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The purpose of the present study was to gain a deeper understanding of the role of the basal ganglia in
learning and memory by examining learning strategies among patients with basal ganglia dysfunction.
Using a probabilistic category learning task (the “weather prediction” task) previously shown to be
sensitive to basal ganglia function, the authors examined patterns of performance during learning and
used mathematical models to capture different learning strategies. Results showed that patients with
Parkinson’s disease exhibit different patterns of strategy use. Specifically, most controls initially used a
simple, but suboptimal, strategy that focused on single-cue–outcome associations; eventually, however,
most controls adopted a more complex, optimal learning strategy, integrating single-cue associations to
predict outcomes for multiple-cue stimuli. In contrast, the majority of individuals with Parkinson’s
disease continued to rely on simple single-cue learning strategies throughout the experiment.

The basal ganglia have traditionally been associated with motor
control. However, studies in the past decade have also implicated
the basal ganglia in cognition. Neuroanatomical studies have
shown that the basal ganglia form reciprocal loops with highly
cognitive regions in the frontal cortex (Alexander, DeLong, &
Strick, 1986). Electrophysiological findings have demonstrated
that dopamine neurons in the basal ganglia play an important role
in reward-related learning (Schultz, 1998; Schultz, Dayan, & Mon-
tague, 1997). Behavioral studies have also provided evidence for
the role of the basal ganglia in cognition, demonstrating that basal
ganglia damage leads to a range of cognitive deficits in animals
(Kesner, Bolland, & Dakis, 1993; Kim & Baxter, 2001; McDonald
& White, 1993; Packard, 1999; Packard, Hirsch, & White, 1989;
Packard & McGaugh, 1996) and humans (Downes et al., 1989;
Jackson, Jackson, Harrison, Henderson, & Kennard, 1995; Owen
et al., 1993; Saint-Cyr, Taylor, & Lang, 1988; Swainson et al.,
2000).

Most behavioral studies view the basal ganglia as supporting a
procedural, or habit, learning system (Eichenbaum & Cohen, 2001;
Gabrieli, 1998; Jog, Kubota, Connoly, Hillegaart, & Graybiel,

1999; Knowlton, Mangels, & Squire, 1996; Mishkin, Malamut, &
Bachevalier, 1984; Robbins, 1996; Squire, 1994; Squire & Zola,
1996). Procedural learning is defined as learning that is acquired
over many trials, without requiring explicit conscious awareness
(e.g., Gabrieli, 1998); an example would be learning to ride a
bicycle, where the ability to consciously verbalize the knowledge
bears little relationship to the learning of the skill itself. This
procedural learning system has been dissociated both functionally
and anatomically from a medial temporal lobe system thought to
be important for declarative memory, which is typically defined as
explicit and conscious recollection of facts or events (e.g., Gabri-
eli, 1998; Knowlton et al., 1996; Squire, 1994).

Evidence supporting a role for the basal ganglia in procedural
learning comes from findings that animals with basal ganglia
lesions show deficits on behavioral tasks thought to rely on pro-
cedural learning. For example, animals with basal ganglia damage
are impaired at gradual learning of cue–outcome relations (cf.
Packard et al., 1989), or stimulus–response associations (Packard,
1999; Packard & McGaugh, 1996).

Further evidence for the role of the basal ganglia in learning
comes from studies of patients with Parkinson’s disease. In Par-
kinson’s disease, dopamine-containing neurons in the substantia
nigra pars compacta degenerate, causing a decrease in striatal
dopamine and disrupting basal ganglia function (Agid, Javoy-
Agid, & Ruberg, 1987; Robertson & Robertson, 1988). Thus,
patients with Parkinson’s disease provide a good opportunity for
studying the role of the basal ganglia in cognition.

Indeed, humans with Parkinson’s disease are impaired on a
variety of cognitive tasks. Early studies of cognitive deficits in
Parkinson’s disease focused on tasks sensitive to frontal lobe
function, such as working memory (Lange & Robbins, 1992;
Owen, Beksinska, et al., 1993, Owen, Iddon, Hodges, Summers, &
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Robins, 1997) and set-shifting (Downes et al., 1989; Owen, Rob-
erts, et al., 1993), presumably impaired in Parkinson’s disease as a
result of disruption of striatofrontal loops (e.g., Gotham, Brown, &
Marsden, 1988; Owen et al., 1992; Taylor, Saint-Cyr, & Lang,
1986). More recent studies have shown that Parkinson’s patients
are impaired at implicit, procedural learning tasks that are not
considered to be “frontal” tasks. Further, these impairments are not
correlated with patients’ performance on typical measures of frontal
function (Knowlton et al., 1996). For example, Parkinson’s patients
were found to be impaired at visuomotor sequence learning (Jackson
et al., 1995; Pascuale-Leone et al., 1993), verbal serial reaction (West-
water, McDowall, Siegert, Mossman, & Abernathy, 1998), condi-
tional association (Myers et al., 2003; Vriezen & Moskovitch, 1990),
and probabilistic category learning (Knowlton et al., 1996). The
probabilistic category learning task, in particular, has been considered
a good example of the role of the basal ganglia in learning, because
functional magnetic resonance imaging (fMRI) reveals basal ganglia
activity in healthy controls engaged in learning this task (Poldrack et
al., 2001; Poldrack, Prabhakaran, Seger, & Gabrieli, 1999).

