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Abstract

Recent evidence suggests that (a) auditory cortical neurons are tuned to complex time-
varying acoustic features, (b) auditory cortex consists of several "elds that decompose sounds in
parallel, (c) the metric for such decomposition varies across species, and (d) auditory cortical
representations can be rapidly modulated. Past computational models of auditory cortical
processing cannot capture such representational complexity. This paper proposes a novel
framework in which auditory signal processing is characterized as an adaptive transformation
from a one-dimensional space into an n-dimensional auditory parameter space. This trans-
formation can be modeled as a chirplet transform implemented via a self-organizing neural
network. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

How networks of cortical neurons represent sound is poorly understood. Although
electrophysiological studies have demonstrated that "ring patterns in speci"c neural
regions can often be predictably correlated with particular sound features, the under-
lying neural codes that give rise to such correlations remain unclear. Recently, there
have been an increasing number of attempts to develop signal processing models of
audition [16,26,27]. The motivation behind these e!orts is the hope that current
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computational techniques can provide insight into how neural circuits encode repres-
entations of acoustic events. In the current paper, we propose a heuristic model of
auditory cortical processing based on recently described signal transformation tech-
niques and self-organizing neural networks. This model encapsulates much of what is
currently known about the response properties of auditory cortex. These properties
include:

f Complex patterns of sound feature selectivity [8,16,22,36].
f Species-speci"c signal decomposition [28,31,33].
f Dynamic modulation of response characteristics [3,5,10}12,37].
f Systematic topography of cortical sensitivities [1,30].

Our intention is that the model be #exible enough that it can be used to describe
how sounds are cortically encoded in any mammalian species.

Past computational models of auditory cortical processing have focused primarily
on emulating neural sensitivities measured from individual neurons in a particular
species. For example, Suga [32,33] described auditory processing in bats as parallel,
hierarchical cross correlation. He modeled individual neurons as delay lines, multi-
pliers, logical gates, and "lters that decomposed incoming signals into functionally
relevant temporal and/or spectral features. Processing in bats has also been modeled
as (1) spectrographic cross correlation, followed by transformation into auditory
parameters [29], (2) transformation from neural spike trains into a spatial array of
delay sensitive units [25,26], and (3) binaural recognition of waveform envelopes [17].
Perhaps the most sophisticated models of auditory cortical processing developed to
date characterize response sensitivities in ferrets [16,34,35]. Wang and Shamma [35]
modeled auditory cortical neurons as perceptrons with weight vectors corresponding
to the neural sensitivities of ferrets. These sensitivities were found to be analogous to
a topographically organized wavelet transform. Attempts have also been made to
model auditory processing in humans [4,7,18]. These models tend to focus on known
psychophysical sensitivities (e.g., timbre and pitch perception) rather than elec-
trophysiological response properties.

The standard approach to modeling auditory cortical processing has been to start
with a general signal processing model (e.g., Fourier or wavelet transforms), and then
to add on specialized processing components (e.g., matched "lters) to re#ect species-
speci"c sensitivities. This approach is problematic because (1) the customization
needed to describe cortical sensitivities in any given species can only be retrospectively
determined (i.e., the models are not predictive), (2) most evidence suggests that
auditory cortical sensitivities re#ect the particular needs of individuals faced with
species-speci"c ecological and biological constraints, rather than generic acoustic
signal processing strategies, and (3) experience-dependent adaptations in auditory
processing are not considered. A more #exible framework is needed to adequately
characterize the full range of auditory cortical sensitivities observed in mammals. Our
approach involves "rst "nding a transform general enough to describe cortical signal
decomposition across all mammals. This transform is then mapped onto an unsuper-
vised neural network than can learn to e$ciently code acoustic events that are of
functional relevance to a particular species/individual.
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Fig. 1. An example of chirplet decomposition. (A) Idealized spectrogram of a spoken syllable (based on
[32]). Dark regions of the spectrogram re#ect higher spectral energy levels during short time intervals.
The chirplet transform describes spectrograms such as (A) in terms of divisions of the time}frequency plane.
For example, in (B) the initial broad band noise burst in the syllable (corresponding to a consonant)
can be described as the third `slicea when the plane is vertically (i.e., temporally) segmented. In contrast,
frequency-modulated components of the syllable (corresponding to the onset of a vowel), shown in (C) and
(D) are better described in terms of divisions that segment the plane both vertically and diagonally.
Finally, (E) shows that continuous frequency components are best characterized in terms of orthogonally
segmented divisions. Chirplet spaces are de"ned based on the range of allowable divisions
of the time}frequency plane. In the example above, dimensions of chirplet space correspond
to the positions, sizes, and tilts of parallelograms covering the plane. Any syllable can be described in terms
of a set of parallelograms that contain high concentrations of energy; each possible parallelogram
corresponds to a point within the chirplet space. It is important to note that the shapes of segments are not
limited to parallelograms. The basis functions chosen for the chirplet transform specify the geometry of
segmentation.

