that gives it the ability to attend selectively to relevant dimensions and
illustrate how this serves the model in solving a �ltration versus condensation task
(Kruschke 1993, Connection Science, 5: 3–36). The model may serve as a starting point
in characterizing the general properties of the human perceptual system that causes
some pairs of physical dimensions to be treated as integrally interacting and other
pairs as separable. An improved understanding of these properties will aid studies in
perceptual and category learning, selective attention effects and in�uences of higher
cognitive processes on initial perceptual representations.
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1. General introduction
One of the basic tasks humans have to do continuously is to sort things, objects, or
events into distinctive groups based on the similarities between the various instances.
This process of categorization involves finding or constructing the feature(s) that
distinguish the members of each category. Since these features may vary in several
dimensions, a successful theory of categorization needs to explain how these different
dimensions interact. Previous studies suggest that there are at least two different types
of interaction (Garner 1970). The interaction of a pair of dimensions can be integral,
meaning that they are perceived holistically. Goldstone (1999, 2002) refers to the
underlying dimensions as being psychologically fused. A standard example is the
brightness and saturation of a colour. When one of these features changes, the effect
is perceived as a change in overall colour, rather than as a change in one attribute 
of that colour. More commonly, a pair of dimensions is perceived analytically as
separable. For example, the size of a square and the brightness of its colour are
separable dimensions: if the brightness is changed, we do not normally perceive a
difference in size.

The problem of integrality versus separability has been an important aspect of
theories of categorization. Researchers have been approaching the problem by testing
human categorization performance (e.g. Garner and Felfoldy 1970), devising
statistical models to �t experimental data (e.g. Nosofsky 1986, Kruschke 1993), or
applying direct similarity scaling (e.g. Carroll and Arabie 1980). A typical experiment
consists of presenting stimuli that are composed of a pair of dimensions, such as
brightness and saturation of a colour, to human subjects with the instruction to sort
them, identify them, or discriminate between them. The performance of the subjects
is analysed, usually by measuring the amount of time it takes them to sort a set of
stimuli or by observing the errors in discrimination and identification. A general
finding is that performance significantly differs between integral and separable
dimensional interaction (e.g. Garner and Felfoldy 1970).

An example of a statistical model is the Generalized Context Model (GCM),
proposed by Nosofsky (1986), which uses psychological similarity ratings as input.
According to the GCM, a stimulus belongs to a category if the summed similarity of
this stimulus to all stored category exemplars exceeds a certain probability estimate.
Stimuli are represented as points in a multidimensional space, with the similarity
between any two stimulus representations described as a decreasing function of their
distance in that space. These interstimulus distances are derived from multidimen-
sional scaling results from human subjects’ similarity ratings of pairs of actual stimuli
(see also Shepard 1987). The difference between integral and separable interaction is
then incorporated into how distances between stimulus representations are calculated.

Although the above approaches to the problem of dimensional interaction have
produced relevant data, they remain descriptive and post hoc. Models such as the
GCM do not explain how stimulus representations are formed. They are used to �t
behavioural categorization data based on acquired human similarity ratings. The
question remains: What mechanism underlies the transformation from a raw stimulus
to an internal representation and how does this transformation affect the interaction
between dimensions? After several decennia of analysis it is still not clear how and
why integral pairs of dimensions are processed differently from separable pairs. 
It might be the case that the behavioural data are simply insufficient to constrain 
or guide appropriate theories of dimensional interaction without the benefit of
computational modelling.
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A different approach might be needed to �nd an explanation for the differential
processing of integral and separable dimensions, one that provides insights into the
mechanism involved in the differential impact of separable and integral interaction
of dimensions on category learning. Within this approach, the focus would be on
exploring how distances between stimuli are transformed from physical to psycho-
logical space when learning to identify, discriminate and categorize them. In this
paper, we provide theoretical arguments for our hypothesis that connectionist models
are a possible candidate for a mechanism of differential processing of dimensions.
Although connectionist models are not yet as powerful as human categorizers, we
shall show that combining a neural network with a suitable sensory-preprocessing
input layer will create a basic capacity to process differentially stimulus dimensions.
An analysis of the way these models categorize can in turn illuminate the way in which
it might be done in the human cognitive system and provide a new perspective 
on human subject data. An advantage of a mechanistic approach to dimensional
interaction is that it takes the same spatially organized stimuli that are presented to
subjects rather than ad hoc inputs.

The idea of attaching a sensory preprocessing component in a connectionist 
model finds support in a movement within the cognitive sciences that emphasizes 
the important bidirectional relation between perception and cognition. Goldstone
(1998a) argues that perception contains an initial source of structured information
that can be operated upon subsequently by higher cognitive processes (Tijsseling
1998), yet these cognitive processes can in some cases also modify percepts (Goldstone
1995, Goldstone et al. 1997, Schyns et al. 1998). In particular, perceptual learning and
categorization are constrained by the existing structure of the sensorimotor apparatus
of an organism. These constraints allow for adaptation to the environment and serve
as a starting point for the development of more sophisticated percepts, because they
determine what can and cannot be perceived and, consequently, learned (Grossberg
1982, 1987, Karmiloff-Smith 1992, Murre et al. 1992, Goldstone 1998a).

Given this bootstrapping of perception by the sensorimotor system, we shall 
argue that if the encoding of an input to a neural network is motivated by the way
human-like perception encodes the physical structure of the stimuli, then the question
whether the dimensions that compose the stimulus in question are interacting in 
an integral or separable manner can be determined without any ad hoc or post hoc
�tting by an external observer. The interaction between a pair of dimensions that
make up a stimulus is not determined by the physical structure of the stimulus in
question, but is based on how the human perceptual system processes the physical
stimuli. A Martian might have a different kind of perceptual apparatus and perceive
the same stimulus in a radically different way. In other words, the physical structure
of the stimulus is the same, but the way it is reconstructed within a cognitive system,
or which aspects of information are extracted from it by the system, might differ across
species.

The potential of connectionist models for explaining the differential processing of
integral and separable dimensions is demonstrated in this paper by simulations with
a backpropagation network combined with an image-�ltering input layer composed
of Gabor �lters (Gabor 1946, Daugman 1988). Backpropagation networks have been
used extensively in categorization models (e.g. Kruschke 1993, Gluck and Myers 1993,
Cangelosi et al. 2000). We are using backpropagation only as an illustration of our
theoretical arguments, showing how a simple neural network may already employ 
a crude mechanism for differential processing of dimensional interaction. As a
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candidate for raw stimulus processing, we have opted for a Gabor filter model of
sensory processing in the primary visual cortex (Marcelja 1980). By using both
backpropagation and Gabor �lters (hereafter simply referred to as the model), we try
to combine a mechanism for transforming a raw stimulus into a psychological
representation together with a feature �ltering mechanism for category learning. For
the purpose of explanation, we have tried to keep the model intelligible while still
going a long way toward explaining the basis of dimensional interaction.

We shall begin by reviewing empirical evidence for a distinction between integral
and separable pairs of dimensions and then we shall discuss how these two kinds 
of interaction can be interpreted in the context of physical versus psychological 
space. For this we refer to a seminal paper by Shepard (1964) that deals with the
transformation of distances between stimuli from physical to psychological space 
and how multiple dimensions interact in similarity judgements. We shall describe 
our demonstrative model and apply it to experimental studies concerning differ-
ential processing of dimensions. It will be shown that the model’s performance is
qualitatively similar to human subjects. We shall explain how the model addresses
the problem of dimensional interaction and argue that this may suggest a general
underlying mechanism in which distances between representations of stimuli in psy-
chological space are derived from the corresponding physical distances. In particular,
we shall single out the crucial role Gabor �lter encoding plays in the processing of
dimensional interaction. Finally, we shall discuss the lack of an attention mechanism
in the model, which prevents it from explicitly attending to one single separable
dimension. We offer a solution to this problem by injecting a crude selective attention
mechanism to the model, based on previous work by Kruschke (1996). With an
attention mechanism in place, the model processes the paradigm task of condensation
versus �ltration in a manner qualitatively similar to human subjects.

2. Integral versus separable dimensions and their relation to isosimilarity 
contours

In typical categorization studies, stimuli are often employed that vary in several
continuous dimensions. To complicate matters, a subject’s perception of how dimen-
sions interact may vary for each different pair of dimensions. At the one extreme, we
have integral pairs of dimensions (Garner 1970), such as, for example, brightness and
saturation of a colour, which tend to be holistically perceived. Subjects who have to
evaluate the brightness of a stimulus suffer interference (i.e. speed and accuracy
de�ciencies) if saturation is varied at the same time (Torgerson 1958, Garner and
Felfoldy 1970, Handel and Imai 1972). At the other extreme, there are separable pairs
of dimensions (Garner 1970), such as brightness and size: subjects who have to focus
on one of these two dimensions can do so even when the other irrelevant dimension
is varied (Attneave 1963, Handel and Imai 1972, Garner 1974, Gottwald and Garner
1975). In short, subjects can attend to each of the separable pair of dimensions
separately, while integral pairs of dimensions appear to be perceived as if they are
‘psychologically fused’1 (Goldstone 2002). Integral and separable pairs of dimensions
have been found in the visual, auditory and vibrotactile modalities (Garner 1970).
Hence, the distinction between integral and separable pairs of dimensions is
fundamental for models of human categorization and continues to generate active
research interest (e.g. Melara et al. 1993, Ashby and Maddox 1994).

More accurate judgements of the interaction between dimensions can be made
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using psychological distances. Several studies have shown that there is a relationship
between the type of interaction between dimensions and the metric that �ts these
psychological distances. Shepard (1964) focused on the question of how differences
in two dimensions combine psychologically into an assessment of the overall similarity
between two stimuli. This cannot be answered by just looking at the relation between
the physical stimuli themselves, because psychological similarity is not just dependent
on physical similarity. For example, in the case of colour, the similarity between one
green colour and another and between the same green colour and a blue one is very
different psychologically, even though the physical distance between the wavelengths
might be identical (Berlin and Kay 1969, Bornstein 1987). The only property that
seems to be invariant is that when two stimuli approach each other in physical space,
then their psychological representations will be more similar (Shepard 1964). In this
respect, the issue of assessing overall similarity is to �nd the transformation that will
convert physical interstimulus distances into psychological distances between the
corresponding representations.