Nonetheless, a precise understanding of the role of the basal ganglia
in learning remains elusive. Studies have shown that basal ganglia
damage does not impair all kinds of nondeclarative, implicit learning
(Bondi & Kaszniak, 1991; Harrington, Haaland, Yeo, & Marder,
1990; Heindel, Salmon, Shults, Walicke, & Butters, 1989; Koivisto,
Portin, & Rinne, 1996; Reber & Squire, 1999; Smith, Siegert, &
McDowall, 2001). Further, some studies have reported impaired
learning in Parkinson’s patients on other tasks that are not considered
to rely on implicit, procedural learning, such as impaired recognition
memory (Owen, Beksinska, et al., 1993; Whittington, Podd, & Kan,
2000), impaired recall memory (Bondi & Kaszniak, 1991; Breen,
1993), impaired explicit visuospatial memory (Pillon et al., 1996), and
impaired delayed match-to-sample (Owen, Beksinska, et al., 1993).

One reason for the lack of a precise understanding of the role of
basal ganglia in learning may be that most behavioral studies have
focused on “bottom-line” performance, demonstrating that basal
ganglia damage leads to impaired performance compared with that
of control participants in some cases, but not in others. However,
such findings can be interpreted in more than one way. For
example, individuals with basal ganglia dysfunction may be im-
paired on a learning task because they are slower to learn in
general. This explanation would be consistent with the general
motor and cognitive slowness that are typical of the disease (Coo-
per, Sagar, Tidswell, & Jordan, 1994; Kolb & Whishaw, 1995).
Alternatively, the basal ganglia may play a critical role in support-
ing particular types of cognitive processing, so that damage to the
basal ganglia forces learning to rely on other strategies and brain
systems. This view would be consistent with electrophysiological
and anatomical studies implicating a role for the basal ganglia in
specific types of learning (Middleton & Strick, 1994; Schultz,
1998) and in specific types of motor behavior (e.g., Graybiel,
1995). If this is the case, one might expect to find that individuals
with basal ganglia damage would engage in different learning
strategies compared with healthy controls.

To examine these possibilities, we directly compared perfor-
mance of individuals with Parkinson’s disease and matched con-
trols on a learning task previously shown to be particularly sensi-
tive to basal ganglia function (Knowlton et al., 1996; Poldrack et
al., 1999, 2001), and used mathematical models to assess learning
strategies in each individual.

The task, known as the “weather prediction” category learning
task (Gluck, Shohamy, & Myers, 2002; Knowlton et al., 1996;
Knowlton, Squire, & Gluck, 1994), requires participants to learn to
predict a weather outcome (rain or sunshine) on the basis of the
appearance of four cues (tarot cards with geometric shapes; see
Figure 1). In this task, the relation between the cues and outcomes
is probabilistic. For example, one card might predict sunshine with
80% accuracy, but predict rain on the remaining 20% of trials; the
most likely outcome on any given trial depends on the combination
of cards that appear (see Figure 2).

Because of the probabilistic nature of the weather prediction
task, in which no individual trial can provide accurate information
about the cue–outcome associations, it has generally been as-
sumed that participants learn this task by incrementally acquiring
associations between all four cues and each outcome (Gluck &
Bower, 1988; Knowlton et al., 1994, 1996). This multicue strategy
is the optimal way to learn the task. However, given the structure
of the task, there are also suboptimal single-cue strategies that can
lead to reasonable performance. For example, an individual could
focus on one cue, such as the card with the square shape, and learn
how to predict the outcome on the basis of the presence or absence
of that card alone, ignoring the other cards (a “one-cue” strategy;
see Figure 3a). Another suboptimal strategy would be to learn the
correct answer to only those patterns on which a single card
appears, but to respond randomly on those trials in which two or
more cards appear (a “singleton” strategy; see Figure 3b). Each of
these suboptimal strategies can lead to performance that is signif-
icantly above chance. In a recent experiment with young healthy
controls, we found that these three classes of strategies—multicue,
one-cue, and singleton—provided a good description of the per-
formance (over 200 training trials) of over 98% of participants, and
that less than 25% of those participants tested appeared to use an
optimal multicue strategy (Gluck et al., 2002).

One question is therefore: Do Parkinson’s patients use the same
range of strategies as controls? We hypothesized that if Parkin-
son’s patients use the same kinds of learning strategies as controls,
but simply acquire them more slowly, this would suggest that the
basal ganglia may be particularly important in modulating learning

Figure 1. Example of stimuli used in the weather prediction classification
task. Reprinted with permission from Knowlton, B. J., Mangels, J. A., &
Squire, L. R. (1996, September 6). A neostriatal habit learning system in
humans. Science, 273, 1399–1402. Copyright 1996 AAAS.
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rate. In contrast, if patients with Parkinson’s disease use different
kinds of learning strategies, this may suggest a more specific role
for the basal ganglia in particular types of learning. To address
these questions, we administered the weather prediction task to a
group of Parkinson’s patients and matched healthy controls. Given
the possibility of particularly slow learning among the Parkinson’s
patients, we also extended training over 3 consecutive days to
examine whether Parkinson’s patients would eventually reach lev-
els of performance comparable to those of healthy controls.

