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Cortico-Hippocampal Representations in Simultaneous Odor 
Discrimination: A Computational Interpretation of Eichenbaum, 

Mathews, and Cohen (1989) 

Catherine E. Myers and Mark A. Gluck 
Rutgers University 

A previous model of hippocampal region function in classical conditioning is generalized to H. 
Eichenbaum, A. Fagan, P. Mathews, and N. J. Cohen's (1989) and H. Eichenbaum, A. Fagan, and 
N. J. Cohen's (1989) simultaneous odor discrimination studies in rats. The model assumes that the 
hippocampal region forms new stimulus representations that compress redundant information 
while differentiating predictive information; the piriform (olfactory) cortex meanwhile clusters 
similar and co-occurring odors. Hippocampal damage interrupts the ability to differentiate odor 
representations, while leaving piriform-mediated odor clustering unchecked. The result is a net 
tendency to overcompress in the lesioned model. Behavior in the model is very similar to that of the 
rats, including lesion deficits, facilitation of successively learned tasks, and transfer performance. 
The computational mechanisms underlying model performance are consistent with the qualitative 
interpretations suggested by Eichenbaum et al. to explain their empirical data. 

Many forms of learning and memory are disrupted by 
hippocampal region damage (cf. Squire, 1987), including 
simultaneous odor discrimination in rats (Eichenbaum, Fagan, 
Mathews, & Cohen, 1988). The data suggest that hippocampal- 
lesioned rats tend to overcompress or "fuse" representations 
of co-occurring odors and are thus unable to respond selec- 
tively to the individual odors (Eichenbaum, Otto, & Cohen, 
1992). However, occasionally, and seemingly at random, these 
lesioned rats can solve a discrimination as quickly as control 
rats (Eichenbaum et al., 1988). Intriguingly, these successful 
lesioned rats appear to use different strategies than control 
rats, as suggested by their abnormally poor performance on a 
subsequent transfer task involving novel pairings of previously 
learned odors (Eichenbaum, Mathews, & Cohen, 1989). Ei- 
chenbaum et al. (1989) interpreted these data as supporting 
their view that the hippocampus is needed for learning 
relations between stimuli that can be used flexibly in new 
contexts (cf. Bunsey & Eichenbaum, 1993; Eichenbaum et al., 
1988). This is an important example of a growing body of 
recent data demonstrating that hippocampal-lesioned subjects 
may often show superficially normal performance but will 
differ from normal animals when challenged to use these 
learned associations in a novel way (cf. Saunders & Weis- 
krantz, 1989; Solomon & Moore, 1975; Winocur & Olds, 1978). 

While a qualitative account based on flexibility provides an 
intuitive interpretation of these and other empirical data, it 
does not directly address the issues of how the hippocampus 
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performs this relational learning or how the learning might be 
transferred to other brain regions that are the presumed sites 
of long-term memory. It would be useful to have a more formal 
mechanistic characterization of what Eichenbaum refers to as 
relational learning that could predict a priori whether a 
particular task is expected to require such relational learning 
and, therefore, be sensitive to hippocampal region damage. 

In Gluck and Myers (1993), we presented a computational 
model of hippocampal region function in classical condition- 
ing; this model bears a strong conceptual similarity to the 
qualitative account of Eichenbaum and colleagues. In this 
cortico-hippocampal model, the hippocampal region is as- 
sumed to be critically involved in the formation of new 
stimulus representations that reflect both stimulus-stimulus 
and stimulus-outcome regularities in the environment. Hippo- 
campal region damage is modeled as the loss of the ability to 
form new stimulus representations,  although st imulus-  
response learning can still occur based on preexisting represen- 
tations. To date, the model has focused on trial-level aspects of 
classical conditioning. Within this domain, the model has 
successfully accounted for a wide range of behavioral phenom- 
ena seen in both intact and lesioned animals and has made 
several novel predictions that remain to be tested (Gluck & 
Myers, 1993; Myers & Gluck, 1994). 

Although it is possible to draw substantial parallels between 
this computational model and the more qualitative theories of 
Eichenbaum and colleagues (e.g., Eichenbaum & Bunsey, 
1995; Gluck, Myers, & Goebel, 1994), the comparison has 
been hampered by the model's limited scope of applicability, 
viz, classical Pavlovian conditioning paradigms. 