Discovering this transformation is complicated when more than one dimension is
involved, because one can construct a separate psychological scale for each of the
underlying physical dimensions, but this will not capture the similarity between two
stimuli that vary on several dimensions. In a one-dimensional case, the similarity
between any two points on the dimension is symmetrical, but this symmetry is not
present when stimuli vary in more dimensions. Consider, for example, �gure 1, which
shows a point S in a plane spanned by two dimensions A and B. Given S, we can create
a series of stimuli on some imaginary straight line that passes S at a speci�ed distance
in physical space (for example, stimuli D, H and L as shown on the left-hand side of
the �gure). We assume that points D and L have the same amount of physical and
psychological similarity to S, but each of which varies from S in just one dimension at
some distance, respectively, d(S,D) and d(S,L). Point H, on the other hand, also varies
from S, but along both dimensions and at a given distance of k?d(S,D) + k?d(S,L). We
cannot tell how large this factor k must be in order for the psychological similarity
between S ¢ and H ¢  to be the same as the similarity between S ¢ and either D¢ or L ¢ , this
remains a function of how the two dimensions A and B interact.

Shepard (1964: 56) argues that knowing the rules that produce an overall similarity
between stimuli that vary in more than one dimension is equivalent to �nding the
characteristics of the corresponding isosimilarity contour, which is defined as ‘the
shape of the locus of all stimuli that have any prescribed degree of similarity to any
prescribed standard stimulus’. For example, what are all the stimuli that have the
same �xed similarity to S in �gure 1? In other words, if we know all the stimuli with
the same given amount of similarity to S, then what shape or locus would these stimuli
form? The form of this shape is strongly related to the kind of interaction between the
two dimensions that make up the physical space.

According to Shepard (1964), determining the shape of the isosimilarity contour
is equivalent to determining the form of that particular Minkowski metric that seems
to be appropriate for the psychological space. Minkowski metrics are de�ned as:

in which d(i,j) is the distance between stimuli i and j, xik is the location of the stimulus
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i on the kth dimension, n is the number of dimensions and r is the Minkowski para-
meter. A value of 1 for r corresponds to the city-block metric, and a value of 2 denotes
the Euclidean metric. Metrics also obey the following principles: the triangle inequality
(dij £ dih + dhj for those stimuli i, j and h, where h lies between i and j on a shortest
connecting path), positivity (dij > dii = 0 for i Þ j) and symmetry (dij = dji). Based on
these metrics one can produce several possible isosimilarity shapes.

Figure 1 shows that the curve consisting of all stimuli with a speci�c amount of
similarity to S can have different shapes depending on the nature of interaction
between the constituent dimensions, A and B. All of these curves form continuous,
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Figure 1. Possible transformations from physical space to psychological space. The �gure on
the left-hand side displays physical stimuli that vary in two dimensions A and B. S is a prescribed
stimulus and D, H and L are stimuli that lie on an imaginary straight line passing S at a given
distance. If stimuli D and L have the same similarity to S, it does not provide any information
on the similarity of H. Based on how the dimensions A and B interact, three resulting
isosimilarity contours are shown on the right-hand side: Euclidean, city-block, or concave. S¢ ,

D ¢ , H ¢ and L ¢ are the psychological space representations of the corresponding stimuli.



centrally symmetric closed curves as they rotate around S. Based on subjects’
judgements of the similarities of these stimuli to S, one can construct the isosimilarity
contour for the corresponding psychological space and, consequently, infer the nature
of interaction between the dimensions A and B.

If subjects judge H to be more similar to S than D and L are (�gure 1, top), then
the isosimilarity contour is elliptical with the latter two stimuli falling outside the
contour for H. In this case, the psychological space conforms to a Euclidean metric
(Hyman and Well 1967) and the dimensions A and B can be considered to interact in
an integral manner (Lockhead 1972, Garner 1974). Stimuli composed of an integral
pair of dimensions are initially perceived holistically, which means that the individual
dimensions constituting the stimuli are in effect not perceived. Note that in the case
that r is equal to 2, rotation of the dimensional axes A and B, as a consequence, does
not change the psychological space.

On the other hand, if subjects judge that D, H, L are equally similar to S (�gure 1,
middle), then the isosimilarity contour is a straight line and we can conclude that the
psychological space obeys a city-block metric, which in turn implies that the pair of
dimensions A and B is separable. In this case, the dimensional axes cannot be rotated,
because each dimension can be attended to separately and a rotation would signi�-
cantly disturb the similarity space of the stimuli.

As mentioned earlier, there are also cases in which the pattern of interaction does
not seem to match either integrality or separability, but rather lie in between these two
endpoints (Pomerantz and Garner 1973). For these interactions, the appropriate
Minkowski metric would be de�ned by an r between 1 and 2. (For a discussion where
r approaches in�nity, see Johannesson (2001).) It is also possible that subjects judge
H to be less similar to S than D and L are (�gure 1, bottom). This indicates that the
isosimilarity contour is concave, which in turn informs us that there is no metric
representation of the similarity space, because concave contours violate the triangle
inequality rule for metrics.

Given the different metrics, depending on the perceptual distinctiveness of the
dimensions of the stimulus, Shepard (1964: 59) argues the necessity of a ‘more
thorough investigation into the relations of similarity among a set of stimuli that differ
in a small number of perceptually distinct and salient dimensions’. In the next section,
we shall describe the stimuli used in Shepard’s experiment (1964) and a corresponding
experiment. Based on this, a series of simulations will be described. The main reason
for using data from Shepard (1964) is that Shepard used a well-de�ned set of stimuli
organized in a well-defined two-dimensional stimulus space. In this set of stimuli,
adjacent pairs are physically equally distant from each other, so we can make valid
inferences about possible isosimilarity contours. In addition, the analyses Shepard
provided for the human subject data are extensive and thorough, which makes it much
easier to compare with and relate to simulation results. To our knowledge there are
no new data superseding or refuting Shepard’s seminal work.

3. Description of an experiment from Shepard (1964)
Shepard’s experiment measured the number of confusions made by subjects when
learning to respond with a unique identifying label for each stimulus object. This
method would possibly resolve the question of whether the isosimilarity contour of
the psychological space is concave and, as a consequence, whether there is a metric
representation of psychological space. The stimuli used by Shepard (1964) in his
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experiments were all circles containing a radial line. Series of stimuli could vary in the
size of the circle, the angle (tilt) of the radial line, or both. The experiment described
below is the final experiment described in Shepard’s paper; all details regarding
experimental set-up and procedure can be found in Shepard (1964).

Eight stimuli were constructed with reference to a prescribed stimulus, S, which 
is a circle with a diameter of 1.905 cm containing a radial line at an angle of 45.0°. 
The location of these stimuli in physical space formed the corners of an imaginary
octagon, as shown in �gure 2. The horizontal axis corresponds to the diameter of the
circle (size) and the vertical axis corresponds to the tilt of the radial line. Shepard
designed the training stimuli in such a way that each adjacent pair of stimuli varied in
either one or both dimensions. For example, stimuli 8 and 1 varied in the dimension
of diameter (2.299 cm versus 2.875 cm), but had the same angle (80°). On the other
hand, stimuli 1 and 2 varied in both dimensions of size and tilt. This alternating 
pattern of one-dimensional variance and two-dimensional variance in an octagonal
con�guration has been shown to be effective for discriminating between elliptical and
four-cornered isosimilarity contours, and therefore reliably indicates whether the pair
of dimensions that de�ne the stimuli is either integral or separable (Shepard 1964).

The task of subjects in this experiment was to identify each of the eight stimuli,
using a paired-associate method of correction, with a unique letter, but they never saw
the reference stimulus S itself. The errors subjects made during identi�cation were
used to calculate a confusion score. We focus on adjacent pairwise confusions (i.e. the
number of times subjects identi�ed a stimulus as its neighbour, for example, when 1
is identi�ed as 2 in �gure 2) as these were shown to be the signi�cant data (Shepard
1964). It can be hypothesized that the amount of confusion for stimuli varying in both
dimensions should be signi�cantly different from the amount of confusion for stimuli
varying in one dimension only, as previously illustrated with �gure 1.

In figure 3, the graph of the errors made during identification learning (‘con-
fusions’), averaged over 200 stimulus presentations and 20 subjects, is recreated 
from Shepard (1964). The points in the graph correspond to the average number of
confusions for the eight pairs of adjacent stimuli, with the mean number of confusions
marked by the horizontal dashed line. The curve shows that subjects tend to confuse
adjacent pairs of stimuli that differ in one dimension more often than those stimuli
that vary in both dimensions. In particular, this curve shows an alternating repetition
of high confusion for stimuli varying in one dimension and low confusion for stimuli
varying in both dimensions, an alternation that seems to go through four complete
cycles (of one u and one e ). This is a strong indication that the dimensions are
interacting in a separable manner because, as we argued, an integral pair of dimensions
would be processed holistically and therefore would not produce this pattern of
results. The alternating character of single dimension variation versus two-dimension
variation moreover suggests that the psychological representation of similarities to S
does not match an elliptical isosimilarity contour because the two dimensions that
made up the stimuli appear to have an additive character: stimuli that varied in both
dimensions proved to be easier to identify, since subjects were able to use information
from both single dimensions.

In addition, �gure 3 shows another remarkable feature. With each pair of adjacent
positions around the octagon (starting at the 2–3 pairwise similarity comparison) the
number of confusions seems to increase for stimuli that vary in a single dimension and
decrease for stimuli that vary in both dimensions, in a linear fashion. This observation
is not mentioned in Shepard (1964), but we feel that this may reveal additional
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properties of the underlying psychological space. Since subjects did not have to rate
the similarity between the stimuli and the standard stimulus S, there is no possibility
of determining psychological distances to S from these experimental data. Using
neural network simulations, however, we might be able to combine evidence to infer
the nature of the psychological space and suggest explanations for the observed linear
change in error, possibly by exploring the warping of internal representations during
learning (Tijsseling and Harnad 1997). In the next section we shall describe the
demonstration model and the simulations. 