2. Adaptive chirplets

A recently developed signal processing model, called the chirplet transform, appears
to be well suited for our purposes. The chirplet transform subsumes both Fourier
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analysis and wavelet analysis (as well as several other classes of time-frequency
analysis) as lower dimensional subspaces in the chirplet analysis space [19}21],
providing a broad framework for mapping one-dimensional sound waveforms into an
n-dimensional auditory parameter space. Fig. 1 illustrates the basic structure of the
chirplet transform.

The chirplet transform retains the advantages o!ered by time frequency and
wavelet transforms, and additionally provides a natural way for characterizing the
di!erent types of processing that have been described for di!erent auditory "elds (i.e.,
cortical regions with systematically related response sensitivities). Each auditory "eld
can be viewed as a processor for decomposing sounds within a particular subspace of
the complete auditory parameter space. In our framework, these "elds correspond
either to chirplet subspaces or to chirplet spaces generated by sets of functionally
relevant basis functions. Chirplet spaces are highly overcomplete (redundant) because
there are an in"nite number of ways to segment a time-frequency plane. Because of
this overcompleteness, the same acoustic feature may be encoded multiple times. Such
multiplicative, overcomplete encoding corresponds well with the overlapping, parallel
signal processing pathways observed in mammalian auditory cortex [1].

The #exibility of the chirplet transform comes at the price of loose constraints. We
would like to focus only on the dimensions/spaces that are closest to those used in
auditory cortical processing. However, for most species the relevant auditory para-
meters are unknown, making it di$cult to choose either appropriate basis functions
or dimensions. One way to address this issue is by developing adaptive models with
constrained inputs and constrained learning abilities. The feature decompositions
learned by these models can then be compared with those observed in cortex. For
example, Olshausen and Field [23,24] have developed unsupervised learning algo-
rithms that "nd linear codes for natural visual scenes, given the constraints that
these codes are sparse and statistically independent. The codes generated by their
algorithms decompose images in ways similar to simple cells in visual cortex and
wavelet transforms. Applying these algorithms to natural acoustic scenes and/or
species-typical vocalizations may provide insights into which chirplet spaces are
most applicable.

Olshausen and Fields' [23,24] adaptive image decomposition techniques are lim-
ited in that they do not account for coding and recognition of patterns that have been
translated, rotated, or scaled; such coding is intrinsic to the chirplet transform. Their
approach also does not incorporate the topographic feature decomposition typical of
cortical processing. Kohonen [13}15] has developed a neural network, called an
adaptive subspace self-organizing map, that addresses these limitations. Individual
units in the self-organizing map (which are themselves composed of multiple com-
putational neurons) learn to represent sets of input patterns that fall within a particu-
lar subspace. This network can learn to encode simple transformations (e.g., transla-
tion), and organizes such transformation `detectorsa topographically. Interestingly,
signal decompositions learned by this neural network have also been found to be
comparable to both wavelet and visual cortical decomposition [13].

In our framework, each unit in an adaptive subspace self-organizing map can be
viewed as representing a dimension within a chirplet subspace (given a particular set
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of chirplet basis functions). Sets of units that share common bases can be considered
to be analogous to a cortical "eld. Other wavelet-based self-organizing maps
(e.g., see [6,9]) can also potentially be used to characterize auditory cortical parameter
spaces.

The major obstacle blocking further development of this theoretical framework is
the limited information available about the response properties of populations of
auditory cortical neurons. Most attempts at characterizing the sensitivities of auditory
cortex have looked at how individual neurons in primary auditory cortex respond to
impoverished acoustic stimuli. Detailed descriptions of spectrotemporal response
sensitivities have only recently begun to be reported [16,34]. Until such data are
collected from a variety of species, it will be di$cult to assess how e!ective our
approach is at modeling encoding of acoustic events in mammalian cortices.

3. Conclusion

In this paper, we described a model of auditory cortical processing that more
accurately re#ects the complexity, variability, and #exibility seen in mammals. This
model maps an overcomplete, acoustic signal decomposition onto a topographically
organized, unsupervised neural network.

Our approach di!ers from previous approaches in that we start with an over-
speci"ed auditory parameter space, and attempt to reduce this space to re#ect species-
speci"c response sensitivities. Additionally, because our model is adaptive, it can be
used to investigate changes in response sensitivities induced by experience (see also [2]).

The adaptive chirplet framework suggests new experimental directions for describ-
ing auditory cortical sensitivities. For example, measurements of experience-depen-
dent changes in response sensitivities could be used to identify `paths of least
resistancea in auditory parameter space. Such preferred trajectories could provide
important clues about constraints on cortical sound decomposition and the chirplet
bases/dimensions that best describe this process.
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