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The hippocampal region, a group of brain structures

important for learning and memory, has been the focus

of a large number of computational models. These tend

to fall into two groups: (1) models of the role of the hip-

pocampal region in incremental learning, which focus

on the development of new representations that are

sensitive to stimulus regularities and environmental

context; (2) models that focus on the role of the hippo-

campal region in the rapid storage and retrieval of epi-

sodic memories. Rather than being in conflict, it is

becoming apparent that both approaches are partially

correct and might reflect the different functions of sub-

structures of the hippocampal region. Future compu-

tational models will help to elaborate how these

different substructures interact.

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!
–The Blind Men and the Elephant, John Godfrey Saxe
(1816–1887)

A review of theories and computational models of the
function of the hippocampal region in learning and
memory produces a startlingly diverse and conflicting
set of views about the functional role of this brain region.
In particular, those who study the function of the
hippocampal region in incremental learning paradigms,
such as classical conditioning and human associative
learning, have argued that this region is crucially involved
in the development of novel and flexible representations,
and that it is sensitive to stimulus–stimulus regularities
and learning context [1–6]. By contrast, those who study
episodic memory tasks, such as recall and recognition,
have emphasized the role of the hippocampus in the rapid

encoding of episodic memories [7–14]. Although both
camps emphasize a key role for the hippocampal region in
encoding and learning, it is sometimes hard to accept that
they are talking about the same region of the brain.

The diversity of hippocampal-region models seems as
irreconcilable as the claims of the blind men in the Hindu
fable who argued about the nature of an elephant. One
man touched the trunk and exclaimed, ‘The elephant is
like a snake!’ Another man touched the side and
proclaimed that the elephant was like a wall, while a
third touched the leg and concluded that the elephant was
like a tree. In the end, of course, each was partly right and
all were totally wrong. Might the same be true of theories
of hippocampal-region function?

Early approaches to understanding the hippocampal
region through animal models were hampered by impre-
cise lesion techniques that incompletely destroyed key
areas while extending into nearby extrahippocampal
areas. Similar problems occur in studying humans,
because damage is seldom limited to a single brain
structure. As such, the data available until recently
allowed only the broadest of generalizations about the
aggregate function of the whole hippocampal region.
However, recent advances in anatomical, surgical and
physiological techniques have made it clear that many
functions previously ascribed to the hippocampus proper
might, in fact, be subserved by other fields in and around
the hippocampus, including the entorhinal cortex, the
dentate gyrus and the subiculum (Fig. 1). We will refer to
these regions and the hippocampus proper together as the
‘hippocampal region’, although the nomenclature varies in
the literature.

Computational models play an important role in
extending our understanding of the neural bases of
learning and memory. The most valuable of these models
are born amidst a wealth of experimental studies and
justify their existence by inspiring further empirical
research. Most models of the function of the hippocampal
region have their roots in psychological theories and
research on learning and memory; these have led to a
wealth of insights into how diverse behaviors in animalsCorresponding author: Mark Gluck (gluck@pavlov.rutgers.edu).
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and humans depend on this brain region. By simplifying
and isolating core principles of brain design, computational
models help us understand which aspects of brain
anatomy, circuitry and neural function are responsible
for particular types of behavior [2].

We review here two main classes of theories and
computational models of the hippocampal region: those
that seek to explain incremental learning and those that
address episodic memory. We argue that a potential
synthesis is emerging wherein the incremental learning
models describe representational transformations that
might be localized to the input regions to the hippocampus,
whereas the declarative memory models describe the

storage and recall of these previously processed represen-
tations by the CA3 and CA1 regions. According to this
view, both the representational and episodic approaches
are right, but incomplete.

Models of hippocampal-region function in incremental

learning

The influence of hippocampal-region function on incre-
mental learning can be seen through the wide empirical
literature demonstrating impaired or altered behavior
following damage to some or all of the hippocampal-region
structures (Table 1). These data have suggested to several
modelers that the hippocampal region performs an
information-processing function to modify stimulus rep-
resentations that are then adopted by other brain regions.
This approach, like much computational neuroscience,
traces its earliest roots to the models of David Marr [9].
Here we review two such computational models. In both,
one network module representing the hippocampal region
interacts with other network modules representing other
brain regions. Damage to the hippocampal region is
simulated by disabling the hippocampal-region module
and observing the behavior of the remaining modules.
These models can implement many aspects of associative
learning, particularly classical conditioning, and they are
useful for understanding how the hippocampal region
might interact with the rest of the brain to facilitate
certain kinds of learning.