4. Description of the demonstrative model
The model consists of a neural network combined with a Gabor filter input layer
(�gure 4). We used standard backpropagation with units in the range [0.0, 1.0], sigmoid
activation rules and a mean-squared error rule. The network is set up to accommodate
Shepard’s experiment in which subjects had to identify stimuli by a unique letter. The
network had to produce an identifying response as well, i.e. there was a unique output
unit, which was to become active for each individual stimulus object. For example,
stimulus 1 would produce an output vector of <1,0,0,0,0,0,0,0> and stimulus 2 would
produce <0,1,0,0,0,0,0,0>, etc. We shall refer to this procedure as ‘identi�cation’ and
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Figure 2. The stimuli in the second experiment were constructed in such a way that their
physical similarity to the given standard stimulus S forms an octagon of which S is the centre.
The horizontal axis displays the diameter of the circle and the vertical axis displays the tilt of

its radial line. (After Shepard 1964.)



we intend to embody two crucial processes of category learning using this method
(Gluck and Myers 1993, Myers and Gluck 1994): �rst, stimuli that lead to different
responses are separated through predictive differentiation; and second, stimulus
features that tend to co-occur are grouped through redundancy compression.

Images of experimental stimuli are processed by several Gabor �lters, each tuned
to a speci�c orientation (Gabor 1946, Daugman 1988). Gabor �lters have been used
successfully for simulations of human face recognition (Padgett and Cottrell 1998,
Kalocsai et al. 1998), other pattern recognition behaviours (Buse et al. 1996) and also
categorical perception (Goldstone et al. 1996). They are a simpli�ed approximation
of human visual processing of non-moving monochromatic sensory stimuli. These
�lters are similar in shape to the receptive �elds of simple cells in the primary visual
cortex (V1), which are restricted to small regions of space and are highly structured
(Marcelja 1980). Several researchers have described these cells as edge detectors
(Hubel and Wiesel 1962, 1965), but their responses can be more accurately described
as local measurements of frequencies (Jones and Palmer 1987). Appendix A provides
a mathematical description of a Gabor �lter and how it has been used in the model to
preprocess a monochromatic image. The responses of one or more Gabor filters
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Figure 3. Frequencies with which pairs of adjacent stimuli were confused after learning. The
icons on top of the �gure correspond to the octagonal con�guration of the stimuli as shown in
�gure 1. The bold line in each icon indicate which pair of adjacent stimuli from the octagonal
con�guration corresponds to the amount of confusion shown. In addition, confusion scores
from stimuli varying in one dimension are marked with a square, whereas confusions from
stimuli varying in both dimensions are marked with a diamond. Finally, the error bars indicate

the variance over the number of subjects. (Figure recreated from Shepard 1964.)



centred at the full image measure frequencies at various locations of the image. Gabor
�lters, therefore, re�ect the physical properties of the stimulus as well as the similarity
gradient between stimuli (Goldstone et al. 1996, Tijsseling and Harnad 1997). The
encoding process constructs a representation of the stimulus by reproducing the
intrinsic structure of the stimulus space in a rough approximation of the early stages
of human vision.

The responses from the Gabor �lters are propagated to the backpropagation identi-
�cation network, which has to map the sensory representation to a localist encoding
of its symbolic label. Stimuli were presented in permuted order. The architecture of
the network conformed to an I–H–O hierarchical feedforward structure, in which the
size of the input layer, I, was equal to the length of the normalized responses of the
Gabor �lters used to process the image (ranging from eight to 72, see Appendix A),
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Figure 4. The simple model of dimensional processing and identi�cation and category learning
used in this paper. A raw stimulus image is �rst presented to a Gabor �lter layer. This consists
of a set of Gabor �lters that are tuned to speci�c orientations. The responses from this Gabor
�lter layer are presented as inputs to a backpropagation identi�cation network for redundancy

compression and predictive differentiation.



the size of the output layer, O, was equal to the number of stimuli, and the size of 
the single hidden layer, H, was initially set at three, unless mentioned otherwise. 
The performance for more hidden units was not statistically different. Laakso and
Cottrell (1998) show that networks with different numbers of hidden units all achieve
essentially identical representational structures given a common stimulus domain. In
addition, using three units greatly facilitates analysis of the hidden unit space, which
bene�ts the purpose of this demonstrative connectionist model. In most connectionist
approaches, the hidden representation is seen as corresponding to psychological
space. In our case, we also used hidden unit activations for analyses.

5. Simulations of the experiment from Shepard (1964)
In order to �nd out whether the results of the combined model are speci�c to the
stimuli employed by Shepard or whether they exhibit some general property of our
model, we also trained it on three other sets of stimuli, shown in �gure 5. These stimuli
were composed of: a separable pair of dimensions of height of a rectangle and position
of an embedded vertical line (Kruschke 1993, figure 5(B)); an integral pair of
dimensions of height and width of a rectangle (Monahan and Lockhead 1977, �gure
5(C)); and an integral pair of dimensions of the length of two parallel vertical lines
(Monahan and Lockhead 1977, �gure 5(D)). The physical speci�cations of the stimuli
are based on those described in the corresponding papers, but we picked the stimuli
in such a way that they formed an octagonal con�guration, similar to the con�guration
of the stimuli of �gure 1. The stimuli from Kruschke (1993) were already in octagonal
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Figure 5. On the left-hand side the four stimulus sets are shown, constructed in such a way that
their physical similarity to a given standard stimulus S forms an octagon. (A) The stimuli used
by Shepard. (B) Stimuli composed of the separable pair of dimensions of height of a rectangle
and the position of an embedded vertical line (Kruschke 1993). The stimuli in (C) and (D) are
derived from Monahan and Lockhead (1977) and have integral interacting dimensions: width
and height of a rectangle and the length of two parallel vertical lines, respectively. On the right-
hand side, the organization of the eight stimuli in psychological space of the model is shown
(explained in the text). The dimensions of (A) and (B) interact separably, those of (C) and (D)
integrally. The network graphs are obtained from distances between representations in

activation space from simulations with two hidden unit networks.
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con�guration and have been kept exactly the same for comparison purposes and also
with reference to the �ltration/condensation task described in a later section.

These various sets of stimuli will provide us with a view of the kinds of repre-
sentations—and corresponding psychological spaces—that the network can form.
The model is hypothesized to process differentially the various kinds of interaction
between dimensions. Hence, the stimuli composed of a separable pair of dimensions
as determined by human performance should lead to a similar distribution of inter-
stimulus distances as for the Shepard stimuli, but the stimuli with integral pairs of
dimensions should result in a different kind of distribution.

The raw stimulus image is first processed by the Gabor filter component of 
the model and the normalized responses from the Gabor filters are presented to 
the backpropagation network (Appendix A). Five repetitions were done, each with 
a different set of uniformly distributed random initial weights from the range 
[0.0, 1.0]. The learning rate, b , of the backpropagation network was set to 0.7 and the
momentum, a , was held at 0.0. We chose these values as they force the network to
learn at a relatively slow rate, which helps it to �nd the best solution to the task. Other
combination of learning rate values (we did tests with values from 0.1 to 0.8 for the
learning rate and 0.0 to 0.4 for the momentum in steps of 0.1) did not signi�cantly
change the results, but did lead to two networks that had a higher mean-squared error
(MSE), because they ended up in a local minimum. On average, a low MSE was
reached after about 1000 epochs (one epoch is one presentation of the entire stimulus
set), but to get an accurate view of the organization of representations in hidden unit
space we overtrained the network until 10 000 epochs were completed, after which the
MSE was below a criterion of 0.01. The number of epochs used is not psychologically
plausible, but our purpose with this model is qualitative analysis, not quantitative
analysis.

We ran one additional simulation to show the signi�cance of applying a Gabor
�lter encoding that preserves the physical properties of stimuli and mimics human
perceptual processes. In this simulation, stimuli were ad hoc encoded by using values
that describe the magnitude of size and tilt of the circle (for example, 80° would be
0.8 and size 3.251 cm simply converts to 0.03251) because one might argue that it is
also possible to just represent the stimuli by their absolute size and tilt values.
However, we shall show that the transformation of physical to psychological space is
a relevant factor in the differential processing of dimensional interaction. The model
has to remain close to what subjects perceive and, just as humans do, it has to extract
actively the features from a visual representation of the stimuli, preserving the
similarity gradient over stimuli. Dimensional interaction might be embedded in how
physical stimuli are processed by a perceptual system, which means that ad hoc
encoding the stimulus structure to a two-element input vector with values for size and
tilt might very well change the nature of the underlying dimensions and trivialize
simulation results because they bypass the effects the processing by the perceptual
system has on the psychological space. In fact, we shall show that the Gabor �lter
component has already captured most of the dimensional interaction. 

Finally, we assume that there is a direct negative correlation between the identi-
�cation error (number of confusions) exhibited by the human subjects and the distance
between the representations in hidden unit space. That is, if the distance between two
representations increases, then the probability they will be confused with each other
decreases. Therefore, we calculated the distances between representations in the
network’s hidden unit activation space as a measure of comparison with the average
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mean number of confusions from Shepard’s data.2 The results of the simulations 
using the separable stimuli, the integral stimuli and the direct encoding are shown in
�gure 6, in which error bars denote the minimum and maximum distances between
representations in hidden unit activation space over the �ve networks trained on each
stimulus set.

Both graphs for the separable pairs of dimensions show a high confusion score for
stimuli that vary in one dimension combined with a low confusion score for stimuli
varying in both dimensions. Comparing the pairwise distances between the represen-
tations of the network with a set of carefully recovered values from the confusion data
of Shepard’s experiment for pairs of adjacent stimuli produces a signi�cant Pearson
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Figure 6. Distances between the representations for adjacent pairs of stimuli after training the
model on stimuli composed of the pair of dimensions: (A) size of circle and tilt of its radial line;
(B) height of a rectangle and position of embedded vertical line; (C) height and width of a
rectangle; (D) length of two parallel vertical lines; and (E) arbitrarily encoded stimuli. The
dimensions of (A) and (B) interact separably, those of (C) and (D) integrally. The values on

the vertical axis are plotted in reverse order to ease comparison with �gure 1.

continued . . .
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correlation coef�cient of r = –0.85. It is negative since the values of the network are
interstimulus distances and we postulated that distance and confusion are negatively
correlated.