To enable a closer comparison between these two theoreti- 
cal approaches to hippocampal function, we show that our 
computational model can be generalized to apply to the 
simultaneous odor discrimination task, as described by Eichen- 
baum et al. (1988, 1989). To accomplish this, we extend the 
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model in two ways. First, we include a module representing 
olfactory preprocessing; this is based on an earlier model of 
stimulus clustering in piriform (olfactory) cortex (Ambros- 
Ingerson, Granger, & Lynch, 1990). Second, we consider 
training regimens in which reinforcement is contingent upon 
the behavioral response; this allows the model to instantiate 
forced-choice discrimination. With these straightforward exten- 
sions, the model is sufficient to account for many of the 
behavioral effects shown in control rats on this task. A 
hippocampaI-lesioned version of the extended model captures 
many important aspects of the behavior of fornix-lesioned rats. 
The model further accounts for data showing that control, but 
not fornix-lesioned, rats perform well on a transfer task 
involving novel mispairings of trained discriminations. 

Thus, the cortico-hippocampal model provides a computa- 
tional framework for understanding Eichenbaum et al.'s empiri- 
cal results. This suggests that these data reflect the same 
underlying representational processes that we previously pro- 
posed to occur in the hippocampal region during classical 
conditioning (Gluck & Myers, 1993; Myers & Gluck, 1994). 
These processes are related to the qualitative interpretations 
suggested by Eichenbaum et al. (1989). Furthermore, the fact 
that the hippocampaI region model can, with minimal exten- 
sions, be applied to both classical and operant procedures 
supports the view that similar hippocampal-mediated pro- 
cesses underlie both kinds of learning. 

A Computa t iona l  Model  of  Hippocampa l  Region 
Funct ion  in Simultaneous O d o r  Discrimination 

In this section, we first review our existing cortico- 
hippocampal model, and then we show how it can be general- 
ized to apply" to the simultaneous odor discrimination para- 
digm studied by Eichenbaum and colleagues. The essential 
extensions to the model are, first, to include piriform-cortex 
preprocessing of olfactory stimuli, and, second, to allow for a 
forced choice between multiple possible behavioral responses 
that in turn determine whether reinforcement arrives. The 

resulting generalized model is sufficient to account for many of 
the effects observed by Eichenbaum and colleagues in their 
intact and lesioned rats. 

Background: Classical Conditioning 
in the Cortico-Hippocampal Model 

Gluek and Myers (1993) previously proposed that the 
hippocampal region is involved in the formation of new 
stimulus representations during learning. These new stimulus 
representations are sensitive to stimulus-stimulus regularities, 
the reliability with which two stimuli co-occur, and also 
stimulus-outcome regularities, the reliability with which one 
stimulus predicts that a second is about to occur. The represen- 
tations are assumed to compress together stimuli that co-occur 
or predict similar outcomes, while differentiating stimuli that 
never co-occur or predict different outcomes. This representa- 
tional learning is distinct from learning to associate a stimulus 
with a particular response; such stimulus-response learning is 
not assumed to depend on hippoeampal region mediation, 
although it may be improved by utilizing the representations 
formed in the hippocampal region. 

These processes can be implemented in a connectionist 
model, as shown in Figure 1 (Gluek & Myers, 1993). One 
network, a predictive autoencoder (Hinton, 1989), represents 
processing in the hippocampal region. External stimulus in- 
puts activate an internal layer of nodes through weighted 
connections. The weight from a particular input to a particular 
internal layer node is a measure of how much that input affects 
the activity at that internal layer node. The entire pattern of 
internal layer node activations is a recoding or re-representa- 
tion of the inputs. Internal layer node activity feeds through a 
second layer of weighted connections to activate nodes in the 
output layer. The network learns to map from its input pattern 
to outputs that reconstruct the input as well as predicting 
future reinforcement. This learning is accomplished by adjust- 
ing both the upper and lower layers of weights. Such adjust- 
ments can be calculated by a multilayer learning algorithm, 
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Figure 1. The cortico-hippocampal model presented in Gluck and Myers (1993). A hippocampal region 
network forms new internal representations that compress and differentiate information to reflect 
stimulus-stimulus and stimulus-outcome correlations. These representations are acquired by a second 
network that outputs the behavioral response and is the site of long-term memory. US = unconditioned 
stimulus. 
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such as error back-propagation (Rumelhart, Hinton, & Wil- 
liams, 1986). Because the internal layer is narrow with respect 
to the input and output layers, the representations formed in 
the internal layer must compress redundant information while 
preserving enough information to allow the output to be 
reconstructed. In this process, the internal layer representa- 
tions tend to cluster and differentiate information based on 
both stimulus-stimulus and stimulus--output regularities. It is 
important to note that this architecture and learning algorithm 
represents only one of potentially many ways in which to 
instantiate these representational processes (see Myers, Gluck, 
& Granger, 1995); we make no particular claim here that this 
particular instantiation is the same as that used in the brain 
substrates, only that it produces appropriate functionality. 