Method

Participants

Participants included 12 individuals with a diagnosis of idiopathic Par-
kinson’s disease (8 men and 4 women) and 14 age-matched healthy
controls (8 men and 6 women). All patients were in the mild-to-moderate
stages of the disease, with scores on the Hoehn–Yahr scale of motor
function (Hoehn & Yahr, 1967) that ranged from 2 to 3. All Parkinson’s
patients were nondemented, as indicated by scores greater than 24 on the
Mini-Mental State Exam (MMSE; Folstein, Folstein, & McHugh, 1975).

Parkinson’s patients were also screened for clinical depression, as indicated
by scores below 15 on the Beck Depression Inventory (Beck, Steer, &
Brown, 1996). All patients were being treated with L-dopa and were tested
while on medication. Patient and control information is presented in
Table 1.

Controls were not significantly different from the Parkinson’s patients in
age, education, or MMSE scores (independent samples t test, p � .10).
Controls were screened for the presence of any neurological disorder or
history of psychiatric illness including depression.

All participants signed statements of informed consent before partici-
pating in behavioral testing. All studies conformed to research guidelines
established by Rutgers University and the federal government.

Apparatus and Stimuli

The experimental task was programmed with SuperCard software (Al-
legiant Technologies, San Diego, CA) and was presented on an Apple
Macintosh 1400c or equivalent laptop computer with a color screen.
Testing took place in a quiet room. Responses were recorded on a standard
Macintosh keyboard, masked except for two keys, labeled sun and rain,
which the participant used to enter responses.

Figure 2. A: Each card (S1–S4) was associated with each possible outcome (rain vs. sunshine) with a fixed
probability. B: On each trial, one of these 14 patterns of cue combinations was presented.

Figure 3. Examples of different kinds of strategies a participant could use to learn the weather prediction task.
A: One-cue strategy: All patterns with a particular cue (here the triangles card) present are mapped to sun; the
remainder are mapped to rain. B: Singleton strategy: Those patterns with a single card present (singleton
patterns) are learned; the subject guesses on the remaining patterns.
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The stimuli consisted of four tarot cards, each with a different geometric
shape (circle, square, triangle, diamond), presented in black and white. On
each trial, between one and three cards were presented in the center of the
screen. A vertical score bar was presented at the right of the screen.

Participants were required to learn which of two outcomes was predicted
by each combination of cards (Figure 1). Each card was independently
associated with each outcome with a fixed probability, and the two out-
comes occurred equally often. Table 2 shows the probability of Outcome
1 (sun) given each possible combination of cards and the frequency with
which each combination was presented within one block of 200 trials. The
probability with which each card predicts each outcome is obtained by
calculating the probability of that outcome given that the card is present,
P(outcome|card), divided by the total probability that the card would occur
regardless of the outcome, P(card). For example, as one can calculate from
Table 2, Card 1 is present in seven patterns (H–N). Because Patterns H–N
occur on 100 trials, 20 of which are associated with sun, P(sun|card 1) �
20 � 100 � 0.2. Similarly, Cards 2–4 are associated with sun with
probabilities of 0.4, 0.6, and 0.8, respectively. Note that the two outcomes
occur with equal probability throughout the block of 200 trials, and that
each individual card is likewise present on exactly half of all trials.

Procedure

The participant was seated at a comfortable viewing distance from the
computer screen. Instructions appeared on the computer screen, as previ-
ously described (e.g., Knowlton et al., 1994, Experiment 1). Briefly, the
instructions stated that the participant was to learn to predict the weather
(sun or rain) on the basis of the tarot cards; for each day, between one and
three cards would be dealt, and the participant should enter a prediction by

pressing the keyboard key labeled sun or rain. Participants were told that
at first they would have to guess but that they would gradually improve
their performance. Participants were not given any explicit information
about the probabilistic nature of the stimulus–outcome relations.

At the start of each trial, cards appeared at the center of the screen and
the participant was requested to respond. The computer recorded the
participant’s response. The actual weather was then revealed by a sun or
rain cloud icon that appeared above the cards. If the participant’s response
matched the weather, a “smiley face” icon appeared and the score bar
increased; if the participant’s response did not match the weather, or if no
response had been made, a “frown face” icon appeared and the score bar
decreased. In addition, there was auditory feedback in the form of a high
tone on match trials and a low tone on nonmatch trials. If the subject did
not respond within 2 s, an “Answer Now!” prompt appeared. If the subject
did not respond within the next 3 s, the trial was terminated and the weather
was shown.

Each training session consisted of 200 trials. Testing took place in three
200-trial sessions, on 3 consecutive days. After testing on the last day was
completed, participants were debriefed.

Data Analysis

On each trial, the computer recorded the pattern, the participant’s re-
sponse, and the actual weather.

In a probabilistic categorization task, the optimal response is one in
which the participant responds to each combination of cues by predicting
the outcome that is, on average, most often associated with that combina-
tion. For example, because Pattern A occurs on 19 trials, 17 times associ-
ated with sun and 2 times associated with rain (Table 2), the optimal

Table 1
Participant Information for Parkinson’s Patients and Controls

Group Age Education MMSE Hoehn-Yahr Disease duration

Parkinson’s 59.5 � 3.3 16.4 � 1.4 29.0 � 0.7 2.5 � 0.2 9.8 � 5.2
Controls 65.1 � 2.8 16.3 � 2.1 29.0 � 0.7

Note. Age, education, and disease duration are shown in years. Hoehn-Yahr is a rating of motor function.
MMSE � Mini-Mental State Examination.