A two-way analysis of variance (ANOVA) was calculated on the distances between
hidden unit representations over simulations and stimulus sets, which showed a
signi�cant effect of one-dimensional changes versus two-dimensional change, F(1,150)
= 6.6, p < 0.01, r = 0.21, and of integral versus separable pairs of dimensions (A and 
B versus C and D) F(1,150) = 17.4, p < 0.001, r = 0.32. We excluded data from �gure
6(E) from the analysis, since it is based on a different encoding scheme. A Pearson
correlation analysis of hidden unit activation levels for each of the �ve different runs
for each stimulus set separately showed a signi�cant value of r > 0.85, meaning that
over �ve runs the network has found a similar solution to the problem domain, i.e.
relative distances between stimulus representations are highly similar.

Shepard (1964) argued that the four-cycle pattern of high one-dimensional
confusion and low two-dimensional confusion, which has been observed in �gure 6(A,
B) as well as in the human data, cannot be explained with a Euclidean metric. Rather,
a four-cornered isosimilarity contour is deemed more appropriate. In both cases
—human and network—those stimuli that vary in only one dimension seem overall
to be more dif�cult to separate than stimuli that vary in size and tilt. The dimensions
of size and tilt must therefore be separable. A different picture is visible in �gure 6(C,
D), which contains the pairwise distances between representations of stimuli con-
structed from an integral pair of dimensions. In this case, there is no four-cycle pattern
separating two-dimensional variation from one-dimensional variation. Instead, there
is a two-cycle pattern, which matches an underlying elliptic contour. This contour is
elongated with the endpoints corresponding to the two largest distances. Evidence for
a difference between one-dimensional and two-dimensional variation is not available
because there is no consistent alternation of distances for these variations that matches
what has been observed with separable pairs of dimensions. What seems to have
happened is that the integral pair of dimensions is processed holistically with the
psychological dimensions out of alignment with the physical dimensions: a variation
in one physical dimension will psychologically lead to a variation along both psy-
chological dimensions.

There is, however, an artifact in Kruschke’s stimuli. Scaling the two physical
dimensions should not consistently place the diagonal pairs further apart in Euclidean
distance in the scaled space than the aligned pairs. If we scale the rectangle height by
either 2/3 or 3/2, then the distances between adjacent pairs of stimuli (starting with 2–3;
diagonal pairs in cursive) change as shown in table 1.

When scaling with 2/3, the adjacent pairs 2–3 and 6–7 move closer together than
the diagonal pairs 3–4 and 5–6. This is not uniform, since the diagonal pairs are actually
moving closer with respect to 4–5 and 8–1. Scaling with 3/2 shows the reverse pattern.
Given this artifact, it may not be reliable to use four-cycle oscillation as evidence for

Processing dimensional interaction 17

Table 1. Changes in interstimulus distances after scaling.

Pairs 2–3 3–4 4–5 5–6 6–7 7–8 8–1 1–2

2/3 –0.15 –0.1 0.0 –0.1 –0.15 –0.13 0.0 –0.13

3/2 +0.22 +0.17 0.0 +0.17 +0.22 +0.22 0.0 +0.22



separable dimensional interaction, although an analysis of the topography of internal
representation space of the model can reveal the separateness of dimensions.

An effect similar to integral interaction can be observed in the results from 
the simulations with the direct encoding (figure 6(E)). This can be explained by
considering the properties of backpropagation, which are directed to extract a set 
of optimal representations from the stimulus space that compresses all redundant
information and highlights information with important consequences. The task of the
network is to produce ef�cient and informative stimulus representations, and as such
it is biased to build the representation that most accurately re�ects the correlations
between stimuli and responses. In generating a set of representations no restrictions
are placed on the network that preclude rotating the psychological space. This seems
to have occurred with the directly encoded stimuli, suggesting that the performance
of the model resembles those of human subjects confronted with stimuli constructed
from integral dimensions. With the inclusion of a Gabor �lter input layer, however,
an additional set of restrictions has been placed on the network that prevents it from
imposing a new dimension on the stimuli and instead forces it to use the extra
information embedded in the encoded stimuli. Because we have direct access to the
network’s interstimulus distances, we can observe if the obtained data provide
information about the isosimilarity contour of the standard stimulus S. The right-hand
sides of �gure 5 show, for each set of stimuli, the locus formed by the representations
of the eight stimuli obtained from simulations with only two hidden units—although
this made the task more dif�cult for the network, providing a success ratio of just
10%. To obtain these distances, we determined the network’s representation for
stimulus S (by presenting a trained network with the given stimulus) and calculated
the distances between S and the other stimuli, in addition to the already available
pairwise distances between the trained stimuli. We veri�ed the distances obtained
with two hidden units for similarity with the above data for three hidden units.
Correlation analysis between distances for two hidden versus three hidden units
proved signi�cant (r > 0.85); plotting these distances for the Shepard stimuli shows 
a similar shape but uniformly reduced in magnitude due to the constricted activation
space (figure 7). The training with one fewer hidden unit in effect implements
dimensionality reduction, since the network is forced to use the largest variances to
map input to output (see also Bishop 1995). Although the interstimulus distances 
for the two hidden unit networks are scaled with respect to three hidden unit networks,
the approximation of the psychological space is accurate given the signi�cant corre-
lation.

It can be observed that the psychological space of the network has been warped
relative to the physical stimulus space. For the separable pairs of dimensions (�gure
6(A, B)), we observe that representations of stimuli which vary in only one dimension
have moved closer together in psychological space and that representations of stimuli
varying in both dimensions have separated. In both cases the psychological space
seems to be a warped representation of physical space: although the relative positions
of the stimuli are preserved—the clockwise ordering of the eight stimuli persists in
psychological space—the distances between the representations have been altered as
a result of learning. Critically, if we align only the primary and secondary axes of the
contours with the psychological dimension axes, it directly shows that for the separable
dimensions, changes involving a single physical dimension produce changes along
one psychological dimension. The magnitude of such changes in psychological space
remains relatively independent of other physical feature values.
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This warping of the physical configuration of stimuli is different for dimen-
sions that interact in an integral manner as shown in �gure 5(C, D). Alignment with
psychological dimensions shows changes in one physical dimension affecting both
psychological dimensions. There is also a difference in the two ellipses of both integral
pairs of dimensions exhibited by the direction of the primary axis of the ellipse. The
nature and direction of this axis probably re�ects the salience of one psychological
dimension over the other. This salience may be verbalized in the case of the integral
pair of height and width of a rectangle as the salience of a dimension corresponding
with the area of a rectangle.

The differences between integral and separable interaction between dimensions
can be further revealed by running a hierarchical clustering algorithm (Johnson 1967,
Hanson and Burr 1990), which we can use to see whether the distances between hidden
unit activations contain information about the similarity structure of the represented
stimulus space. Figure 8 displays the dendrograms for the hidden unit representations
of the stimuli of �gure 5(B, C). The similarity structure revealed in these trees indicates
a remarkable difference between the two dimensional interactions. The clustering for
the Kruschke stimuli show two main clusters that correspond to distances between
representations of those stimuli that vary in one dimension (1 + 8 and 4 + 5) versus
distances for stimuli that vary in both dimensions (2 + 3 and 6 + 7). These clusters are
further subdivided into the adjacent pairwise distances. For the stimuli built from
integrally interacting dimensions, no such clustering is observable. Instead, the two
main clusters separate the representations of the first three stimuli from the rest,
regardless of one-dimensional or two-dimensional variation. This clustering indicates
that the psychological dimensions are out of alignment with the physical dimensions. 

There are at least three factors that cause warping of psychological space. First,
attention effects can help the subjects focus on one or more relevant dimensions

Processing dimensional interaction 19

Figure 7. Interstimulus distances of hidden unit representations of adjacent pairs of Shepard
stimuli for networks with two (dashed line) versus three (continuous line) hidden units. The
shape of both lines is similar to the magnitude of distances for two hidden units uniformly lower

than those for three hidden units (cf. Kruschke (1993)).



(Goldstone 1998a). We shall visit the issue of attention in a later section. Second,
there is the nature of interaction between the dimensions that compose the stimuli,
as shown with the above simulation. The differences in confusion scores based on
variations in either one or in both dimensions only occur with separable dimensions,
since an integral pair of dimensions is perceived holistically and, as such, a variation
in one physical dimension reduces to a variation in both psychological dimensions. In
the case of a separable interaction, being able to attend to one dimension over the
other might warp the psychological space even more, increasing distances between
stimuli that vary in the dimension that receives attention (Nosofsky 1986).

Finally, one dimension can also be more salient than another one, which means 
that differences in this dimension are easier to discriminate than differences in the
other one. In Tijsseling et al. (2002), both human subjects and neural nets trained to
discriminate and categorize imaginary animals, which varied in the dimensions of
torso radius and limb length, showed a preference for using limb differences over
torso radius differences. A similar effect can be observed here. If we sum the average
of opposite difference scores for all simulations of the Shepard stimuli, i.e. stimuli 5
with 8 and 1 with 4 (variations between them are variations in a single dimension of
size) as well as the distances from 2 to 7 and 3 to 6 (which varied in tilt only), then the
tilt dimension provides the largest interstimulus distances (see �gure 9).

In Shepard (1964) a similar analysis was performed, which showed that the amount
of confusion for stimuli varying in the tilt dimension is likewise lower than for stimuli
varying in the diameter dimension. We cannot say for certain if the salience of the 
tilt dimension is an intrinsic characteristic of human visual perception or a side effect
of the way the stimuli are created. Since Gabor �lters are based on processing angle
differences, this effect can be argued to be an artifact. However, the similarity 
of Gabor filters to simple cells in the primary visual cortex (Marcelja 1980, Jones 
and Palmer 1987) may be an indication that the same cause underlies human 
subject data. In the next section, we shall show that this observation matches an
asymmetric interaction between the dimensions of size and tilt as reported in Potts 
et al. (1998).

We have shown that a basic connectionist model contains a potential for a simple
mechanism that differentially processes integral from separable interaction between
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Figure 8. Hierarchical clustering tree diagrams for the hidden unit representations of the stimuli
of �gure 5(B) (left) and those of �gure 5(C) (right). Whereas the former indicates clustering
corresponding to one-dimensional versus two-dimensional variation of the physical stimuli,

the latter diagram reveals lack of sensitivity to such dimensional variation.



dimensions. But why does this work? The Gabor �lter component measures certain
local frequencies of the stimulus and the output of this component provides a stimulus
encoding that re�ects the physical properties of the stimulus. It also preserves the
similarity gradient between stimuli, because the encodings are not orthogonal; rather,
they re�ect changes in orientation, location and angle between the various stimuli
(Goldstone et al. 1996). Figure 10 captures this similarity gradient. It is an illustration
of how, for the stimuli that vary in separable dimensions of size and tilt and for the
stimuli that vary in integral dimensions of height and width of a rectangle, the Gabor
�lter model processes the physical information and produces an output that shows the
relational changes between the stimuli. For example, figure 10(A) shows how the
response for an angle orientation of 90° gradually increases from stimulus 1 to 4 and
then gradually decreases again. Based on this orientation information, stimulus 1
would be more similar to stimulus 2 than to stimulus 3.