As originally specified (Gluck & Myers, 1993), the model 
assumes that extrahippocampal regions in the cerebral and 
cerebellar cortices are the sites of long-term memory. These 
sites are assumed to be capable of simple stimulus-response 
learning but are assumed unable to construct the kinds of new 
stimulus representations developed in the hippocampal re- 
gion. The cortices can, however, acquire the representations 
formed in the hippocampal region. One such network, repre- 
senting some aspects of association cortex, is shown on the left 
in Figure 1; it learns to map from inputs, through its internal 
layer, to an output that is used to generate the behavioral 
response. This network is trained by a simple correlational 
learning rule, such as the Widrow-Hoff rule (Widrow & Hoff, 
1960), which is related both to psychological descriptions of 
learning (Gluck & Bower, 1988; Rescorla & Wagner, 1972; 
Sutton & Barto, 1981) and to biological plasticity mechanisms 
such as long-term potentiation (LTP) (Bliss & Lomo, 1973; 
Levy & Steward, 1983; Stanton & Sejnowski, 1989). Using this 
rule, the network can learn to map from its existing internal 
layer representations to a prediction of future reinforcement. 
Using a second application of this rule, and sparse fixed 
connections from the hippocampal network, the association 
cortex network can also adopt a random linear recoding of the 
new representations evolving in the hippocampal network. 
Learning in both layers of the association cortex network and 
in the hippocampal region network is assumed to proceed 
incrementally and simultaneously. 

As the association cortex acquires the hippocampal region 
representations in its internal layer, it finds a set of lower layer 
weights such that the same pattern (or a linear recombination 
of the pattern) that the current inputs activate in the hippocam- 
pal region network is activated in the association cortex. It is 
important to note that although the two networks may have the 
same patterns of internal layer node activity at this point, they 
may be generated by different combinations of lower layer 
weights. In general, the association cortex and hippocampal 
region probably do not have identical inputs, and so each 
makes use of whatever information it does receive in construct- 
ing a set of lower layer weights that activate an appropriate 
representation. 

Within this framework, broad hippocampal region damage 
is simulated by disabling the hippocampal region network. The 
remaining association cortex network can no longer acquire 
new (hippocampal-mediated) representations. However, this 

association cortex network can still train its upper layer of 
weights to map from existing (and now fixed) representations 
to new behavioral responses. 

This model of learning has been applied to classical condi- 
tioning paradigms in which a response-evoking stimulus (the 
unconditioned stimulus or US) is repeatedly preceded by a 
neutral stimulus (the conditioned stimulus or CS). Over time, 
an association develops between CS and US such that the CS 
alone can elicit an anticipatory response (the conditioned 
response or CR). The model captures many trial-level aspects 
of classically conditioned learning in intact animals, including 
basic acquisition, latent inhibition, compound precondition- 
ing, sensory preconditioning, successive reversal facilitation, 
the overtraining reversal effect, easy-hard transfer, and the 
nonmonotonic development of generalization gradients (Gluck 
& Myers, 1993). The model also provides an interpretation of 
how contextual information influences learning and correctly 
exhibits a response decrement with context shift, release from 
latent inhibition with context shift, and the ability of contextual 
cues to develop occasion-setting properties (Myers & Gluck, 1994). 

Extension to Simultaneous Odor Discrimination 

A basic experimental 'paradigm for forced-choice learning in 
rats is simultaneous odor discrimination, as described by 
Eichenbaum and colleagues (Eichenbaum et al., 1988, 1989). 
As shown in Figure 2, a rat is placed in a small chamber with a 
cul-de-sac containing two odor delivery ports. On each trial, 
two odors, A and B, are presented simultaneously, one from 
each port but with varying spatial location. One odor (e.g., A) 
is arbitrarily designated as positive, and the rat is given a water 
reward for poking and holding its nose in the port delivering 
odor A. On each trial, both stimuli are present, and so it is not 
enough simply to learn to respond to the presence of stimuli. 
The correct spatial response--nosepoke left or right--is deter- 
mined by the spatial arrangement of the stimuli. For instance, 
in the A + B -  discrimination, either stimulus may appear from 
the left odor port. Thus, there are actually two kinds of trial, 
AB (A, left and B, right) and BA (B, left and A, right). It is the 
relative locations of the stimuli on each trial that determine the 
correct response. 

