Nonlinear Autoassociation is not Equivalent to PCA
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Abstract

A common misperception within the Neural Network community
is that even with nonlinearities in their hidden layer, autoassocia-
tors trained with Backpropagation are equivalent to linear methods
such as Principal Component Analysis (PCA). The purpose of this
paper is to demonstrate that nonlinear autoassociators actually be-
have differently from linear methods and that they can outperform
these methods when used for latent extraction, projection and classi-
fication. While linear autoassociators emulate PCA and thus exhibit
a flat or unimodal reconstruction error surface, autoassociators with
nonlinearities in their hidden layer learn domains by building error
reconstruction surfaces that, depending on the task, contain multi-
ple local valleys. This particular interpolation bias allows nonlinear

autoassociators to represent appropriate classifications of nonlinear



multi-modal domains, in contrast to linear autoassociators which are
inappropriate for such tasks. In fact, autoassociators with hidden unit
nonlinearities can be shown to perform nonlinear classification and

nonlinear recognition.



An autoassociator is a feedforward connectionist device whose goal is to re-
construct the input at the output layer. When used with a hidden layer smaller
than the input/output layer and linear activations only, the autoassociator im-
plements a compression scheme which was shown to be equivalent to Principal
Component Analysis (PCA)—also known as Singular Value Decomposition—Dby
[Baldi and Hornik1989]. Another interesting and related result was obtained by

Bourlard and Kamp who claim, in their 1988 paper:

“(...) for autoassociation with linear output units, the optimal weight
values can be derived by standard linear algebra, consisting essentially
in singular value decomposition (SVD) and making thus the nonlinear
functions at the hidden layer completely unnecessary”,

[Bourlard and Kamp1988|.

[Bourlard and Kamp1988| backed their claim using theoretical considerations
while [Cottrell and Munro1988] arrived at the same conclusion, independently,
using an experimental methodology.

Paradoxically, nonlinear autoassociators are also famous for their capacity to
solve the encoder problem ([Rumelhart et al.1986]), a problem which cannot be
solved by PCA because of the singularity of the principal components.! More-

over, recent research suggests that nonlinear autoassociators are well-suited for

1As a matter of fact, [Kruglyak1990] and [Phatak et al.1993] demonstrate
further that for any N, the N-input, N-output encoder problem can be repre-
sented by an autoassociator of only two nonlinear hidden units. The fact that
large encodings can actually be learned by two-hidden-unit autoassociators
was demonstrated by [Zipser1989] who showed that such devices are capa-
ble of learning how to encode the position of a spot (or cluster) of normally

distributed points appearing at random locations on a 10X10 squared array.



classification of certain types of nonlinearly separable and multi-modal domains
([Japkowicz et al.1995], [Petsche et al.1996]), another task for which PCA and
linear autoassociation are not appropriate because of their linear restriction.

In spite of the obvious contradiction exhibited by these facts, there has been
little effort at explaining the source of this inconsistency. The purpose of this
paper is to demonstrate experimentally that [Bourlard and Kamp1988]’s claim
does not necessarily hold and to analyze the differences between PCA and non-
linear autoassociators when it does not. In particular, we test the performance
of nonlinear autoassociators relative to PCA and linear autoassociation on a
nonlinear multi-modal classification problem inspired by the projected topology
of a real-world domain. After showing that there is, indeed, a difference in the
classification accuracy obtained by the linear and nonlinear devices on this do-
main, we explain this difference by comparing the reconstruction error surfaces
constructed by each system over the test domain.

More specifically, our experiments demonstrate that nonlinear sigmoidal single-
hidden layer autoassociators may sometimes interpolate sets of points differently
from PCA. In particular, we show that, on the test domain considered, while
PCA (or equivalently, linear autoassociation) exhibits flat or unimodal recon-
struction error surfaces, nonlinear sigmoidal autoassociators build error recon-
struction surfaces that contain multiple local valleys. As a matter of fact, the
reconstruction error surfaces built by the sigmoidal autoassociators are closely
related to the reconstruction error surface built by a radial basis function autoas-
sociator, thus suggesting that when the sigmoidal autoassociator does not oper-
ate like PCA—computing a globalized solution to the interpolation problem—,
then it operates like a radial basis function autoassociator—computing a local-

ized solution to the interpolation problem.?