Table 2
Probability Structure of the Weather Prediction Task

Pattern

Cue

P(pattern)
Frequency

(no. per 200 trials) P(outcome)1 2 3 4

A 0 0 0 1 0.095 19 0.89
B 0 0 1 0 0.045 9 0.78
C 0 0 1 1 0.130 26 0.92
D 0 1 0 0 0.045 9 0.22
E 0 1 0 1 0.060 12 0.83
F 0 1 1 0 0.030 6 0.50
G 0 1 1 1 0.095 19 0.89
H 1 0 0 0 0.095 19 0.11
I 1 0 0 1 0.030 6 0.50
J 1 0 1 0 0.060 12 0.17
K 1 0 1 1 0.045 9 0.55
L 1 1 0 0 0.130 26 0.08
M 1 1 0 1 0.045 9 0.44
N 1 1 1 0 0.095 19 0.11

Note. On any trial, 1 of 14 possible combinations of four cues could appear with the probability indicated:
P(pattern). Each combination of cues predicted one outcome with the probability P(outcome) shown above and
predicted the other outcome with a probability of 1 � P(outcome).
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response to Pattern A is “sun,” even though on a few trials, the actual
outcome will be rain. Following earlier studies by Knowlton et al. (1994)
and others, we accordingly defined a correct response as one that obeyed
this optimal response rule, regardless of the actual outcome (i.e., whether
the participant accurately predicted the weather). Note that there is no
optimal response defined for Patterns F and I, which are equally often
associated with each outcome. Percent correct scores were analyzed by
200-trial blocks across the 3 days of testing; following Knowlton et al.
(1994), we also analyzed performance in blocks of 10 trials each for the
first 50 trials of Day 1.

Strategy Analysis

To investigate response strategies, for each session of 200 training trials,
we generated model response profiles based on how “ideal” participants
would respond on each trial if they had been following each strategy:
multicue, one-cue, or singleton. For each participant, we then calculated
the degree to which each “ideal” mathematical model fit the participant’s
data, using a least mean square measure, with 0.0 indicating a perfect fit.
Comparing across all strategies examined, the model that most closely
approximated a participant’s individual response profile was defined as the
best fit model for that participant. Because some participants may not be
well fit by any predefined model, we excluded strategy analysis data from
any participant who was not fit by any model within a tolerance of 0.1. Full
details and mathematical equations can be found in Gluck et al. (2002).

As described above, we considered the following three classes of learn-
ing strategies:

1. Multicue strategy: Under this strategy, a participant should respond to
each pattern of cues with the outcome most often associated with that
pattern. This involves attending to the entire pattern (i.e., all cues) present
on each trial. A participant reliably following this strategy would be scored
as making 100% correct responses over the course of the experiment.

2. One-cue strategy: Using this strategy, a participant should respond to
each pattern on the basis of the presence or absence of a single card,
disregarding the other cards. For example, a participant might respond
“rain” whenever Card 1 is present and “sun” otherwise, regardless of what
other cards are present. A participant reliably following this strategy should
generate 90% correct responses. (Card 4, which predicts sun with high
accuracy, could also be used to generate 90% correct responses. Cards 2 or
3, which are associated less reliably with the two outcomes, could each be
used to generate 67% correct responses.)

3. Singleton strategy: In this strategy, a participant should learn the
outcomes associated with those patterns in which only a single card
appears. For example, a participant would learn that Cards 1 and 2 each
reliably predict rain, whereas Cards 3 and 4 reliably predict sun. Because
Patterns A, B, D, and H occur with such high frequency during the
experiment (accounting for 28% of all trials), a participant responding
correctly to these patterns and randomly to the remaining patterns could
achieve up to 64% correct over the course of the experiment.

To determine whether the distribution of best fit strategies differed
between control and Parkinson’s groups, and whether best fit strategies
changed across days, we conducted a 2 � 3 � 3 log–linear chi-square
analysis for three variables (Group � Day � Strategy).

Results

Overall Classification Performance

Figure 4 shows classification performance for Parkinson’s pa-
tients and controls, over 3 days of testing (200 trials per day). A
repeated measures analysis of variance (ANOVA; Day � Group)
revealed that both groups improved significantly across the 3 days
of testing, as evidenced by a significant main effect of days, F(2,
48) � 125.8, p � .01; however, the Parkinson’s patients were

consistently impaired compared with the controls, as confirmed by
a significant main effect of group, F(1, 24) � 4.9, p � .05 . There
was no significant interaction between group and day, F(2, 48) �
1.3, p � .20. In addition, to test our a priori hypothesis that
Parkinson’s patients might improve with extensive training over 3
days, we conducted a separate repeated measures ANOVA on the
Parkinson’s data alone, revealing significant learning among the
Parkinson’s patient group over 3 days, F(2, 22) � 5.4, p � .01.