The cortico-hippocampal model of Gluck and Myers

Gluck and Myers [1,2] approached hippocampal function-
ing top-down by beginning with a broad and abstract
description of the computations that depend on the
hippocampal region in classical conditioning. In their
initial model, the hippocampal region was treated as an
information-processing system that transformed stimulus
representations according to specified rules within a series
of linked connectionist networks. In particular, the model
argued that the hippocampal region compresses (or makes
more similar) the representations of inputs that co-occur
or are otherwise redundant, and differentiates (or makes
less similar) the representations of inputs that predict

Fig. 1. The hippocampal region consists of several interconnected subregions;

major pathways are shown as arrows. Terminology is not always consistent. The

name ‘hippocampus proper’ is usually reserved for the fields CA1 to CA3; the fields

shown in the figure are called the ‘medial temporal lobe’, the ‘hippocampus’ or, as

in this article, the ‘hippocampal region’.
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Table 1. Hippocampal-region involvement in incremental learning

Paradigm Detailsp Sample references

Sensory preconditioning AB þ l A þ l B? Port and Patterson [32]

Latent inhibition A 2 l A þ Solomon and Moore, Shohamy et al. [33,48]

Learned irrelevance A 2 , þ l A þ Allen et al. [21]

Discrimination reversal A þ ,B 2 l A 2 ,B þ Berger and Orr [34]

Trace conditioning A ! þ Moyer et al. [35]

Context-shift A þ in X l A? in Y Penick and Solomon, Honey and Good [36,37]

Negative patterning A þ , B þ , AB 2 Rudy and Sutherland [38]

Generalization gradient A þ l test variants on A Solomon and Moore [33]

Occasion setting A ! B þ , C ! B 2 Han et al. [39]

Blocking A þ l AB þ l B? Allen et al., Baxter et al. [31,40]

Overshadowing A þ , AB þ Garrud et al., Schmajuk et al. [41,42]

Long ISI conditioning A þ , where A is long Port et al. [43]

Contextual conditioning In X, A þ , in Y, A 2 Good et al. [44]

US magnitude shifts A þ , then weaken or strengthen þ Han et al. [45]

Acquired equivalence A þ , B þ l A 2 l B? Coutreau et al. [46]

pDetails listed are representative of canonical classical conditioning paradigms. A, B, C ¼ stimuli. X, Y ¼ conditioning contexts; ISI ¼ interstimulus interval; US ¼ reward.

A þ ¼ A followed by reward; A 2 ¼ A not followed by reward; A? (or B?) ¼ test responding to A (or B). Comma separates trial types that are interleaved within a phase,

vertical bar separates phases. Arrow indicates temporal delay between events.
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different future events. As a simple analogy, if thunder
and lighting always co-occur, they should be treated as
analogous and part of the same broader event. On the
other hand, if two mushrooms look roughly alike but one
is edible and one is poisonous, then their representations
should be made more distinct, exaggerating the subtle
differences between them. The compressed and differen-
tiated representations formed in the hippocampal
region develop over multiple training trials through
exposure to a range of stimuli and contextual regularities.
These representations are then provided to other
modules representing long-term storage in cerebral and
cerebellar areas, which incorporate these new stimulus
representations into their ongoing stimulus–response
learning.

This information-processing theory is incorporated in the
connectionist network model shown in Fig. 2a [1,2].
Processing in the hippocampal region is implemented via a
predictive autoencoder [15,16], which learns to transform
stimulus inputs, through a narrow internal node layer, to
outputs that reconstruct those inputs and also predict
future reinforcement (or other salient events). Because the
internal layer in this network contains fewer nodes than
the input and output layers, the network is forced to
compress redundant information while at the same time
preserving and differentiating information that predicts
reinforcement.

This hippocampal-region network then sends the new
representations to a long-term memory (LTM) network,
which models storage sites in the neocortex and cerebel-
lum. A random recoding of the hippocampal-region
network’s internal-layer activations becomes the ‘desired
output’ for the internal layer of the LTM network, and
the error is the difference between this and the internal
layer’s actual output. The LTM network then uses an
error-correcting rule to adapt its lower layer weights,
just as it did to adapt its upper layer weights. Over time,
the internal-layer nodes of the LTM network develop

representations that are linear recombinations of those
developed by the hippocampal-region network.