2Although both the sigmoidal and RBF autoassociators are nonlinear, all



We begin our study by discussing the limitations of [Bourlard and Kamp1988]’s
claim. We then demonstrate experimentally that these limitations can indeed
be exceeded by standard problems within the context of classification and we
analyze these results, concluding with some speculations as to why sigmoidal

autoassociators sometimes do and sometimes do not operate like PCA.

1 Limitation of the Conventional Wisdom

When considering the results of [Baldi and Hornik1989|, [Bourlard and Kamp1988|
and [Cottrell and Munro1988] and the evidence that nonlinear autoassociators
can solve problems that cannot be solved by PCA ([Rumelhart et al.1986],
[Japkowicz et al.1995], [Petsche et al.1996]), an important question comes to

mind:

Does the [Bourlard and Kamp1988] claim hold in all cases or does it
depend on certain assumptions concerning the underlying domain or

the autoassociator?

A careful look at the discussion laid out in [Bourlard and Kamp1988] reveals
that the claim actually does depend on a particular condition. More specifically,
let F' be the nonlinear function present at the output of the hidden units of a
nonlinear autoassociator (i.e., F' is the function that makes the autoassociator
nonlinear). The assumption made by [Bourlard and Kamp1988] in order to carry
out their demonstration is that for small values of z, F'(x) can be approximated
as closely as desired by the linear part of its power series expansion. However,
this means that = = h, the vector of pre-synaptic hidden unit activations (i.e.,

the hidden unit activations prior to their transformation by F'), must be in the

references to “nonlinear autoassociators” in the remainder of this paper cor-

respond to references to sigmoidal autoassociators.



linear range of the squashing function. This remark suggests that nonlinear
autoassociators do not necessarily emulate PCA when the net inputs are outside
the linear range of the squashing function.

The remainder of the paper demonstrates experimentally that there are in-
deed differences between the linear and nonlinear schemes and that these differ-

ences have practical consequences for the task of classification.

2 Experiments

We now describe the two sets of experiments we conducted for this paper. We
first present the four devices considered and compared in our study as well as
the task on which they were compared. We then describe the test domain used
for this comparison followed by our experiments and their results. These results

are subsequently discussed in Section 3.

2.1 Specification of the Devices and Description of the
Task

Devices The devices we used in our experiments are Principal Component
Analysis (PCA) and three autoassociators. From an analytical point of view,
the four devices differ in that two of them are purely linear while the other two
have nonlinear capabilities. The three autoassociators are connectionist methods
which differ from one another with regard to the type of autoassociator they use.
In more detail, we compare a one-hidden-layer autoassociator whose hidden and
output layers are both linear (L-L); a one-hidden-layered autoassociator whose
hidden layer is nonlinear but whose output layer is linear (NL-L); and a one-
hidden-layered autoassociator whose hidden layer and output layer are both
nonlinear (NL-NL). In each of these devices, the function used in the nonlinear

units is the usual logistic function.



Task The operation of the four devices just described was contrasted on the
task of classification. A formal definition of the classification problem typically
involves an input vector x, and a discrete response vector y which are such that
the pair (z,y) belongs to some unknown joint probability distribution, P. The
goal of classification is to induce a function f(z) from a set (z1,y1), (2, %2), ...
(xn,yn) of training examples, so that f(x) predicts y. In this paper, we as-
sume that y is a binary vector. Although classification by Neural Networks is
typically performed using a discrimination-network?, it can also be performed
using a recognition approach implemented by PCA or the autoassociator. This
approach is discussed in [Ojal983] for PCA and in [Hanson and Kegl1987] for
autoassociators and operates as follows*: during the training phase, the autoas-
sociator is taught how to reconstruct examples of the concept. Once training