Post hoc Tukey’s analyses revealed that the Parkinson’s deficit
was related mainly to significant differences between the groups
later in training, on Day 2 and Day 3 (both ps � .05), but not
on Day 1 ( p � .50). In addition, because previous reports have
found group differences during the first 50 trials of Day 1, we
performed a separate analysis of that period. In contrast to previous
reports (Knowlton et al., 1996), we found no significant differ-
ences between the groups in the first 50 trials of Day 1: a repeated
measures ANOVA (Block � Group) found no significant effect of
block, F(4, 96) � 1.7, p � .10; no main effect of group, F(1, 24) �
0.7, p � .40, nor any Group � Block interaction, F(4, 96) � 0.4,
p � .80.

Learning Strategies

Over all 3 days, 97% of the control data and 94% of the
Parkinson’s data were best fit within defined tolerance by one of
the three strategies described above: multicue, one-cue, or single-
ton. Those data that did not fit within defined tolerance were
excluded from further analysis (1 healthy control on Day 1, 1
Parkinson’s patient on Day 1, and 1 Parkinson’s patient on Day 2).
Figure 5 shows the distribution of strategy models providing a best
fit to data from the control and Parkinson’s groups, across the 3
days of testing.

Among controls, the singleton strategy (learning responses to
single-card patterns) provided a best fit model for the majority of
participants on Day 1. By Day 3, a large majority of control
participants were best fit by an optimal multicue strategy, reliably
responding to each pattern on the basis of the association of each
of the four cues with its most probable outcome.

By contrast, although the Parkinson’s group showed a generally
similar strategy distribution on Day 1, with most participants’ data
best fit by a singleton strategy, there was relatively less evidence

Figure 4. Classification performance over 3 days of training. Error bars
indicate SEM.
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of a shift away from that strategy on Days 2 and 3, compared with
controls. The majority of Parkinson’s data was still best fit by a
singleton strategy model on Days 2 and 3.

A chi-square three-way comparison of strategies by group
across the 3 days (log-linear analysis for three variables, Strat-
egy � Day � Group) revealed a significant interaction between
these three variables, �2(12, N � 75) � 32.70, p � .01. Pairwise
contrasts with alpha corrected to .025 for multiple analyses con-
firmed that this interaction was due to a significant change in
strategies among control participants across the 3 days: Day �
Strategy chi-square comparison in the control group, �2(4, N �
41) � 11.35, p � .03, whereas there was no such shift among the
Parkinson’s disease group, �2(4, N � 34) � 2.15, p � .70.

A comparison of performance by strategy for the last day of
testing (Day 3) is shown in Figure 6. As shown, within each group,
those following a multicue strategy performed better than those
following a singleton strategy. An ANOVA on Performance �
Group � Strategy revealed a significant main effect of strategy,
F(1, 19) � 60.7, p � .01, but there was no main effect of group nor
a Group � Strategy interaction (all ps � .10). A very similar
pattern of results was found for performance on Days 1 and 2, as
well: Those participants following a multicue strategy significantly
outperformed those following a singleton strategy, regardless of
group: main effect of strategy, Day 1, F(1, 18) � 11.8, p � .01;
Day 2, F(1, 18) � 17.0, p � .01; no main effect of group nor a
Group � Strategy interaction (all ps � .10). We conducted a
separate analysis for those participants best fit by the singleton

strategy, demonstrating that, as expected, their performance did
not differ significantly from 64% correct, which is the theoretical
maximum for that strategy: Parkinson’s, t(6) � 0.74, p � .10;
controls, t(1) � 0.05, p � .10 (although note that some subgroups
in these analyses, e.g., control singleton on Day 3, consist of a
small number of subjects).

To further explore the effect of trial type on learning, we
examined performance of Parkinson’s and controls separately for
singleton trials versus multicue trials. An ANOVA examining
performance by group (Parkinson’s vs. controls) and trial type
(singleton trial vs. multicue trial) revealed a significant main effect
of group, F(1, 44) � 13.2, p � .01, and of trial type, F(1, 44) �
18.7, p � .01, as well as a significant Group � Trial Type
interaction, F(1, 44) � 5.6, p � .05. In confirmation of the results
of the model-based strategy analyses, post hoc Tukey’s analyses
found that this interaction was due to significantly better perfor-
mance among controls than among Parkinson’s patients on the
multicue trials ( p � .01), whereas there was no significant differ-
ence in performance between controls and Parkinson’s patients on
the singleton trials ( p � .80).

There were no obvious demographic differences (e.g., age,
education, gender, or MMSE) in either group between those that
did shift to the optimal multicue strategy and those that did not, nor
were there any significant differences among the Parkinson’s pa-
tients in terms of Hoehn–Yahr scores or disease duration and
overall performance or strategy use (independent sample t tests, all
ps � .50).

Discussion

The purpose of the present study was to gain a deeper under-
standing of the nature of the learning and memory impairments in
Parkinson’s disease by focusing on how individuals with Parkin-
son’s disease learn, rather than just examining overall learning
levels. Specifically, we sought to determine whether Parkinson’s
patients use learning strategies that are the same as those used by
controls, or whether they use different kinds of learning strategies
than controls, presumably because the strategies used by controls
rely on basal ganglia function, which is disrupted in Parkinson’s
disease.

We found that Parkinson’s patients were impaired at acquiring
the multiple-cue–outcome associations that are required for learn-
ing this task in an optimal way. Most Parkinson’s patients did not

Figure 6. Performance by strategy on Day 3.