The relevance of preserving the similarity gradient has been shown by Harnad 
et al. (1995) and Tijsseling and Harnad (1997). Using a backpropagation network,
they showed that stimulus encodings that preserve the similarity gradient (also called
iconicity) are a necessary property of categorical perception models (Harnad 1987a).
It is, however, not enough just to encode the similarity gradient of any set of stimuli,
since this fails to capture the differences between sets of stimuli that have a com-
parable similarity gradient, but a different physical structure. Three line segments of
3, 4 and 5 cm can be encoded in a way that captures their iconicity by using a ther-
mometer coding converting the stimuli to three eight-bit vectors: 11100000, 11110000,
11111000. This encoding captures the fact that a line segment 3 cm long is more similar
to that which is 4 cm long than to a line 5 cm long, but it does not re�ect the physical
structure of the set, characterized by the relative position and angle of the lines.

To explore further the relative contribution of the Gabor filter, we performed
multidimensional scaling of the Gabor �lter responses. The results are displayed in
figure 11 and show that the Gabor space topography has captured the relative
similarities between the stimuli. Stimuli with a separable pair of dimensions are
observed to be closer in Gabor space if they differ in only one dimension (�gure 11(A,
B)). This is not as strong with integral pairs of dimensions (�gure 11(D)), or even
absent (figure 11(C)). This suggests that the perceived integration or separation 
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Figure 9. Sum of diametrically opposed difference scores of the network in identifying Shepard
stimuli, which shows that the tilt dimension seems to be more salient. Error bars indicate

minimum and maximum over �ve simulations (cf. Kruschke (1993)).
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Figure 10. Three-dimensional display of the Gabor responses at eight orientations for a spatial
frequency of 3.5 and at the centre of the image for the stimuli with (A) separable dimensions

of size and tilt and (B) integral dimensions of height and width of a rectangle.



of stimulus dimensions may be, primarily, a natural result of Gabor-like sensory
processing in the primary visual cortex (Marcelja 1980).

The richness of information that Gabor �lter processing of the stimuli produces
indicates that basic properties of the visual system (in this case modelled with crude
Gabor �lters) may already capture most of the relevant differences between integral
and separable interaction between dimensions. It is a widely held view (Gibson 1991,
Goldstone 1998a) that dimensional integration in perception naturally precedes the
learning of labels for stimuli. Indeed, dimensional integration effects arise early in
perceptual processing before substantial cognitive experience with stimuli is built up,
a view consistent with development of perceptual learning in children (Kemler and
Smith 1978, Smith and Kemler 1978) and effects of expertise with stimuli (Burns and
Shepp 1988).

Given the topography of the sensory information provided by Gabor �lters, the role
of the identi�cation network is to reduce identi�cation, discrimination and catego-
rization error by applying redundancy compression and predictive differentiation on
the responses of the Gabor �lter component (Gluck and Myers 1993). The preserved
similarity gradient provides the model with suf�cient information to enhance relevant
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Figure 11. Multidimensional scaling of the Gabor space topography for the four stimulus sets. 



features and suppress irrelevant information. This process of compression and
differentiation causes the observed warping of internal representations. Although the
Gabor �lter component captures dimensional interaction, it may not be suf�cient to
produce correct identi�cation of stimuli. The effect of warping may be an explanation
for the linear change in confusion scores with every other adjacent pair of stimuli
shown in figure 3. The identification learning process by the human subjects may 
have separated representations further in order to reduce potential identification
mistakes.

A Gabor �lter as a crude sensory processing component in combination with a
backpropagation network for redundancy compression and predictive differentiation
provides a mechanism that is basic and simplified, but powerful enough not only
differentially to process the interaction between dimensions but also to use this
perceptual information for cognitive processes of identi�cation, discrimination and
categorization. In the next section the model is applied to Garner classi�cation tasks
to explore further the capacities of the model in explaining dimensional interaction
and its possible implications.

6. Applying the model to Garner classi�cation tasks
6.1. Introduction to Garner classi�cation tasks
We have shown that the Shepard paradigm, which consists of identifying stimuli that
are organized in an octagonal con�guration, provides a method for determining the
interaction between the two dimensions that make up these stimuli. The distribution
in psychological space of representations of stimuli composed of a separable pair of
dimensions retained the octagonal con�guration of its physical counterpart, although
it may be warped differently for stimuli composed of different separable pairs of
dimensions. With integral pairs of dimensions, this distribution of representations
corresponded to an elliptic locus, a transformation from physical space that indicated
that the two dimensions were perceived holistically.

To show that these results are generalizable and consistent, we employed the same
stimuli but using a different classi�cation task, which is described in Potts et al. (1998).
In this task, subjects had to classify stimuli into two categories. For each condition, only
one dimension was relevant to the sorting task: subjects were asked to pay attention
to the relevant dimension and sort the stimuli according to the value on that dimen-
sion. Garner and Felfoldy (1970) found that for integral pairs of dimensions, the ease
with which subjects could complete this task, as measured by the time it took them to
complete it, was critically dependent on the values taken by the irrelevant dimension.
For separable pairs of dimensions, reaction times were unaffected by manipulations
to the irrelevant dimension.

Although Garner and Felfoldy (1970) gave a good indication of how subjects
process separable versus integral pairs of dimensions, several researchers (e.g.
Pomerantz and Garner 1973, Ward 1982, Potts et al. 1998) conducted experiments
where their own data were less conclusive about a strict dichotomy between integral
and separable. For example, Potts et al. (1998) showed how for dimensions of circle-
diameter and radial line-angle, variations in the location of the stimuli in the two-
dimensional physical space can produce different forms of interaction between the
dimensions. They argue that since the radial line of a circle provides information about
the size of its circle, but size itself does not provide information about the tilt, there
is an asymmetric integrality between these two dimensions. In other words, since a
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radial line indicates the size of a circle (a longer radius means a bigger circle), there
is a weak form of integral interaction between size and tilt, which can become evident
under certain conditions (Potts et al. 1998). These conditions are illustrated below.

Potts et al. (1998) had subjects classify stimuli into two categories. The stimulus
sets varied in the dif�culty of discrimination between the two sizes and angles, and
whether the radial line touched the perimeter of the circle. Three examples are illus-
trated in �gure 12. In �gure 12(A), stimuli were circles with a diameter of 41 mm and
63 mm with a tilt of 12° clockwise or counterclockwise. In �gure 12(B), discrimination
was decreased by reducing the tilt to 11° and the diameter to either 45 or 55 mm.
Finally, in �gure 12(C), the weak interaction between tilt and size was removed by
�xing the length of the radial line at 32 mm and, therefore, preventing it from touching
the perimeter of the circle.

There were five different classification tasks, two single dimension tasks, two
correlated dimension tasks and one orthogonal dimension task. In Single Dimension
1, either the size varied and tilt was kept at a clockwise position, or tilt varied and size
was large. Single Dimension 2 had either size varying and tilt counterclockwise or tilt
varying with small circles, providing two conditions. Correlated dimensions were
either positive or negative: large and clockwise versus small and counterclockwise 
or large and counterclockwise versus small and clockwise, respectively. Finally, in 
the orthogonal task both dimensions varied orthogonally, with either size or tilt
designated as the relevant dimension.

The reaction times, illustrated in �gure 13, reveal a striking variation across stimulus
sets and across dimensions. For example, in �gure 13(A) an asymmetric interaction
can be observed: correlating both dimensions did not produce any facilitation
compared to a single dimension variation. However, varying size did interfere with
tilt when the latter was the relevant dimension. A different pattern of results, shown
in �gure 13(B), was obtained when size was made less discriminable (see �gure 12(B)):
variation in size produced slower reaction times. Decreasing discriminability of the
size dimension, therefore, weakened the asymmetric interaction, although this
asymmetry was not reversed. Potts et al. (1998) observed that subjects still found it
more dif�cult to process tilt when size was small than when size was large. They suggest
that the system’s preference for one dimension over the other may reflect more 
than a preference for superior discriminability (Potts et al. 1998: 108), i.e. it could be
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Figure 12. Stimulus sets for experiments by Potts et al. (1998). (A) Circle sizes were 41 or 63
mm, with tilt being 15° clockwise or counterclockwise (easy discrimination). (B) Circle sizes
were made less discriminating by reducing them to 45 and 55 mm. Tilt was decreased to 11°
(hard discrimination). (C) Stimuli were as in (B), but the length of the radial line was �xed at

32 mm (increased separability).



factors determined by the nature of the sensory system. In the previous simulations,
we showed that there was a preference for the tilt dimension, an observation also
indicated by Shepard (1964). It was suggested that this preference might be a natural
artifact of the Gabor �lters.

If this asymmetric interaction is removed by keeping the length of the radial line
constant at a certain value (see �gure 13(C)), then the reaction times indicate complete
separability of dimensions because the radial line does not supply information about
the size of the circle anymore. Although the dimension of tilt produced faster reaction
times in �gure 13, there was a lack of reaction time differences as a function of task
within each dimension (Potts et al. 1998).

6.2. Simulations with the demonstrative model
Since our focus is not on replicating the results from Potts et al. (1998), but on exploring
the correlation of data from this Garner paradigm with data from the Shepard
paradigm, we did a simulation of the above procedures using four stimuli in the 
range of dimensional values used in our Shepard simulation (see �gure 14(A)). We
measured the number of epochs it took the model to reach a pre-speci�ed criterion
(MSE of 0.1) as a substitute for reaction time.3 We assume that the relative ease with
which the network separates the representations of stimuli correlates with the speed
with which a network identi�es a stimulus. Since the model does not have the ability
to attend speci�cally to one dimension, we were not able to implement both versions
of the correlated task. In other words, when sorting a large circle with a clockwise tilt
from a small circle with a counterclockwise tilt, it is not possible to instruct the model
to sort these two stimuli according to either size or tilt. The model was instead taught
just to sort the stimuli.