is completed, classification is performed on a new vector xr., by comparing its

3Using such a scheme, y;, the response variable associated with input vec-
tor x;, takes on (in the simplest case) a value of “1” or “0” which is interpreted
as to mean that z; belongs or does not belong to the conceptual class of the
problem. After training the network to approximate the function f(z) from
which the training examples are believed to have been generated, it is ex-
pected that, if the training set was appropriately designed, the network will
be able to compute the appropriate label (“1” or “0”) for any input vector
of size d, the size of the input layer, even if that vector did not appear in the

training set.

*We describe the method for autoassociators, taking into consideration

that it is similar for PCA.



reconstruction error® to a threshold, and assigning it to the conceptual class
if the reconstruction error is smaller than this threshold and to the other class
otherwise. The idea behind this recognition-based classification scheme is that
since the autoassociator is trained to compress and decompress examples of the
conceptual class only, when tested on a novel data point, it will compress and
decompress it appropriately if this example belongs to the conceptual-class, but
it will not do so appropriately if the example does not belong to the conceptual

class.

2.2 Specification of the Test Domain

In order to compare and explain the classification performance of the four devices
considered in this study, two experiments were conducted for each classifier on
a two-dimensional artificial domain. This problem was inspired from real-world
data as shown in Figure 1 which illustrates the transition from real-world to
artificial data. Specifically, Figure 1(a) displays a 2-dimensional representation
of sonar target recognition data available from the U.C. Irvine Repository for
Machine Learning. These data were compressed from sixty features to two, us-
ing Principal Component Analysis. In this plot, black triangles and white circles
correspond to actual points (mines and rocks, respectively) and data clusters
are indicated by polygons. Figure 1(b) shows the same two-dimensional repre-
sentation of sonar target recognition data, but this time with means replacing
the clusters®. Although this figure is just a two-dimensional projection of the

original data set, it clearly indicates the typical kind of problem that the autoas-

5The reconstruction error corresponds to E?Zl[x”f%t — g(2,,,)]%, where g
is the function implemented by the autoassociator and 7., and f7(Zrest)

represent input unit j and output unit j of the network, respectively.
6Clusters of fewer than three points, however, were ignored.



sociator has to deal with: multi-modality. We chose a simple two-dimensional
abstraction of the multi-modality problem for benchmarking purposes and ex-
plaining the capabilities of autoassociators. This artificial domain is illustrated
in Figure 1(c) and consists of four conceptual data clusters with means repre-
sented by black triangles and nine counter-conceptual data clusters with means
represented by white circles. In more detail, the conceptual clusters are lo-
cated at points (.2,.2), (.2,.8), (.8,.2) and (.8, .8), respectively, while the counter-
conceptual clusters are located at points (.1,.1), (.1,.9), (.2,.5), (.5,.2), (.5,.5),
(.5,.8), (.8,.5), (.9,.1) and (.9, .9), respectively. Each cluster is composed of 50
points normally distributed around these means and with variance 02 = .01. The
counter-conceptual clusters are further divided into internal and external clus-
ters. Internal counter-conceptual clusters correspond to the counter-conceptual
data that are located inside the convex hull defined by the conceptual data while
external counter-conceptual clusters correspond to the counter-conceptual data

located outside this convex hull.
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Figure 1: Transition from the sonar detection domain to the artificial non-

linear domain.



2.3 Experiment Set # 1

The first experiment we conducted consisted of comparing the classification ac-
curacy of the four systems on the test domain of Figure 1(c). After having been
tuned to their optimal settings, the four devices were trained on conceptual data
and a threshold was established by fitting the reconstruction error obtained on
additional conceptual data to a Gaussian and setting a boundary corresponding
to a pre-specified confidence interval. Subsequently, the systems were tested on

a testing set containing both instances and counter-instances of the concept.