The rat is considered to have acquired the discrimination 
when it satisfies a criterion of 18 correct responses within a 
block of 20 trials; the discrimination is terminated if it is not 
acquired within 600 trials. Following acquisition or termina- 
tion of the discrimination, the rat is trained on a new 
discrimination involving two new odors (e.g., C and D) but 
with identical task demands. Additional discriminations with 
more novel odor pairs may follow. 

This simultaneous odor discrimination paradigm differs in 
several important ways from the classical conditioning tasks to 
which our cortico-hippocampal model has previously been 
applied (Gluck & Myers, 1993; Myers & Gluck, 1994), and the 
model must be extended to reflect these differences. The most 
important difference is that in the classical conditioning tasks, 
arrival of the reinforcer (US) is contingent only on presenta- 
tion of the CS; this contingency is independent of any condi- 
tioned responding. The odor discrimination task, by contrast, 
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is an operant  procedure, in which reinforcement is delivered 
contingent  on the response. 1 Thus, the model must now 
include this contingency; further, because there is no way to 
know a priori whether other, unexecuted responses would 
have been effective, the learning procedures must be altered so 
that learning applies only to those response-reinforcement  
contingencies that are actually experienced. 

A second important  distinction is that we have previously 
modeled classical condit ioning preparations in which the form 
of the response evoked by the reinforcer and CS are similar. 
For  example, in conditioned eyeblink responding, the US is a 
blink-evoking airpuff, and after repeated CS-US pairings, the 
CS also comes to evoke a protective eyeblink. This conserva- 
tion of response form does not apply in the odor discrimination 
task: here, the conditioned response is an approach to the 
positive odor port, which differs from the drinking response 
elicited by arrival of the reinforcer. Thus, the model must be 
extended to allow for the possibility of multiple behavioral 
responses, which are each different in form from the response 
evoked by the reinforcer. Finally, since the original model was 
applied to tasks involving only one or two conditioned stimuli, 
it was possible to use a simplified input format that did not take 
into account any stimulus preprocessing. For the odor discrimi- 
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Figure 3. Schematic of information flow in the generalized cortico- 
hippocampal model. The association cortex receives both odor inputs 
and information about their spatial location; the hippocampal region 
receives the spatial information, as well as odor information prepro- 
cessed by the piriform cortex. The hippocampal region continues to 
provide new stimulus representations to the association cortex, and the 
association cortex output is used to generate the behavioral response. 
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Figure 2. Simultaneous odor discrimination paradigm. The rat is 
presented with two odors, A and B, from two odor ports; the spatial 
arrangement of A and B varies across trials. One odor (e.g., A) is 
arbitrarily but consistently designated as positive, and the rat obtains a 
reward for a nosepoke to the odor port delivering A. Note: From 
"Hippocampal System Dysfunction and Odor Discrimination Learn- 
ing in Rats: Impairment or Facilitation Depending on Representa- 
tional Demands," by H. Eichenbaum, A. Fagan, P. Mathews, and N. J. 
Cohen, 1988, Behavioral Neuroscience, 102(3), p. 331. Copyright 1988 
by the American Psychological Association. Reprinted with permis- 
sion of the author. 

nation task, there are multiple stimuli taken from the same 
modality, and, therefore, we have considered how these inputs 
might be preprocessed by the olfactory cortex. 

These generalizations, and the resulting model, are de- 
scribed in the following. 

Stimulus inputs. Figure 3 shows the information flow in the 
generalized version of the model. We assume that the external 
sensory input to the model details which odors are present and 
which odor ports they arise from. Because the stimuli used in 
this paradigm are explicitly chosen to be highly distinctive (cf. 
Eichenbaum et al., 1988), we have assumed nonoverlapping 
representations. 

In addition to this odor identification information, the 
discrimination paradigm also requires use of spatial informa- 
tion. On each trial in the discrimination task, there is exactly 
one odor present  at each of the two spatial (left and right) 
locations. The process by which specific odors are bound to 
locations is beyond the scope of the current model, and so we 
have simply assumed an array in which a unique element  codes 
for the spatial location of each stimulus. This spatial informa- 
tion provides additional input to both the association cortex 
and hippocampal region networks. 