Within this model framework, broad hippocampal-
region damage is simulated by disabling the hippocampal
region network (Fig. 2b). In this lesioned model, no new
hippocampal-dependent representations are formed, and
the training signal to the LTM network is silenced. The
LTM network can adopt no new representations, although
it can still learn to map from its existing representations to
new behavioral responses.

Empirical applications and implications

Although Gluck and Myers’s original cortico-hippocampal
model did not directly address physiological mechanisms,
it was sufficient to capture a broad range of data regarding
the effects of hippocampal-region damage in animals and
humans [1,17–19]. The model led to novel predictions
regarding lesion effects, many of which have since been
confirmed in animals [20,21] and in humans with
hippocampal-region damage [22–25]. In more recent
computational modeling, Gluck and Myers have shown
how some of this proposed information-processing function
could indeed emerge from known anatomical and physio-
logical characteristics of the brain substrate, including the
entorhinal cortex [26], the dentate gyrus and the septo-
hippocampal cholinergic system [27,28].

Support for this view of processing in the hippocampal
region comes from functional brain imaging. In particular,
the cortico-hippocampal model suggests that the medial
temporal lobes should be very active early in training,
when subjects are learning about stimulus–stimulus
regularities and evolving a new stimulus representation,
but less active later in training when other brain regions
(e.g. the basal ganglia) are using these representations to
perform the task. In a recent study [29], subjects were
given a probabilistic category learning task in which
they were exposed to hundreds of trials in which they
were asked to predict the weather (‘sun’ or ‘rain’) based

Fig. 2. The cortico-hippocampal model (Gluck and Myers [1]). (a) In the intact model, the hippocampal region provides representational information to long-term memory

sites, such as the cerebellum (illustrated here) and cortex; these representations are incorporated into ongoing learning to map from stimuli to responses. (CR, conditioned

response; US, unconditioned stimulus) (b) After damage to the hippocampal region, the representational information is eliminated, although simple learning to map stim-

uli to responses is still possible.
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on the presence or absence of four different tarot cards
with various geometric features. As expected by the
cortico-hippocampal model [1,17], medial temporal lobe
activity was highest early in training and then decreased;
by contrast, basal ganglia activity was low at first and
increased during training.

Schmajuk and DiCarlo (S–D) model

An alternative view of the role of the hippocampal region
in conditioning has been proposed by Schmajuk and
colleagues in an evolving series of computational models
[3,4,30]. The spirit and aim of these models are similar to
the cortico-hippocampal model, in that they are concerned
with information-processing roles for different brain
regions, and with how these regions interact. Moreover,
Schmajuk’s models address much of the same body of
empirical data as the cortico-hippocampal model. How-
ever, the particular function that Schmajuk and his
collaborators assign to the hippocampus differs from that
supposed by the cortico-hippocampal model; specifically,
Schmajuk and colleagues assume that the hippocampal
region is crucial for forming new stimulus configurations.
A classic example is the negative patterning problem
(known to computer scientists as ‘exclusive-or’ or XOR):
cues A and B each mean one thing when presented alone
but mean something else when presented together as the
configuration AB. This is a particularly difficult task for
animals and machines to learn because the correct
response to AB is not merely a sum of the responses to A
and B alone.

Schmajuk and DiCarlo have presented a computational
model, often referred to as the S–D model [3,4], that
assumes that the cortex is able to combine cue information
to allow configural learning. Then, they argue, the
cerebellum learns to map from this configural information
to a behavioral response. They argue that the hippo-
campal region helps to modulate this learning both by
helping to calculate an ‘error’ measure – the difference
between what the system predicted and what actually
happened – and broadcasting this error measure to the
cortex and cerebellum. In addition, the hippocampal
region broadcasts the system’s predictions to the
cerebellum.

Damage to the hippocampal system is simulated in the
S–D model by disabling both of these putative hippocam-
pal functions. As a result, the cortex can no longer form
configural representations and, additionally, the cerebel-
lum cannot make use of the hippocampal prediction to
control stimulus competition. Learning paradigms
involving stimulus configuration or stimulus competition
will be disrupted, although simpler learning, such as
associating a single cue with a single response, might still
be possible. Applied to classical conditioning, the S–D
model can account for a sizeable range of empirical
findings [3,4].