Tuning the Devices The number of hidden units used by the nonlinear con-
nectionist systems was determined by running each network with 1, 2, 4, 8§,
16, 32, and 64 hidden units on five cross-validation sets containing 25 points
per cluster. It was concluded that in order to reach a good classification perfor-
mance, the two nonlinear autoassociators had to be trained with 16 hidden units.
It was also shown that the networks had converged by Epoch 2000 which was
thus selected as a stopping point. Optimization, in this experiment, was per-
formed using the backpropagation procedure with standard learning rate and
momentum of 0.05 and 0.9, respectively. For PCA, since the test domain is
two-dimensional, only one or two principal components could be used. It was
determined that one principal component yields a better classification rate than
two, and, therefore, the PCA experiment was conducted using a single principal
component. Linear autoassociation performed better as well with a single hidden
unit than with two or more; therefore, it was also tested with a single hidden
unit. The stopping criterion, learning rate and momentum used by the linear
autoassociator were the same as those used by the nonlinear devices. In the four

systems, the threshold was set so as to allow for a 97% confidence interval.
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Figure 2: Classification Error Rate of the four classification schemes. Positive

misclassification rates are indicated in gray while negative ones are indicated

in black.

Accuracy Rates The results we obtained in this experiment are presented in
Figure 2. This figure plots the average classification error rates over five trials
obtained by the four systems on the test domain of Figure 1(c). The graph
shows that PCA and L-L obtained very large classification error rates whereas
the two nonlinear autoassociators obtained low error rates. This demonstrates
that while PCA and L-L can technically be used for classification, they are
not that useful on the problem of Figure 1(c) whereas both NL-L and NL-

NL yield acceptable classification rates on that problem.” This result, thus,

"As a matter of fact, nonlinear autoassociation-based classification was
previously used in practical settings involving CH-46 helicopter gearbox and
motor monitoring ([Japkowicz et al.1995], [Petsche et al.1996]) and yielded

accurate results.
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confirms that there can be a difference in the computations performed by PCA
(or linear autoassociation) and nonlinear autoassociation, and that this difference
has practical consequences for the task of classification. In order to analyze this
difference in more depth, we conducted the experiments presented in the next

section.

2.4 Experiment Set # 2

The experiments described in this section seek to explain the results obtained
in the previous set of experiments by computing and plotting the reconstruction
error surfaces constructed by PCA and the three connectionist systems after
being trained on the conceptual data (i.e., the data summarized by black trian-
gles in Figure 1(c)). In other words, we are interested in finding out how the
interpolation strategy used by the various devices considered in this study differ

from one another.

Tuning the Devices Within the context of Experiment Set # 2, two different
hidden unit settings were tested: expansion and compression. This was done so
as to find out whether or not the systems operate qualitatively differently when
used is a non-bottleneck or in a bottleneck fashion. In the expansion setting, the
same 16 hidden unit setting was used for the nonlinear systems as those used
in the first experiment while PCA and the linear autoassociator were tested
with two principal components or hidden units. In other words, the optimal
non-bottleneck setting for the nonlinear systems were compared to the only
non-bottleneck setting possible for the linear systems.® All the other parameters

remained the same as in Experiment Set # 1, except for the learning rate of L-L

8Note that for the linear autoassociator, hidden layers greater than two

are actually possible, but they are equivalent to hidden layers of size two.
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which had to be increased from 0.05 to 0.1 for full convergence to take place. In
the compression setting, the number of principal components and hidden units
were restricted to one for all the systems since it is the only bottleneck setting
available given that the test domain is two-dimensional. All the other parameters

remained the same as in Experiment # 1.