Figure 5. Learning strategies by day. A: Control data. B: Parkinson’s
data.
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learn to respond to each multicue stimulus according to the most
usual outcome for that stimulus. Instead, Parkinson’s patients used
learning strategies that focus on single cues. These single-cue
associations are also used by control participants early in training;
however, whereas most control participants shifted to using the
optimal multicue strategy later in training, most Parkinson’s pa-
tients did not. It is important to note that those (few) Parkinson’s
patients who did shift to a multicue strategy were as accurate as
controls (and, conversely, accuracy levels were similar among
Parkinson’s patients and those few controls who remained best fit
by the singleton strategy). This suggests that when Parkinson’s
patients are able to learn the multicue–outcome associations, they
are as accurate as controls in using that strategy; however, most
Parkinson’s patients do not shift to the optimal multicue–outcome
strategy.

These findings are also reflected in the overall performance of
the two groups. We found no difference between the control and
the Parkinson’s groups on the 1st day of testing, but we found that
controls outperformed the patients on the 2nd and 3rd days. The
finding that Parkinson’s patient performance improved throughout
training suggests that although they rely on singleton associations,
they are nevertheless able to show significant learning within those
constraints.

Clearly, the strategy analyses reported here provide only a
preliminary assessment of participants’ behavior and do not pro-
vide an exhaustive examination of all possible strategies used by
each participant during learning. Similarly, changes in strategy fit
do not necessarily reflect a conscious decision on the part of the
participant; a previous study found that healthy controls are gen-
erally unable to verbalize their strategies well, or to declare exactly
when they shift strategies (Gluck et al., 2002). This shifting most
likely occurs gradually over several trials as a participant learns to
perform better on different kinds of trials, allowing a gradual shift
toward using singleton information in the multicue patterns. None-
theless, the different patterns of strategy fit between Parkinson’s
patients and controls suggest important differences in how Parkin-
son’s and controls learn this task.

The Basal Ganglia and Learning About Multicue Stimuli

The finding that individuals with Parkinson’s disease show little
evidence of learning the multicue strategy suggests that this type of
learning requires a cognitive function normally subserved by the
basal ganglia–frontal loops that are impaired in Parkinson’s
disease.

One possible explanation of this finding is that Parkinson’s
patients have a deficit in learning to integrate responding across
multiple stimulus–response associations. The singleton strategy is
defined as learning cue–outcome associations for each of the four
cues in the simplest cases, in which a single cue is presented and
is associated with an outcome. The multicue strategy can be
viewed as learning cue–outcome associations for each of the four
singletons, but integrating the cue–outcome associations in order
to respond in cases where the cues appear together. Thus, to the
extent that controls learn to respond to multicue stimuli by inte-
grating responses from single-cue stimuli, this would suggest that
Parkinson’s patients may be impaired at such integration.

This idea is consistent with the functional anatomy of the basal
ganglia and its disruption in Parkinson’s disease: The neostriatum

receives highly convergent input from many cortical areas (Alex-
ander et al., 1986; Wise, Murray, & Gerfen, 1996), suggesting a
role in compressing or integrating information across multiple
cues. The striatum is also modulated by dopamine input represent-
ing important stimulus-specific information (Horvitz, 2000;
Schultz, 1998, 2002) that may be critical in modifying behavior
during learning. Given the loss of these dopamine projections and
the disruption of striatal function that occur in Parkinson’s disease,
it seems plausible that patients with Parkinson’s disease may be
specifically impaired on learning tasks that require feedback-based
acquisition of associations between multiple cues and outcomes.

An alternative view of multicue learning could be that this
strategy involves learning about multiple, separate patterns of cues
(14), each processed as an individual configural pattern, as op-
posed to learning about 4 cues. If so, the impaired performance of
the Parkinson’s patients may reflect a working memory impair-
ment (14 cues would involve heavier memory load than 4 cues), or
an impairment in attending to or processing multiple cues. This
would be consistent with the frontal disruption and related atten-
tional and working memory deficits in Parkinson’s disease (Kolb
& Whishaw, 1995; Owen et al., 1997; Owen, Beksinska, et al.,
1993; Owen, Roberts, et al., 1993; Taylor et al., 1986). However,
recent evidence suggests that although Parkinson’s patients are
impaired at selective attention (attending to a single dimension),
they are less impaired at attentional integration, which would
presumably be necessary if subjects were indeed treating each of
the 14 stimulus patterns as configural cues (Ashby, Noble, Filoteo,
Waldron, & Ell, 2003). Furthermore, this kind of configural learn-
ing is more often associated with the hippocampal-region struc-
tures that are impaired in medial temporal amnesia but spared in
Parkinson’s disease (e.g., Rudy & Sutherland, 1989). Therefore,
this explanation seems less consistent with the cognitive deficits
and the neuropathology of Parkinson’s disease.