Incremental learning: brain substrates

Schmajuk’s S–D model and Gluck and Myers’s cortico-
hippocampal model both address the same domain
(classical conditioning), so there is considerable overlap
in their predictions regarding what kinds of behavior

are and are not dependent on hippocampal-region
processing. However, the two models make a few
divergent predictions. For example, the S–D model
predicts that blocking should be abolished after hippo-
campal-region damage. By contrast, Gluck and Myers’s
cortico-hippocampal model expects that the blocking
effect should be spared in lesioned animals, albeit
with subtle changes in responding on the first com-
pound-cue trial (a prediction recently confirmed [31]).
However, both models have had considerable success
in accounting for a large body of existing data on
incremental learning.

More recently, the authors of both models have begun to
consider how their putative hippocampal-region function
could be mapped onto specific brain structures. Gluck and
Myers argued that at least one component of their
proposed hippocampal-region function, namely com-
pression of the representations of co-occurring stimuli,
could emerge naturally from the anatomy and physiology
of the entorhinal cortex [26]. When this entorhinal cortex
model (Fig. 3a) was connected to the LTM model [47], the
resulting model performed like an animal that has a
selective lesion of the hippocampus proper but spares the
entorhinal cortex, as shown in Fig. 3b. This means that

Fig. 3. (a) The anatomy and physiology of the entorhinal cortex is sufficient to

allow it to perform representational compression, part of the function ascribed by

Gluck and Myers to the hippocampal region as a whole. (b) This implies that selec-

tive hippocampal lesion, that spares the entorhinal cortex, should spare the ability

to perform entorhinal-dependent representational changes [26].
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those conditioning behaviors that depend specifically on
representational compression might be abolished by
entorhinal lesion but might survive a more selective
hippocampal lesion that spares the entorhinal cortex.
For example, the entorhinal-only model can perform latent
inhibition and learned irrelevance, two behaviors that are
disrupted by broad damage to the hippocampal region.
These predictions were recently confirmed using ibotenic
acid lesions to destroy cells in either the entorhinal cortex
or the hippocampus in rabbits trained on either latent
inhibition and learned irrelevance in the rabbit eyeblink
conditioning preparation. As expected, only the entorhinal
lesions interfered with these putative redundancy-com-
pression behaviors [48,49]. More recently, Gluck and
Myers have suggested that the other half of their putative
hippocampal-region function might similarly depend on
other hippocampal-region structures (see [26]). Impor-
tantly, this conceptualization leaves open the question of
what function the hippocampus proper (fields CA1 and
CA3) might perform.

Schmajuk and colleagues have likewise elaborated
their initial model to include specific hippocampal-region
substructures [50,51]. They have suggested that at least
one component of their proposed hippocampal-region
function – the prediction signal used to control stimulus
competition – might be localized in the entorhinal cortex,
although they still assume that the remaining component
– the error signal that modulates configural association –
takes place in the hippocampus [30].

The emerging consensus from both models could thus be
that structures outside the hippocampus proper (particu-
larly entorhinal cortex) might be the true home of some of
the functionality previously ascribed to the hippocampal
region as a whole, where stimulus representations are
incrementally changed during associative learning so as to
reflect salient stimulus–stimulus regularities that emerge
over many training trials.

Models of hippocampal-region function in episodic

memory

Whereas the incremental memory models reviewed above
focus on how new representations are formed and shaped
over multiple training trials, a second tradition of hippo-
campal models has focused on what happens during a

single episode or event. These models have assumed
that the hippocampal region simply stores whatever
pattern is presented to it by the neocortex. This view is
exemplified by Marr’s theory of simple memory [9]. Marr
contrasted such ‘simple’ hippocampal memory with the
neocortex, which he thought was capable of forming new
representations.

This view of the hippocampal region as a photo-camera
of neocortical input pervades most episodic memory
models. In these models, the input to the hippocampal
region consists of arbitrary vectors to be stored. The
vectors are then later retrieved in their entirety based on a
partial cue [7,9,11–13,52]. In essence, the hippocampal
region forms a compact code that is bidirectionally linked
to a neocortical representation. If part of the neocortical
representation is later presented to the hippocampal
system as input, it will reactivate this compact code.
Subsequently, the hippocampal code can reactivate the
missing parts of the neocortical representation [9]. The
function of the hippocampal region is thus to complete
stored patterns for reinstatement in neocortical regions, as
illustrated in Fig. 4.