Expansion Results The results we obtained using the expansion setting of
Experiment Set # 2 are presented in Figure 3 which displays 3-D plots of the
error ratio surfaces constructed by NL-L and NL-NL, respectively. The results
for PCA and linear autoassociation are not displayed since they exhibit a flat

reconstruction error surface. In the graphs of Figure 3(a) and (b), the plots are

\\‘0
e -

(a) (b)
Figure 3: Reconstruction errors of NL-L (Figure (a)), and NL-NL (Fig-

ure (b)) with 16 hidden units on the artificial domain generated from Fig-

ure 1(c).

drawn along the x-, y-, and z-axes where x corresponds to the x-axis of the input
domain, y, to its y-axis and z is the error ratio at every point considered in the

space such that:

Ao,y) = S((A@) = ) + (AW) - 9)?) (1)

In the above formula, z and y represent the two dimensions of each data point,

A() is the function realized by the trained autoassociators, and < is a model-

13



dependent scale factor used for plotting purposes. The plots of Figures 3(a)
and (b) are particularly helpful for understanding the nature of the solutions
computed by the nonlinear autoassociators and contrasting them to the solution
obtained by the linear autoassociator and PCA. In particular, they show that
these error surfaces are qualitatively different from the ones computed by PCA
and the linear autoassociator since, while the nonlinear autoassociators build
multiple-local-valley representations of the underlying domain (Figures 3(a) and
(b)), PCA and the linear autoassociator learn how to reconstruct the domain
perfectly and exhibit a flat reconstruction error surface. This suggests that the
solutions computed by autoassociators with nonlinearities in their hidden layer
use a multi-modal interpolation bias which is not used by the linear methods.?
Our results of Figure 3 can be used to explain the nonlinear autoassociators

(NL-L and NL-NL) results of Figure 2 which show that nonlinear autoassocia-

9As expected from [Baldi and Hornik1989], our results thus show that the
linear autoassociator is capable of emulating PCA. Note, however, that, as
mentioned in the text, in order for the two paradigms to be equivalent, the
linear autoassociator had to be trained with a learning rate of 0.1 (instead of
the learning rate of 0.05 used by the nonlinear systems). In the case where
a learning rate of 0.05 was used, the linear autoassociator got stuck in a
saddle point (see [Baldi and Hornik1989]) and returned a constant output
corresponding to the mean of the four training clusters. This observation
is interesting in its own right because it underlines the difference between
linear and nonlinear autoassociators even prior to the linear autoassociator’s
full convergence. Indeed, it suggests that the linear autoassociator tackles
the reconstruction problem globally, using a uni-modal bias, whereas the non-
linear autoassociators use local strategies characterized by their multi-modal

interpolation biases.
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tors are capable of classifying the nonlinearly separable and multi-modal domain
of Figure 1(c). Indeed, since the reconstruction error surfaces of the nonlinear
autoassociators include several local valleys centered at each of the positive clus-
ters (Figures 3(a) and (b)), the error ratios of the counter-conceptual data can
all be appropriately high relative to their conceptual counterparts whether they
are located in the interior, the sides, or the exterior of the square underlying the
conceptual components. Thus all the counter-conceptual data get appropriately
differentiated with respect to the conceptual data. The classification results ob-
tained by PCA and linear autoassociation in Figure 2 will be explained in the

next paragraph since they were obtained with bottleneck devices.

Compression Results The results obtained in the previous set of experi-
ments demonstrate that nonlinear autoassociators are not equivalent to linear
autoassociators or PCA in the case where the number of hidden units exceeds
the number of input units, or when the number of principal components is equal
to the domain dimensionality. Autoassociators, however, are most typically used
as compression devices with a number of hidden units smaller than the number
of input units. We now discuss whether the same result also holds in this case.
Figures 4(a), (b) and (c) display the reconstruction error surfaces obtained by
PCA or L-L (Figure 4(a)), NL-L (Figure 4(b)) and NL-NL (Figure 4(c)) using
a single principal component or hidden unit. These reconstruction errors were
also obtained using equation (1). The reconstruction error surfaces obtained by
these devices show that, first of all, none of them are appropriate for full clas-
sification of the test domain of Figure 1(c) since they can only classify all (or
most of) the data (whether conceptual or counter-conceptual) in one diagonal
of the input space as conceptual and all (or most of) the other data (whether

conceptual or counter-conceptual, again) as counter-conceptual. In other words,
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Figure 4: Reconstruction errors of PCA or L-L (with one principal component
or one hidden unit), NL-L, and NL-NL (with one hidden unit) on the artificial

domain generated from Figure 1(c).