Learning Versus Shifting

An alternate explanation of the present findings is that Parkin-
son’s patients are not specifically impaired at learning the multicue
strategy, but are selectively impaired at shifting from one strategy
to another. Thus, to the extent that the change in strategies in
control participants reflects abandonment of one strategy in favor
of a (more successful) new strategy, the present findings may be
explained by a selective impairment in shifting strategies among
the Parkinson’s patients. This idea is consistent with other evi-
dence of shifting deficits in Parkinson’s disease. A number of
studies suggest that Parkinson’s patients are impaired at adjusting
performance to reflect altered task demands (Owen, Beksinska, et
al., 1993; Ravizza & Ivry, 2001; Taylor et al., 1986). Although in
the weather prediction task there is no explicit shift in task de-
mands that requires shifting attention between rules or between
stimuli, the nature of the task is such that the category structure
cannot be deduced until a large number of trials are experienced.
Thus, to the extent that control participants shift between possible
strategies on the basis of trial-by-trial feedback, in an attempt to
improve their performance, it is possible that some form of a
shifting deficit may also account for, or contribute to, the Parkin-
son’s patients’ impaired performance on this task.
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Early Versus Late Training Deficit

In general, the finding that Parkinson’s patients are impaired on
this task is consistent with previous findings (Knowlton et al.,
1996). However, that study concluded that Parkinson’s patients
were impaired early in training (first 50 trials) but not later in
training (Trials 50–150). The pattern of impairment we found
appears to be the opposite: Parkinson’s patients performed similar
to controls in the first 50 trials, and in the entire first session (200
trials), and the Parkinson’s-related deficit was revealed in the 2nd
and 3rd day (Trials 201–600). However, because the patients in
the Knowlton et al. (1996) study were only tested for a single
session, the main difference between their results and the present
results lies in the impaired early learning in the Knowlton et al.
(1996) study, as opposed to the relatively spared early learning in
the present study.

One possible reason for this discrepancy is that Knowlton et al.
(1996) found the learning deficit to be most pronounced in patients
with advanced Parkinson’s disease, whereas the patients in the
present study were all diagnosed with mild-to-moderate Parkin-
son’s disease. Therefore, it may be that probabilistic category
learning is only mildly disrupted early in the disease, but devas-
tated later in the course of the disease. This would account for the
fact that the patients in Knowlton et al.’s (1996) study were
impaired overall during the single training session (although they
did improve within that session), whereas the patients in the
present study showed no significant impairment during the first
training session.

This distinction may be important given that the disease course
progressively affects different brain circuits and cognitive function
(Agid et al., 1993; Kish, Shannak, & Hornykiewicz, 1988; Owen,
Beksinksa, et al., 1993; Owen et al., 1992, 1997). In the early
stages of the disease, approximately 80% of dopaminergic cells
projecting to the striatum, mostly in projections to the dorsal
striatum, are already devastated when a patient first begins to show
motor deficits (Agid et al., 1987; Damier, Hirsch, Agid, & Gray-
biel, 1999; Pakkenberg, Moller, Gundersen, Mouritzen, & Pakken-
berg, 1991). Therefore, patients with mild versus advanced Par-
kinson’s disease both have extensive dopamine depletion in these
regions. However, as the disease progresses, there are changes in
the degree and topography of dopamine cell loss: Later in the
disease, damage progresses from the putamen and the dorsal
caudate nucleus to more ventral parts of the striatum, and beyond
the basal ganglia to the mesocorticolimbic dopamine system (Agid
et al., 1993; Damier et al., 1999). This raises the possibility that the
differences in performance between our patients and Knowlton et
al.’s (1996) more advanced patients may be attributed to the
difference in the extent of dopamine depletion in particular stri-
atofrontal circuits, or in mesocorticolimbic dopamine projections.
Future studies directly comparing mild versus advanced Parkin-
son’s patients on the probabilistic classification task will be in-
strumental in clarifying whether disease progression does in fact
account for the disparity between these studies.

The present findings are also generally consistent with data and
models emerging from the work of Ashby, Filoteo, Maddox, and
colleagues emphasizing the role of the striatum in particular as-
pects of categorization (Ashby, Alfonso-Reese, Turken, & Wal-
dron, 1998; Ashby et al., 2003; Filoteo & Maddox, 1999; Filoteo,
Maddox, & Davis, 2001; Maddox & Filoteo, 2001). For example,

these studies found that Parkinson’s patients are particularly im-
paired at learning and applying nonlinear (as opposed to linear)
categorization rules (Maddox & Filoteo, 2001). To the extent that
nonlinear rule learning involves integration of stimulus dimen-
sions, this finding is consistent with the present findings of a
deficit among Parkinson’s patients in learning to integrate multiple
cues. A more recent study, however, found that Parkinson’s pa-
tients were impaired relative to controls on a test where optimal
performance required the use of a single stimulus cue, whereas
they were intact on a test requiring responding to stimuli for which
the rule was based on integration of multiple stimulus components
(Ashby et al., 2003). Although this finding may appear to be
inconsistent with the present findings regarding the role of the
basal ganglia in integrating responses across multiple cues, it is
important to emphasize that there may be critical differences in the
kind of integration required in the different experiments. The
experiment used in the Ashby et al. (2003) study requires percep-
tual/attentional integration of multiple stimulus dimensions, in
which a subject cannot respond correctly on the basis of only a
single dimension, and in which the dimensions are not easily
separable at the perceptual level. Thus, the Ashby et al. results
suggest that Parkinson’s patients show intact attentional integra-
tion. By contrast, in the present study, the different stimulus cues
appeared as discrete and separate stimuli (cards with geometric
shapes), such that participants could (and in fact did) learn to
associate a distinct response to each of these separate components.
Optimal performance required participants to integrate these
stimulus–response associations when the multiple cues appeared
together. Thus, it is this form of response integration, not stimulus
integration, that the present study suggests may be impaired in
Parkinson’s patients. Future studies are necessary to further eluci-
date the selective contribution of the basal ganglia to attentional–
perceptual aspects of cognition versus mapping of stimulus–
response associations.