1 Although this is an operant procedure, it is possible that animals 
may solve it through use of classical rather than operant strategies; 
that is, they may simply learn a classically conditioned approach 
response to the positive odor (or avoidance of the negative odor or 
both). Further empirical studies would be needed to fully resolve this 
issue. However, our primary interest here is in extending our model to 
apply to a particular operant procedure and to examine hippocampal- 
mediated stimulus representation during this task. These processes 
should be largely the same whether the animal is using classical or 
operant strategies to solve the task. 
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Odorpreprocessing. In our modeling work to date, we have 
assumed that input is preprocessed before it reaches the 
hippocampal region, but we have ignored the details of how 
that preprocessing might occur. Because the model as origi- 
nally specified focused on classical conditioning studies involv- 
ing a small number of highly distinct stimuli drawn from 
different modalities, within-modality preprocessing was pre- 
sumed to be only of secondary importance. Now, however, if 
the model is to be applied to simultaneous discrimination 
among large numbers of olfactory stimuli, the within-modality 
preprocessing of these stimuli is potentially far more germane. 
For  this reason, we extend the model to include a module 
representing olfactory clustering in the primary olfactory 
(piriform) cortex (Ambros-Ingerson et al., 1990). This module 
is a simplification of a bottom-up, physiologically motivated 
model of piriform cortex, and it functions to construct stimulus 
representations in much the same spirit as does the hippocam- 
pal region network. 

In brief, Ambros-Ingerson et al. (1990) modeled the superfi- 
cial piriform cortex as a competitive learning system, with 
sparse afferent connections to target cells and denser local 
inhibitory feedback connections (see Figure 4). As the target 
cells are activated, they in turn activate the inhibitory cells, 
which suppress all but the most strongly activated target cells. 
These target cells undergo synaptic plasticity to increase their 
likelihood of winning the competition again when similar 
inputs are presented in the future. This network is assumed to 
be organized into nonoverlapping clusters, each with a single 
inhibitory feedback cell interacting with several target cells, 
only one of which can win a given competition.: 

One emergent property of the operation of the piriform 
network is stimulus clustering. Stimuli with high superficial 
similarity will tend to generate the same response patterns 
across the network. That is, if a target cell wins the competition 
for a given stimulus pattern, and undergoes plasticity to make 
it more likely to win the competition for that stimulus in the 
future, then it is also more likely to win the competition to 
respond to similar stimuli in the future. 

A second emergent property of the piriform network is 
redundancy compression. If two stimuli co-occur, they will be 
treated as a single complex stimulus by the network, and a 
cluster will be formed in response to the features of this 
complex stimulus. If one of the component stimuli later occurs 
alone, the network will treat this as a degraded version of the 
compound stimulus and will respond in kind by retrieving the 
cluster associated with the compound. This is equivalent to the 
stimulus-stimulus redundancy compression function defined 
earlier in the context of the proposed hippocampal region 
function. 

We have elsewhere noted the correspondence between the 
anatomy, physiology, and plasticity of the superficial piriform 
cortex and the neighboring entorhinal cortex, one structure of 
the hippocampal region (Myers et al., 1995). We have pro- 
posed that whereas clustering and compression of olfactory 
stimuli can emerge from the piriform cortex, similar function 
could arise from the entorhinal cortex. Because the entorhinal 
cortex receives multimodal and cross-modal inputs, as well as 
inputs from piriform cortex, the entorhinal cortex might be 

Input lines 
I111 
111t 
IlU 

I n h i b i t o w  
feedback 
interneuron 

Excitatory 
target cells 

Target cell outputs 

Figure 4. A simplified version of the piriform-clustering model 
(Ambros-lngerson et al., 1990). Target cells are excited by sparse 
afferents, and they in turn activate local inhibitory feedback interneu- 
rons. Feedback silences all but the most strongly activated target cells; 
synaptic plasticity makes these "winning" target cells more likely to 
win in response to similar inputs in the future. Note. From "Dissocia- 
tion of Hippocampal and Entorhinal Function in Associative Learn- 
ing: A Computational Approach," by" C. Myers, M. Gluck, and R. 
Granger, 1995, Psychobiology, 23(2), p. 116. Copyright 1995 by the 
Psychonomic Society', Inc. Reprinted with permission. 

well placed to perform clustering and compression across 
modalities and between the multimodal features of a single 
stimulus. This hypothesis has important implications for the 
effects of entorhinal damage on compression on tasks within 
and between modalities. We will return to this issue later, in 
the conclusions section. 