Representational assumptions in episodic memory

models

In episodic memory models, hippocampal patterns are
either assumed to be random (e.g. [12]) or are formed
automatically via unsupervised learning [7,9,11–14,52].
In the latter case, such patterns are formed during one
single presentation of the input [7,11,13]. This is an
essential difference with incremental memory models, in
which representations usually evolve over the course of
many trials [1].

The view that episodic memory is about storing
random vectors seen only once is also central to many
mathematical models of memory [53,54]. It is not an
unnatural view: episodic memories consist of random
elements, such as the unrelated words on a word list or
the unpredictable collection of people attending a
particular party, and this information might be
provided only once. The task facing episodic memory
is not to discover regularities (e.g. which guests always
visit the same parties) but to recall accurately who was
present at a particular party. For all practical

Fig. 4. (a) Formation of an episodic memory: a neocortical pattern gives rise to a hippocampal-region pattern, with connections being laid between the neocortical and hip-

pocampal pattern, and within the hippocampal pattern. (b). When part of the pattern is active in the neocortex during recall, it will reactivate part or whole of the hippocam-

pal pattern. (c). This pattern will in turn complete the neocortical pattern.
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purposes, episodic memory systems thus have to deal
with random, unstructured input that they do not have
to ‘understand’ or process, merely file away for later
retrieval. The idea that the hippocampus is such an
episodic memory system stems from the effects of
hippocampal-region damage on the ability to form
episodic memories after a single exposure, although
more typically after a few exposures; key data from the
wide literature are summarized in Table 2.

In many episodic memory models, the hippocampal
system is assumed to form relatively sparse patterns
that overlap less than the input patterns from which
they are formed [13,52]. These patterns are sometimes
referred to as ‘conjunctive’ [52,60] because they code
for a conjunction of features (i.e. an episode) and not
for individual features separately. The lesser overlap is
referred to as ‘orthogonalization’ or ‘pattern separ-
ation’: patterns that overlap in neocortex become non-
overlapping (orthogonal) in the hippocampal system.
Orthogonalization is essential for an episodic memory
system because it reduces interference between similar
memories. Sparseness of patterns helps in this ortho-
gonalization: two sparse patterns in which, for
example, two neurons out of 100 are active, are less
likely to overlap with each other than two patterns in
which 50 neurons are active [9,60,61].

Extensions of the basic theme

Models of the hippocampal system and episodic memory
still have many elements in common with Marr’s basic
view of hippocampal functioning, but recent efforts have
added considerable elaboration and refinement.

Marr’s work on calculating the capacity of a ‘simple
memory’ [9] was extended using sophisticated information
theory measures [61]. As another example, Marr
suggested for computational reasons that the hippo-
campus was only a temporary store, with older memories
being transferred from the hippocampus to the neocortex
[9]. In the 1980s, Squire and colleagues developed a similar
hypothesis to explain a neuropsychological mystery,
namely that recent memories seem more vulnerable to
hippocampal damage than more remote memories [62,63].
In the 1990s, Buzsáki hypothesized that hippocampal
function could be linked to two distinct processing
modes: during ‘theta state’, when hippocampal neurons
fire in rhythmic synchrony, memories are stored in the
hippocampus, whereas during the less structured ‘sharp
wave state’, memories are transferred from the hippo-
campus to the neocortex [64,65]. Both of these ideas
have been incorporated in several computational models
[8,10,11,66].

A new research question is how new patterns could be
stored in the hippocampus without retrieval of old
patterns disturbing the formation of new patterns. The
solution Hasselmo and coworkers came to was that
neuromodulation might set conditions suitable for either
retrieval or learning, so that both happen at separate
times and do not disturb each other. In their earlier work,
this balance between storage and retrieval was modulated
by acetylcholine [7] but septal GABAergic projections have
recently emerged as an alternative or complementary
means of modulation [67].

Another emerging theme in recent models of episodic
memory is the core role given to sequence learning in the
hippocampal region [68–70]. In sequence learning, the
goal is not to complete old patterns from an incomplete cue
but to retrieve the next member of a sequence of patterns.
Metaphorically, the hippocampus does not shoot photo-
graphs but stores sequences of images like a video camera.
Again, this is a quite natural conceptualization of episodic
memory: an episode is usually seen as not a single image
but as a story unfurling in time. Moreover, this idea
connects episodic memory to another field in which the
hippocampus clearly plays a role, namely that of spatial
navigation [71,72].