The architecture of the model differed from the previous simulation in that the
output layer had one extra unit to encode category membership (set as zero for the
�rst category and one for the second category). The network’s task, therefore, is to
learn both to identify the stimulus item with a unique label as well as to categorize it.
We ran 10 simulations for each task, using different initial random weights from the
range [–1.0, 1.0], using the same weight set for all tasks. The reason for this is to ensure
that differences in the model’s performance for each task cannot be attributed to a
difference in initial weights. As such, differences in performance re�ect the dif�culty
of the task, not the con�guration of weights.
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Figure 13. Mean reaction times for tilt and size dimensions as a function of task. The
classification tasks are explained in the text. (A)–(C) show the reaction times for the
corresponding �gures of �gure 13. Figure reproduced from Potts et al. (1998). Error bars were

not provided in the original �gure.



The results, illustrated in �gure 15(A), show the same kind of asymmetric inter-
action as in �gure 13(A). Variations in the tilt dimension required more epochs to sort,
and there was interference from the size dimension when this was varied orthogonally.
When the dimension of size was relevant, there was no interference from the tilt
dimension in all tasks. When both dimensions varied, performance on the correlation
task was dependent on the respective values stimuli took along their dimensions,
which is also evident in data from Potts et al. (1998). This asymmetry of the interaction
between the dimensions of size and tilt con�rms what we observed in the results of
the Shepard task. In this task, both the confusion scores and the interstimulus distances
varied with each adjacent pair of stimuli. In particular, the confusion scores were
higher (and the interstimulus distances lower) for adjacent stimuli that had small circle
sizes than adjacent stimuli that had large circle sizes.

Figures 15(B–D) display the results of simulating the above task with the other
kinds of stimuli used with the Shepard task. These stimuli are illustrated in �gure
14(B, C). Figure 14(D) shows an additional set of stimuli that were employed in
experiments by Redding and Tharp (1981). The dimensions that compose these
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Figure 14. Stimuli used in the simulations of the Garner speed sorting task. The values on each
dimension are in the range of the values used for the Shepard task in order to be able to relate
the results obtained here with those obtained with the Shepard task. In each �gure, stimuli are
composed of: (A) separable pair of dimensions of diameter of circle and angle of radial line
(Shepard 1964); (B) separable pair of dimensions of height of a rectangle and position of an
embedded vertical line (Kruschke 1993); (C) integral pair of dimensions of height and width
of a rectangle (Monahan and Lockhead 1977); and (D) integral pair of dimensions of location

and angle of a straight line (Redding and Tharp 1981).
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Figure 15. Results of the speeded sorting tasks with the stimuli of �gure 13. (A)–(D) correspond
with �gure 14(A)–(D), and so forth. (E) The number of epochs it took a plain feedforward
network to sort straight lines that vary in orientation and location (Redding and Tharp 1981).
The results for the correlated task are displayed in a separate graph, because although the
model is capable of perceiving the dimensions that compose a stimulus, it cannot be instructed
to attend to a specific dimension. Since both dimensions varied for the two stimuli of the
correlated task, we cannot infer which dimension was used by the network to learn the task or

whether both were relevant.

continued . . .



stimuli are location and orientation of a single straight line and they have proven to
be integrally interacting (Redding and Tharp 1981). In �gure 15(B), it can be observed
that the dimensions of height of a rectangle and position of an embedded vertical line,
which were used as interacting dimensions by Kruschke (1993), show asymmetric
interaction: irrelevant variation of position had no effect on sorting time of height
differences, but variation in height affected sorting stimuli on position. As for the
integral interacting dimensions shown in �gure 15(C, D), in both cases there is a clear
effect of interference from the irrelevant dimension in the orthogonal sorting tasks,
with the dimensions of Redding and Tharp (1981) showing a near perfect symmetry
of interaction.

We argued in the previous section that the Gabor filter component captures 
most of the relevant difference between integrated and separated dimensions, the
perceptual representations of which are further separated by the backpropagation
component under task constraints such as identi�cation learning. In this second set
of simulations, categorization task performance is shown to be dependent on the
structure of the perceptual representations from the Gabor �lter component. The
Gabor responses for separable pairs of dimensions allow categorization based on a
single dimension to be learned with relatively little interference from the other varying
dimension, but with integral pairs interference from irrelevant dimensions is relatively
stronger.
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The magnitude of this cross-dimensional interference, however, arises only when
the networks are required to identify the individual stimulus items at the output layer.
When the task of the network is only to categorize (i.e. there is no identification
process), there is no evidence of dimensional interference. Figure 15(E) shows the
results from simulations with a ‘categorization only’ backpropagation network (e.g.
with only one output node). When this network was presented with Gabor �ltered
responses from the Redding and Tharp stimuli, the number of epochs it took to sort
the stimuli for each task did not correspond with an integral interaction between
dimensions. Rather, the ‘categorization only’ network quickly attended to only the
relevant dimension. The reason for this pattern of results is that in the absence of
identi�cation training, the network does not have to separate individual stimuli to
lower an identification error, since there is no such error signal. It is only given a
categorization task, and the stimulus representations are consequently clustered
according to the categories they belong to, ignoring any interstimulus variations except
those that are relevant for placing a reliable category boundary (see �gure 16).

This pattern of results implies that human participants covertly identify presented
stimulus items, a process that forces attention to be directed to both dimensions when
both are needed to discriminate the stimuli. This in turn has a profound effect on the
categorization performance. The tendency to identify stimuli may have been a result
of verbally provided information on the experiment by the controller, asking the
subject to focus on a dimension. It is also possible that sorting a set of stimuli implies
the requirement to discriminate. More interestingly, it suggests that categorization and
identi�cation are intrinsically linked in the cognitive system. Such notions are basic
to categorization theories such as exemplar models, which assume the automatic
retrieval of exemplars in response to stimulus presentation (Medin and Smith 1984,
Nosofsky 1992).

In one important aspect the described model failed to �t the behavioural data on
category learning. Human subjects can be instructed to attend to one single dimension
in a category-learning task. For example, when sorting stimuli in which variation 
in size correlated with variation in tilt, subjects can be asked to sort the stimuli
according to size and ignoring variance on the other dimension. The model does not
have such an attention mechanism and will therefore use variance on both dimensions
in successfully sorting the stimuli. The next section describes a possible mechanism
to introduce attention in a backpropagation model.

7. Providing a mechanism for selective attention
7.1. Introduction
The model’s lack of employment of any kind of attention in processing multi-
dimensional stimuli might make it appear inferior to models that capture dimensional
interactions only through the �tting of experimental data. For example, in ALCOVE,
each input node encodes a dimension or feature and the activation of all these nodes
is gated by multiplicative attention strengths (Kruschke 1992). The advantage of
ALCOVE is that one dimension can be ignored by reducing the attentional strength
of the corresponding input node. Successful theories of categorization need a notion
of selective attention because adaptation often occurs through the increase of atten-
tion to dimensions and features that are important for the categorization task and/or
the decrease of attention to irrelevant dimensions and features (Nosofsky 1986,
Goldstone 1998b). A well-known paradigm used to show how human subjects learn
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to pay attention to a particular dimension of a presented stimulus is a �ltration versus
condensation task (Posner 1964, Garner 1974, Gottwald and Garner 1975, Potts et al.
1998).

In a variation by Kruschke (1991, 1992), subjects had to learn to categorize eight
stimuli that varied along two dimensions. The stimuli were rectangles that had a
vertical line embedded in them. The height of the rectangles and the position of the
vertical line varied (�gure 17(A); see also �gure 5(B)). There were four groups of
subjects and each of these groups had to learn a different task (�gure 17(B)): two
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Figure 16. Location of representations of the Redding and Tharpe (1981) stimuli in hidden unit
activation space of the identi�cation + categorization network (left) and the categorization-only
network (right). The three axes measure the corresponding activation level of each of the three
hidden units 1 to 3, and each category space is indicated by the letters A and B. Training the
network on identi�cation has increased the within-category distances as well, compared with
the categorization-only network. Note the closeness of the category A instances in the
categorization-only hidden unit activation space; identifying and discriminating each of these

two instances would consequently be nearly impossible.



tasks involved sorting the stimuli into two equal-sized categories along one dimension
only, and two tasks involved sorting along both dimensions. Human subjects consis-
tently learned tasks that involved one relevant dimension only (�ltration) statistically
better than tasks that involved both dimensions (condensation). See �gure 18(A) for
an illustration of this difference in learning performance.

This aspect of human categorization is difficult to explain using the standard
backpropagation neural network (Rumelhart et al. 1986). In backpropagation, the
weights being adapted create hyperplanes that carve up the activation space of the
network. The orientation of an arbitrary hyperplane can be in any direction in this
space. In this respect, category boundaries can be placed between any two groups of
inputs, which means that there would be no performance bene�t for a �ltration task
over a condensation task. Learning condensation tasks would actually be faster for a
standard backpropagation network because the extra information available from
variance along the other dimension would make it easier to separate hidden unit
representations (Kruschke 1993).

Kruschke (1991, 1992, 1993) provided a neural network model that can simulate
human behaviour in a �ltration versus condensation task. His model, ALCOVE, is a
feedforward network with three layers of nodes. The input nodes encode the stimulus,
with one node per psychological dimension, such as colour or shape. Every single
input node has an attention strength associated with it, which re�ects the relevance
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Figure 17. (A) Illustration of the stimuli used by Kruschke (1991). This �gure shows the
superimposition of all four possible heights of the rectangle and all four possible positions of
the embedded vertical line. (After Kruschke 1991.) (B) The four category structures used in
Kruschke’s (1991) experiment. The horizontal axis corresponds to the dimension of height of
the rectangle in �gure 13(B), and the vertical axis to the dimension of position of embedded
vertical line. The top panel displays two �ltration tasks and the bottom one condensation tasks.



of the corresponding dimension for the categorization task. Each node in the hidden
layer represents a training exemplar. The activation of a hidden node reflects the
similarity of the presented input to the exemplar that is represented by it. The output
layer itself consists of nodes that correspond to categories to be learned. Figure 18(B)
shows that this model shows �ltration advantage over condensation.