The Weather Prediction Task: Limitations and Future
Directions

It has generally been assumed, because of the probabilistic
nature of the weather prediction task, that learning about this task
involves incremental acquisition of associations between the four
cues and the outcomes. Indeed, because the optimal response to
any combination of cards can only be known by observation across
several trials, incremental learning would be the most effective
way to master this task. On the basis of this assumption, degraded
performance on this task has often been taken as evidence for a
specific deficit in procedural learning.

The current results suggest that different individuals may ap-
proach this task by using a variety of strategies, and that significant
learning can be achieved even by individuals who appear to be
following a less than optimal strategy. In healthy individuals,
multiple brain regions are presumably involved in learning this
task, and various strategies may rely differentially on specific brain
regions. For example, to the extent that incremental learning of
associations between cues and outcomes relies on the type of
processes that take place in the basal ganglia, basal ganglia activity
would be expected to underlie learning the multicue strategy in this
task. By contrast, to the extent that learning singleton and one-cue
strategies depends on rule-based learning, and to the extent that
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this type of learning is dependent on the medial temporal lobe, one
would expect that medial temporal lobe activity might be critical to
learning these types of strategies. In fact, recent neuroimaging
(fMRI) evidence has shown that, in healthy controls, learning the
weather prediction task involves interacting activity in both the
basal ganglia and the medial temporal lobe (Poldrack et al., 2001).
One possible interpretation of these results is that the medial
temporal lobes are involved early in learning (when participants
might be investigating simple, easily verbalizable strategies),
whereas basal ganglia involvement increases later in training (as
subjects move to more optimal, less verbalizable strategies). This
is consistent with current findings of a Parkinson’s-related deficit
later in training. It is interesting to note that the most easily
verbalizable and highest payoff strategy is the one-cue strategy.
We found little evidence of subjects engaging in the one-cue
strategy in either group.

However, it is important to note that although certain strategies
may appear to be more verbalizable than others, each strategy
could, in fact, be learned through either implicit or explicit mem-
ory. For example, although the one-cue strategy could be learned
by memorizing a rule (“press sun every time you see a square”), it
could also be learned by incremental acquisition of associations
between the cue and the outcomes. Similarly, although the com-
plex multicue strategy may be more amenable to incremental,
implicit learning, it is potentially possible that a participant would
instead memorize the outcome associated with each pattern. There-
fore, the present data remain noncommittal as to whether a par-
ticular strategy relies on implicit or explicit learning systems.

Future studies comparing learning strategies among other
groups of brain-damaged populations will allow further insight
into the extent to which a particular strategy may rely on particular
brain regions. For example, data from individuals with amnesia
caused by hypoxia-induced hippocampal atrophy suggest that al-
though such individuals are impaired at learning this task, they
show a different pattern of impairment compared to individuals
with Parkinson’s disease (Hopkins, Myers, Shohamy, Grossman,
& Gluck, 2004). Future studies with other brain-damaged popula-
tions will also be critical to examine whether the tendency to rely
on the singleton strategy is unique to Parkinson’s patients, or is
also seen in patients with other kinds of brain damage. In addition,
imaging studies will be most useful for exploring the brain regions
involved during different learning strategies among healthy
controls.

It is worth noting that the present findings suggest the possibility
that with even further extended training, individuals with Parkin-
son’s disease might eventually show a shift toward using the
optimal multicue strategy. Clearly, this possibility is difficult to
test with patients, and remains to be explored with computational
models or animal studies, which can be run more freely for longer
training sessions.

Finally, Parkinson’s disease is treated with L-dopa, which in-
creases brain levels of dopamine and alleviates many of the motor
symptoms. The effect of L-dopa on cognition is not well known,
and studies have led to inconsistent results, with L-dopa sometimes
helping cognitive function, sometimes having no effect, and some-
times impairing cognitive function. In the present study, all Par-
kinson’s patients were tested while taking dopaminergic medica-
tion (L-dopa). Future studies are necessary to determine the extent

to which L-dopa may affect probabilistic category learning in
Parkinson’s patients.

Conclusions

There has been a recent surge of evidence documenting the role
of the basal ganglia in learning and memory. These studies have
generally focused on whether patients are impaired or spared at
learning, usually by measuring learning speed or by measuring
performance levels after a fixed number of trials. A fundamental
question here is whether the basal ganglia are themselves specif-
ically responsible for particular forms of cognitive processing, as
opposed to merely modulating cognitive processes elsewhere. This
question has been posed in the realm of motor function (for
discussion of this debate in the context of motor behavior, see
Graybiel & Kimura, 1994). In the present study, we attempted to
address this question in the cognitive domain by focusing on how
patients with Parkinson’s disease learn. We found that a previously
documented learning deficit on a probabilistic category learning
task is associated with Parkinson’s patients’ failure to learn the
optimal learning strategy for this task. An open question remains
as to whether this impairment is due to a learning deficit per se, or
whether it is due to a shifting deficit.
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