One episodic memory model has also been extended to
tasks requiring slow, incremental learning, such as non-
linear discriminations in rats [14]. However, this was
achieved by adding error-correction mechanisms that do
not play a role in the rest of the model.

Table 2. Hippocampal-region involvement in episodic memory

Paradigm Exposure trials Sample references

Autobiographic memory 1 Vargha-Khadem et al. [55]

Verbal memory, recall 3–5 Reed and Squire, Rempel-Clower et al. [56,57]

Picture recognition 1 Reed and Squire, Rempel-Clower et al. [56,57]

Delayed figure reproduction 1 Reed and Squire, Rempel-Clower et al. [56,57]

Contextual fear 1 Kim and Fanselow [58]

Morris water maze 1–4 Cassel et al. [59]

Radial arm maze 1–4 Cassel et al. [59]

Fig. 5. Circuitry of the CA3 and CA1 fields of the hippocampus proper, typically

taken to underlie episodic memory. Inputs to the hippocampus proper arrive over

the perforant path of entorhinal cortex (EC) and the mossy fibers of the dentate

gyrus (DG). Patterns are linked in CA3 via recurrent collaterals, and then forwarded

to CA1 via the Schaffer collaterals. CA1 reintroduces the patterns to the neocortex

via the subiculum and the deep layers of the entorhinal cortex.
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Episodic memory: brain substrates

Some episodic memory models have treated the hippo-
campal system as one undifferentiated module [10,11];
others have delved more into anatomical complexities
[7,9,13,14,52].

CA3 is often the central module in more detailed
models of the hippocampus (Fig. 5). The anatomy of
CA3 is marked by neurons with a high degree of
recurrent collaterals, which would be ideal either for
the autoassociative storage (binding different parts of
one pattern) necessary for pattern completion [7,9,61]
or for the heteroassociative storage (binding different
patterns in one sequence) necessary for sequence
learning [68–71]. CA1 is often assumed to play a
role in ‘decoding’ of the hippocampal pattern, allowing
it to be associated with the cortical pattern that gave
rise to it [14,52]. Alternatively, CA1 has also been
identified with a pattern separator [8]. The dentate
gyrus is not always modeled with precision but in
recent models it has received an important role as a
‘sparsifier’ – making patterns sparse and therefore
enabling pattern separation [14,60].

In episodic memory models, the entorhinal cortex is
generally seen as the input region to the hippocampal
formation and is usually ignored or grouped with other
extrahippocampal cortex. For example, O’Reilly and Nor-
man [13] considered a parahippocampal cortical region
(including entorhinal cortex) that computed a familiarity
signal from a slowly formed, integrated memory, which
seems very compatible with the view emerging from the
incremental learning strain of hippocampal models. In
both views, the entorhinal cortex slowly forms represen-
tations that do not incorporate all details in a single
episode (as the episodic memory implemented in CA3
would do) but instead extracts regularities over longer
time intervals. These slowly forming representations
could form the basis for both a familiarity signal [13]
and performance in incremental learning tasks (as
suggested by [26]).

Conclusion

Two very different strains of theories and models of the
hippocampal region have evolved to explain two largely
nonoverlapping sets of behavioral phenomena: stimulus–
outcome associations that emerge slowly from exposure
to multiple training trials and episodic memories that
are instantiated quickly from a single exposure.
However, recent advances in anatomical, surgical and
physiological techniques have suggested that many
functions previously ascribed to the hippocampus
proper (especially fields CA3 and CA1) are likely to
be subserved by other areas in and around the
hippocampus, including the entorhinal cortex, the
dentate gyrus and the subiculum. This has led to a
potential rapprochement between the two camps of
models and theories. A synthesis is emerging wherein
the incremental learning models describe represen-
tational transformations that might be localized to
the input regions of the hippocampus (especially the

entorhinal cortex but possibly also the dentate gyrus)
whereas episodic memory models describe the storage
and recall of these previously processed represen-
tations by the CA3 and CA1 regions. According to
this view, both the representational and episodic
approaches are both partially correct but each is also
incomplete. Future computational models will help to
elaborate how these different substructures interact
within the broader context of hippocampal-region func-
tion. Neither a snake, nor a wall, nor a tree, the
hippocampal elephant appears to be all these things,
depending on where we look.
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