Although ALCOVE models human learning data well it has its limitations. One
needs to specify the psychological dimensions of inputs, which makes the model dif�-
cult to apply to real inputs such as images. Tijsseling and Harnad (1997) and Tijsseling
(1998) argue that categorization models should develop their own psychological
representation of the input space in order to explain categorical perception (Harnad
1987b) and as a solution for symbol grounding (Harnad et al. 1995). ALCOVE,
however, is a psychological learning model devised to �t and explain speci�c human
experimental data. In this paper, on the other hand, we want to do away with the post
hoc determination of relevant dimensions and the need to incorporate data from
subjects’ similarity ratings in order to determine if dimensions interact separably or
integrally. Instead, our approach argues for models that aim to provide a mechanism
for both the perceptual and associative processes in category learning. A successful
category model should try to solve the question of how the psychological space is
related to physical space and, subsequently, how this psychological space is carved up
into the necessary categories based on environmental feedback.

Therefore, what is needed is to incorporate selective attention in the model. We
shall derive this mechanism from Kruschke’s single-layer learning model, called ADIT
(Kruschke 1996). This model is similar to ALCOVE as it also uses dimension values
as inputs and attaches an attention strength to each of these dimension values. The
difference is that ADIT is based mainly on Mackintosh’s well-founded theory of
selective attention (Mackintosh 1975). We applied the principles underlying the
attention mechanism of ADIT to backpropagation. In the next section, we shall
describe this attention mechanism and its performance in simulating human behaviour
in a �ltration versus condensation task.
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Figure 18. Panel A shows human learning data and panel B shows the simulation results with
ALCOVE (Kruschke 1991). Each datum shows the percentage of correct responses for one
learning block. (�) Filtration, position relevant. ( j ) Filtration, height relevant. ( n )
Condensation, category boundary along the left diagonal. (e ) Condensation, right diagonal

boundary. (Reprinted from Kruschke 1991.) 



7.2. Implementing an attention mechanism in backpropagation
The backpropagation network is modi�ed such that each input node and hidden unit
is supplied with an attention strength a , which determines the importance of a
particular stimulus feature for the corresponding response. Clearly, output nodes do
not have attention strengths associated with them. Figure 19 displays a graphical
representation of an attention-enhanced backpropagation network. In addition to
associating attention strengths with units, the learning procedure of backpropaga-
tion is modi�ed as well: before the weights are updated, attention is �rst shifted to
relevant information in the current input based on the errors calculated at the output
layer.

Derivation of the attention shifting algorithm is described in Appendix B. Similar
to the weight adaptation in backpropagation, attention shifting is also a gradient
descent method: attention should be shifted to those input values that reduce the
error at the output layer the most. On presentation of an input, all input nodes and
hidden units are assigned similar normalized attention strengths, according to:

in which s is a freely estimated parameter ( s > 0) and N is the number of nodes. This
normalization causes the length of the attention vector to equal 1.0 when measured
using a Minkowski r metric where r = s :

After activation is propagated from the input to output layer, the errors are calculated
and used to adapt the attention strengths of hidden units and input nodes, respectively.
If a new attention value is negative, it is set to 0.0. The new attention strengths are
normalized again, according to: 
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Figure 19. Illustration of an attention-enhanced backpropagation network. The bottom layer
of nodes is the input layer; the middle is the hidden layer and the top layer contains the output
nodes. Each input node and hidden layer has an attention strength of a i. Connections between

nodes i and j have a weight wij. 
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After adaptation, activation is repropagated from the input layer to the output layer
using the new attention strengths. The errors are then recalculated and weights are
changed accordingly. This procedure repeats for every input pattern.

7.3. Simulating Kruschke’s �ltration versus condensation task
The attention-enhanced network was tested with Kruschke’s filtration versus
condensation task (Kruschke 1991). In a �ltration task only one dimension is relevant,
whereas in a condensation task both dimensions are relevant. It has been found that
subjects �nd �ltration tasks easier to learn because they can attend to one dimension
only (Kruschke 1991). As argued earlier, standard backpropagation does not show this
performance discrepancy because the nature of its weight adaptation algorithm allows
category boundaries to be placed along arbitrary directions.

The experimental set-up of the model was identical to the previous simulations.
Images were preprocessed with Gabor �lters tuned to several different angles. The
output layer carried one extra unit to encode category membership (the target was
zero for one category and one for the other) and the hidden layer contained five
instead of three hidden units because addition of attention weights made learning
relatively more complicated. Simulations with both the previous and attention-
enhanced model were run until the mean-squared error dropped below a criterion 
of 0.1. The learning rate h was set at 0.5, and the attention parameters l a and s were
set to 15.0 and 0.05, respectively. The range for the random initial learning weights
was between –1.0 and 1.0.

The learning curves for standard and attention-enhanced backpropagation are
shown in �gure 20. Attention-enhanced backpropagation (panel B) not only processes
�ltration tasks more accurately than standard backpropagation (panel A), but also
learns faster overall. A one-way ANOVA to compare condensation with �ltration
performance revealed a signi�cant interaction (F(1,14) = 30.1, p < 0.0001, r = 0.83).
The bene�t of selective attention is that irrelevant information in the input stream is
ignored during weight adaptation. In this sense, learning a �ltration task becomes
easier for the network, since the lack of irrelevant information does not hinder
category boundary placement anymore.

Figure 20(B) also shows an improvement on Kruschke’s own simulation results.
The human data of figure 18(A) show that during the first training block there is
already improved �ltration advantage over condensation. This initial difference is not
captured in Kruschke’s results (figure 18(B)), but it is exhibited by the attention-
enhanced backpropagation model. The latter displays a quick attention shifting
potential, which benefits from adaptability to changing information in the input
streams. The cause of this advantage is the implementation of an attention-change
mechanism which provides novelty-based learning: in the �rst block of training every-
thing is novel, which causes relatively faster learning compared to learning in later
blocks, when information has already been presented. This mechanism might re�ect
what is happening psychologically, but it needs more evidence to suggest a critical
factor in early-block learning.
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8. Discussion and conclusion
We have presented a mechanistic cognitive explanation of the problem of dimensional
interaction. Prior approaches to the issue of separable versus integral pairs of dimen-
sions have been concerned with conducting experiments with human subjects and
devising statistical models to �t experimental data. Although these approaches yield
useful data, they do not clarify what mechanism underlies the transformation from 
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Figure 20. Category learning data from the �ltration versus condensation task for standard
backpropagation (panel A) and attention-enhanced backpropagation (panel B). The vertical
axis corresponds to the mean-squared error and the horizontal axis correspond to the number
of epochs. Not only does attention-enhanced backpropagation �nd �ltration tasks easier to

learn, it learns all tasks roughly twice as fast as standard backpropagation.



a raw stimulus to an internal representation and how this transformation affects the
interaction between a pair of dimensions. We argue that connectionist models
supplemented with a sensory-preprocessing component naturally possess the capacity
to differentiate between the various interactions between dimensions. As such, the
analysis of the way these models process sensory stimuli can aid researchers not 
only with determining how it might be done in the human cognitive system, but also
in interpreting human subject data.

We have supported our hypothesis using demonstrative simulations with a 
simple backpropagation ‘identi�cation network’ combined with a Gabor �lter input
layer to �lter the sensory input. The use of Gabor �lters (Gabor 1946, Daugman 1988)
to encode monochromatic stimulus images provided a way to preserve not only 
the similarity gradient of the stimuli, but also their physical properties. Indeed, 
by analysing the Gabor �lter responses, we observed that this component captured
most of the relevant difference between integrated and separable pairs of dimension,
from which we inferred that the perceived dimensional interaction could already 
be embedded in the Gabor-like sensory processing of the primary visual cortex.
Consequently, the Gabor �lter component can predict the dimensional interaction of
a given set of stimuli by examining the results of multidimensional scaling. Similarly,
in Tijsseling et al. (2002), both human subjects and self-organizing competitive neural
nets were trained to discriminate and categorize two-dimensional images of three-
dimensional shaped imaginary animals, which varied in the dimensions of torso radius
and limb length. For the networks these images were preprocessed with 100 over-
lapping Gabor �lters, spread over the entire image. A multivariate analysis of the
responses from these �lters revealed dimensional differences and a salience of the
limb dimension. This preference for limb differences was proven to be persistent for
both networks and human subjects and over several identi�cation and categorization
tasks.

The initial perceptual representation or the structure of the Gabor space can be
further ‘warped’ by cognitive processing, such as, for example, category training
(Tijsseling and Harnad 1997). This warping effect is a consequence of the restricted
number of hidden units and, hence, the necessity of the network to compress
redundant information and highlight distinctions with important consequences. An
interesting observation is the effect of the identification network on the Garner
paradigm tasks. Cross-dimensional interference did not appear when the network
performed only categorization, not identi�cation, even in the case where dimensions
were integral. An implication of this result is that human subjects in classification
tasks may still, perhaps covertly, identify and discriminate stimuli during the acqui-
sition of categories. This is an observation that corresponds with a core principle of
exemplar theories (see, e.g. Nosofsky 1992).

We have also suggested a possible mechanism for modelling the established ability
of humans to attend selectively to dimensions. The suggested mechanism was derived
from Kruschke’s ADIT model (1996). The attention-enhanced model was applied to
a standard �ltration versus condensation task (Kruschke 1991). In a �ltration task
only one dimension is relevant, whereas in a condensation task both dimensions are
relevant. It has been found that subjects �nd �ltration tasks easier to learn because
they can attend to one dimension only (Kruschke 1991). We have shown that the
attention-enhanced model not only processes �ltration tasks more accurately than
standard backpropagation, but it also demonstrates an early-block �ltration advan-
tage, unlike ALCOVE.
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In the Introduction, we discussed that perception contains an initial source of
structured information that can be operated upon subsequently by higher cognitive
processes Goldstone (1998a), but that these cognitive processes can also modify
percepts (e.g. Schyns et al. 1998). Several researchers have shown how psychological
distances between stimuli further change under the in�uence of cognitive processes
(Goldstone 1994, Goldstone et al. 1999). Our simulations with the model are sup-
portive of this bidirectionality: we have shown the richness of perceptual information
captured by the Gabor �lter component and how this similarity gradient-preserving
encoding already captures most of the dimensional interaction. Given these percep-
tually constrained sensory stimuli, the neural network can develop a psychological
space during identi�cation, discrimination and category learning in which represen-
tations for stimuli may become warped under task constraints in order correctly to
identify, discriminate and categorize the physical stimuli (Tijsseling and Harnad 1997).
Given more complex neural networks these learned representations may further
develop with additional learning, and we suggest that this may provide a solution to
symbol grounding (Harnad 1995, Tijsseling 1998).