because they do not interpolate the training set fully, these devices are not use-
ful for classification and this explains the high classification error rate obtained
by the linear systems in Figure 2.1 Nevertheless, these results are interesting
since, like in the non-bottleneck case, they do illustrate the difference between
the linear and the nonlinear schemes. Indeed, while the linear systems display an
undistorted surface with no saddle points (Figure 4(a)), the nonlinear ones have
saddle points (Figures 4(b) and (c)). Thus, the compression results demonstrate
that nonlinear autoassociation is not equivalent to linear autoassociation or PCA

even in the case where the number of hidden units or principal components is

1°Note that while for the test domain used in this study, classification can
be achieved only if using a number of hidden units greater than the number
of input units, in the work of [Japkowicz et al.1995] and [Petsche et al.1996],
the number of hidden units is smaller than the number of input units. This
suggests that the hidden-to-input unit ratio does not have any bearing on
the behavior of nonlinear autoassociators in classification tasks, since what
really matters is their capacity to interpolate the training set regardless of

how many hidden units that may take.
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smaller than the number of input units.

3 Discussion

We will now analyze carefully the results we obtained in the previous section
and explain why our observations depart from the expectations derived from the
past literature. In addition, we will compare the results of the nonlinear autoas-
sociators to the result of another well-known paradigm, radial-basis functions,

and speculate on what nonlinear autoassociators compute and why they do so.

3.1 Nonlinear Autoassociation versus PCA and Linear
Autoassociation

The difference between the linear and nonlinear systems can be explained by the
fact that, for the particular test domain considered!!, [Bourlard and Kamp1988]’s
assumption has been violated. Indeed, as mentioned in section 1,

[Bourlard and Kamp1988]’s discussion was shown to hold only in the case where
the inputs to the nonlinear activation function of the hidden units remain in
the linear range of the squashing function. An observation of the pre-synaptic
activations of the 16 hidden units of NL-NL reveals that, on average, these val-
ues are equal to p = 0.6953 with variance o2 = 0.1919. Similarly, for NL-L, we
found that p = .3222 and o2 = .0548. Although for input values in the [-1,1]
interval, the sigmoid function is close to linear, our results seem to suggest that
a small violation of the [Bourlard and Kamp1988] assumption can make a big
difference in certain contexts: while this difference might be marginal and thus
overlooked when considering the hidden layer alone, it is magnified in the output

layer, as suggested by the plots of Figures 3(a) and (b) which do not display a

HFEor other classes of domains, this might not be the case.
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flat surface of the sort computed by PCA or autoassociation. This remark also
holds for the encoder problem of [Rumelhart et al.1986] which can be solved by
an autoassociator with nonlinear hidden units but not by a linear one: in this

problem, nonlinearities in the hidden layer are also shown to have an impact.

3.2 What do Nonlinear Autoassociators Compute?
—A Comparison with RBF Autoassociators—

We will now attempt to establish the nature of the computations taking place in
the nonlinear autoassociators by comparing their reconstruction error surfaces
to the reconstruction error surface obtained by a radial basis function (RBF)
autoassociator with Gaussian activations in the hidden units and linear output
activations. The reconstruction error surface obtained by such a device on the
domain of Figure 1(c) is plotted in Figure 5. The particular RBF Network that
yielded this figure has a capacity of 4 hidden units and the variance of the Gaus-

sian functions are fixed at and set to 2.8. The reconstruction error surface of this

Figure 5: Reconstruction errors of the RBF autoassociator on the artificial
domain generated from Figure 1(c). The network has a capacity of 4 hidden

units and the variance of its Gaussian functions is fixed and set at 2.8.

autoassociator was computed in the same fashion as that of the other autoasso-
ciators, using equation (1). The similarity between the reconstruction obtained

by the non-bottleneck, nonlinear autoassociators (especially NL-L, which also

18



has linear output activations) and the RBF autoassociator suggests that, like
the RBF network, the nonlinear autoassociators use their 16 hidden units to put
centers down over the four clusters representing the training data, and evaluate
the distance of the testing data to these centers.!?

This result together with the results of [Bourlard and Kamp1988] suggests
that nonlinear autoassociators can resort to one of two modes of operation:
either they operate like PCA, seeking a globalized solution to the reconstruction
problem they are trying to solve or they operate like an RBF autoassociator,

seeking a localized solution.

3.3 On the Duality of Nonlinear Autoassociators:
Our Speculation

The question we now ask is: when does a sigmoidal autoassociator resort to
one or another of the two modes of action described in the previous section?
Because of the current lack of technology available for analyzing feedforward
neural networks fully, we can only speculate as to when each phenomenon will
take place.

In particular, we suggest that the sigmoidal autoassociator will make use of
its nonlinearities when the data set it attempts to reconstruct is multi-modal and
the different clusters that compose it are very spread out.!® Indeed, if the data
set is unimodal or if it is multi-modal but can easily be confused for unimodal
data, then every point in the training set activates hidden unit values located

in the same vicinity and which increase or decrease monotonically. Such data

12We would like to thank Gary Cottrell for suggesting this comparison.
13Support for this speculation can be found in [Japkowicz1999] which shows

a clear decrease in classification accuracy by NL-NL as the conceptual clusters

of the domain in Figure 1(c) are moved closer to one another.

19



can, thus, be approximated linearly, in the same fashion as they would be by
a linear autoassociator. On the other hand, if the data set is multi-modal and
if the different clusters constituting it are very spread out, then approximation
of their hidden unit activation values by a linear function will fail because of
the discontinuities introduced by the multi-modal nature of the domain. In
such cases, the sigmoidal part of the activation function is very useful since it
permits the local processing of separate clusters in the same fashion as RBF
autoassociators. Indeed, by using a sigmoidal function, a hidden unit can map
all the data contained in different clusters to approximately the same default
activation value (of 0 or 1) while it can map the data in some other clusters—
which fall in the linear part of the sigmoidal function—to more “interesting”
values. Each hidden unit can then use the same strategy for different clusters
and, thus, a global solution can be found by the overall network by compounding
the localized solution computed by each hidden unit.

Since, in the encoder problem, the autoassociator is expected to reconstruct
data points located far away from each other—since they are located at extreme
“corners” of the input space—this speculation also explains why the nonlinear

autoassociator resorts to a localized solution not available to PCA in that case.

4 Summary

The purpose of this paper was to address the paradox raised by the claim of
[Bourlard and Kamp1988]| that, in autoassociation, nonlinearities in the hidden
units are completely unnecessary, given that nonlinear autoassociators are known
to perform tasks that cannot be solved by PCA or linear autoassociation. The
paper begins by demonstrating that, although both PCA (or linear autoasso-

ciation) and nonlinear sigmoidal autoassociation can be used for classification,
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the linear systems are not appropriate for certain types of multi-modal and non-
linear domains whereas the nonlinear systems are capable of classifying such
domains accurately. An explanation of this result is provided by the observation
of the interpolation surfaces constructed by the linear and nonlinear systems
when trained on the conceptual examples of our classification test domain.

The difference in the interpolation and, as a result, in the classification
scheme used by the linear and nonlinear devices thus contradicts the claim by
[Bourlard and Kamp1988] initially considered. This contradiction is resolved by
extracting the assumption on which the claim is based and showing that this
assumption is not necessarily always verified.

In a last step, we note that when the nonlinear autoassociator does not
operate in a linear fashion, it emulates a radial basis function autoassociator
and thus computes a localized solution to the problem it attempts to solve.
Speculations as to when nonlinear autoassociators do resort to a linear operative

mode and when they do not do so are then formulated and conclude the paper.
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