The work presented in this paper may have potential relevance to several issues in
psychology. For example, by providing a mechanistic explanation of differential
processing of dimensions we try to supplement the amount of experimental data
collected in the �eld of cognitive psychology over the last few decennia. This may
help point to new directions for experimental research because the accumulated
experimental data might simply be insufficient to constrain or guide appropriate
theories of dimensional interaction. The simple model of perceptual processing
presented here could easily be incorporated into models of other cognitive systems,
providing those models with a way to explore interactions between the formation of
perceptual representations and other aspects of cognition. For example, in Gluck and
Myers’ (1993) cortico-hippocampal model, the hippocampal component is modelled
with a similar backpropagation network, which also employs predictive differentiation
and redundancy compression, argued to be crucial properties of the hippocampal
region for learning new information. This model would as such benefit from the
incorporation of our model of perception, as this would allow for investigations into
phenomena at the intersection of memory and perception, providing predictions for
the perceptual and associative processes in category learning.

The model described in the paper supports our claim that connectionist models
provide insights into the mechanism of differential processing of dimensions by
humans, but it remains a demonstrative model. We adhered to the simplicity principle
(Chater 1999) in keeping the model relatively small for purposes of explanation and
analysis. The model is also more of a qualitative model in that speed of learning and
performance data cannot be quantitatively compared with humans. Studies of simple
idealized models are naturally not without drawbacks. One cannot make specific
quantitative predictions, as would be expected from more realistic and complex
models; but that was not the intent in the �rst place. Simple idealized models are a
means for conceptual clari�cations. In this case, the principles and ideology behind
the model support our hypothesis that connectionist models can provide a mechanistic
approach to dimensional interaction.

There are, however, various directions for future work. For example, we did not
apply the model to the standard dimensions of saturation and brightness of a colour
(Goldstone 1994), which can be tested with encodings of colour texture using
unichrome and opponent features computed from Gabor filter outputs (Jain and
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Healey 1997). The effect of increasing stimulus size (e.g. introduce a correlation
between a horizontal and a vertical line by widening the lines and therefore increase
the number of pixels) and complexity also needs to be researched. We also plan to
investigate the role of development in perceptual processing of dimensional
interaction. Kovács (2000) showed developmental effects in the visual processing of
orientation information across the visual �eld. Can these developmental character-
istics be modelled by systematically adjusting the parameters of the Gabor filter
component? For example, manipulating the spatial frequency and reducing the range
of the Gabor filter may at some point affect how the interaction between dimen-
sions is captured. Indeed, Kemler and Smith (1978) showed that dimensions that 
are easily separated by adults are perceived holistically in 4-year-old children. It 
may be hypothesized that by gradually expanding Gabor filters over images such
developmental changes in dimensional interaction can be modelled. To this extent,
the properties and structure of Gabor space need to be further systematically
explored.

In concluding, we note how Shepard (1964) stressed the importance of �nding the
transformation that will convert physical interstimulus distances into psychological
distances between the corresponding representations. In a similar vein, Potts et al.
(1998) argue that the traditional distinction between integral and separable should be
replaced by models that elucidate the rules that are employed to transform and use
multidimensional stimulus variation. These rules are embodied in the sensory
processing �lter in combination with the processes for redundancy compression and
predictive differentiation, and we consequently propose that connectionist models
provide this transformation and that analysing their performance will benefit the
understanding of human subject performance, concerning which there is abundant
behavioural data.

Notes
1. Although ‘fused’ is a commonly used term to describe integral interaction, it may be deceptive,

since—as we shall illustrate later—the psychological dimensions are in fact out of alignment with the
physical dimensions and just not reduced to a single dimension.

2. One may suggest injecting random noise in the hidden layer and measuring the resulting output
identi�cation error. The probability that adding a speci�ed amount of noise may lead to confusing a
representation with another is also a function of the distance between these representations in hidden
unit space. However, using noise adds a level of randomness that can make the data less reliable than
calculating interstimulus distances directly.

3. Reaction time could also be modelled by training the network for a �xed number of epochs and
measuring the residual error. Since the slope of the error curve can vary strongly in steepness for each
input, such a method can produce different results for different numbers of epochs. Terminating
learning when the error is at the bottom of the slope provides more accurate comparisons.
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Appendix A: Gabor �lters
A Gabor function is a complex exponential with a Gaussian modulation. Suppose we
have the set of angles { a 1, a 2, . . . , a h }, then we can create for each angle a i a �lter F
composed of real and imaginary parts:

in which a = (angle ? p )/180°, p ~ = b ? p is the spatial frequency of the �lter ( b > 0), 
(x, y) is the current pixel, (x0,y0) is the origin or centre of the �lter and s is a constant.

For a given angle, we obtain the response of a particular Gabor �lter by calculating
the following formula:

The �nal input vector to be presented to the network is then the normalized vector
of the responses of all Gabor �lters for all speci�ed angles. 

In simple words, this means that the region surrounding a given pixel in the image
is described by the responses of a set of Gabor �lters at different frequencies and
orientations, all centred at the pixel position. That is, we generate a local description
of the image by taking a set of features, which are in fact the responses of a set of
Gabor �lters distributed over the entire image. This response measures a certain local
frequency of the image property at the considered location.

In the simulations we use eight Gabor filters, each tuned to a different angle
orientation (0.0°, 22.5°, 45.0°, 67.5°, 90.0°, 112.5°, 135°, 157.5°), centred at and covering
the area of the stimulus with a s between 30.0 and 40.0 in steps of �ve and a spatial
frequency between 2.5 and 3.5 in steps of 0.5 depending on the size of the image, 
which was exactly as speci�ed in the corresponding papers, providing a total number
of �lters in the range of eight to 72. The output of all �lters was normalized, so that
each image would produce a real-valued input vector, the length of which is 1.0 and
the number of elements equal to the number of used Gabor �lters. The motivation
behind these parameters was to restrict the size of the input vectors while at the same
time assuring that no information about the visual stimuli is lost. For the explanative
purpose of our demonstrative model, we kept the Gabor filter component rela-
tively simple in order to determine how it affects stimulus encoding; although we 
also ran simulations with a 6 % 6 grid of overlapping Gabor �lters for four different
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orientations (0°, 45°, 90°, 135°) and varying spatial frequencies, which showed
consistent similar results.

The stimuli from Redding and Tharp (1981) had to be encoded with a second set
of Gabor �lters (one set centred at the left and the other set at the right of the image)
to encode variation in the location of the straight line, since using one centred Gabor
�lter would not capture location differences and produce identical responses for those
images varying only in location. To keep the input vector length equal to the other
encoded stimulus sets, we used four orientations for this stimulus set.

Appendix B: Mathematical description of attention-enhanced backpropagation
Derivation of attention shifting in backpropagation
As in standard backpropagation, the measure of error is given by 

in which E is the measure of the error on a particular stimulus, ti is the target value
and oi is the actual output value of output node i. The total activation arriving at a node
j is the sum of all incoming activations oi multiplied by their attention strengths a i and
the weight on the connection from node i to node j, wij.

The activation of node j is then the result of the activation function applied to the net
input to node j (the activation function f usually is the sigmoid function, de�ned as f
(x) = 1/1 + e–x):

We are looking for an algorithm that adapts the attention strengths for each input
node and each hidden unit. The attention strength of a node i is adjusted in the
opposite direction of the gradient of the error by some constant l a , the attention rate
parameter:

To �nd this gradient we need to use recursive backwards projections from the out-
put layer. We derive this gradient of the error with respect to attention by viewing it
as a product of two parts. One part re�ects the change in error as a function of the
change in net input to the nodes in the next layer and the other part represents 
the effect that changing attention has on the net input. In other words, to calculate 
a change in attention of a node j, we use the net input of the nodes to which node j is
sending activation to:
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There are two cases for nodes j, it is either an output node or a hidden unit. So we
de�ne: 

We apply the chain rule on equation (6) to obtain a product of two factors, with one
factor re�ecting the change in error as a function of the output of a unit and the other
one re�ecting the change in the output as a function of changes in the input:

Using equation (B 3) in the second part of equation (7) gives us:

and using equation (B 1) in the �rst part of equation (B 7) obtains:

from which we further derive:

However, when j is a hidden unit, we need to use a different derivation as we cannot
access the output values directly. The following derivation shows how we can
recursively propagate error values back from output to input:

Substituting equation (B 11) in equation (B 7) then gives:
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Derivation of the second part of equation (B 5) is as follows. We de�ne the gradient
as the effect of a change in attention of a node i on the change in net input of all nodes
it sends activation to. When node i is an input unit, oi just represents the input value.

Hence, the change in attention strength is calculated according to:

Attention rate is dependent on novelty of stimulus
In addition, the attention rate l a can be made dependent on the novelty of a stimulus.
When a stimulus is new, attention to it should be high enough to enhance learning,
but when a stimulus has been presented several times, the novelty wears off and, as
such, attention to it will decrease. We de�ne novelty to be related to the amount of
error at the output layer. With each presentation of an input the initial attention rate
constant is multiplied by the error produced at the output layer:

in which N is the number of output nodes.

Derivation of weight adaptation in attention-enhanced backpropagation
The change of weights is slightly different compared with standard backpropagation
in order to incorporate attention strengths. The weight from node i to node j is
adjusted in the opposite direction of the gradient of the error, with the speed of
adjustment dependent on the learning rate h :

which can be rewritten as:
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The second factor of equation (B 17) reduces to:

Note that in equation (B 18) attention enters the factor. Now de�ne: 

We apply the chain rule to obtain a product of two factors, with one factor re�ecting
the change in error as a function of the output of a unit, and the other one re�ecting
the change in the output as a function of changes in the input:

Using equation (B 3) in the second part of equation (B 16):

Using equation (B 1) in the �rst part of equation (B 16):

from which we derive:

When j is a hidden unit, we need to use a different derivation as we cannot access the
output values directly. Note that since outputs do not have attention strengths, these
drop out of the equation (which is similar to assuming that the attention of an output
node is equal to 1.0).
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Substituting equation (B 24) in equation (B 20) then gives:

Hence, the change in weight is calculated according to:
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