For now, we note that most cortical input to the hippocam- 
pal region arrives via the entorhinal cortex (Witter, 1993), as 
schematized in Figure 5. The entorhinal cortex receives inputs 
from multimodal association cortices, such as the (primarily 
visual) perirhinal cortex and (primarily visuospatial) parahip- 
pocampal cortex; it also receives a strong input from the 
piriform cortex (Suzuki, 1994). Therefore, we assume that 
input to the cortico-hippocampal model should include the 
output from the piriform cortex model, which performs stimu- 
lus clustering of odor inputs, as well as spatial information 
detailing the locations of odor stimuli. These same inputs 
detailing odor features and locations are provided as input to 
the association cortex module as well. 

Simultaneous odor discrimination. To apply to the simulta- 
neous odor discrimination, the model must choose among the 
possible behavioral responses (here, nosepoke left or right) 
and then receive reinforcement based on whether the selected 
response was correct. This is done by allowing the association 

2 The full piriform model described by Ambros-Ingerson et al. 
(1990) also assumes repetitive sampling of stimulus inputs, with 
recurrent feedback from the piriform cortex to olfactory bulb masking 
the input patterns on subsequent samples. This repetitive sampling 
allows hierarchical clustering of stimulus inputs. We have not assumed 
this repetitive sampling in our simplified version of the piriform model, 
nor the hierarchical clustering, and will not discuss these further here. 
Thus, this reduced version of the piriform model is simply a competi- 
tive learning system analogous to those described by Grossberg (1976), 
Kohonen (1984), Rumelhart and Zipser (1985), and others. 
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Figure 5. The hippocampal region receives inputs from a range of multimodal and association cortices, 
including the (primarily visual) perirhinal cortex, the (primarily visuospatial) parahippocampal cortex, 
and the (olfactory) piriform cortex. 

cortex output to have two output nodes, each representing one 
of the possible spatial responses. These possible responses are 
then translated into a behavioral response, presumably through 
the mediation of other brain structures such as motor cortex 
and cerebellum. For the purposes of the model, we simply 
assume that the output activations from association cortex pass 
through a response generator that converts them to normal- 
ized response probabilities via a ratio response rule (Hull, 
1943; Luce, 1963; Shepard, 1957; Thurstone, 1927) and then 
generates a behavioral response: poke left or poke right. 

The selected response is then compared with the location of 
the positive stimulus, and a binary reinforcement signal re- 
flects whether they match. This reinforcement is used only to 
train the output node corresponding to the chosen response, 
because it does not necessarily indicate whether alternate 
responses would have been rewarded or not. 

The hippocampal region network continues to learn to 
reconstruct its inputs, but it additionally learns to predict the 
behavioral response. Thus, it also has multiple output nodes, 
one for each possible behavioral response. As always, the 
internal representations formed in the hippocampal region 
network are used to train the internal representations in the 
association cortex. The generalized cortico-hippocampal model 
is shown in Figure 6A, and full implementation details are 
given in the Appendix. 

The lesioned model Eichenbaum et al. (1988, 1989) com- 
pared the performance of control rats to rats with fornix 
transection. The fornix is a fiber pathway that connects the 
hippocampus with subcortical structures such as the thalamus 
and septum (Swanson, 1979). The fornix appears necessary for 
proper hippocampal function (cf. Port & Patterson, 1984; 
Saunders & Weiskrantz, 1989). Researchers have often argued 
that fornix lesion impairs learning as severely as outright 
hippocampal removal (e.g., Otto, Schottler, Staubli, Eichen- 
baum, & Lynch, 1991). However, rather than explicitly destroy- 
ing hippocampus, fornix lesion presumably interrupts a critical 
modulatory pathway (Hasselmo & Schnell, 1994); for instance, 
the theta rhythm in hippocampus, which has been linked to 

learning (Berry & Thompson, 1979; Buzsaki, 1989; Solomon & 
Gottfried, 1981), appears to be modulated by septum via 
fornix. Therefore, there may be important differences between 
fornix disruption and hippocampal removal (cf. Zola-Morgan, 
Squire, & Amaral, 1989b). We have argued elsewhere that 
while the effects of outright hippocampal lesion may compare 
to removing the hippocampal region network in the model, the 
effects of hippocampal disruption may be more comparable to 
reducing the rate at which new information is stored in the 
hippocampal network, though not the rate at which informa- 
tion is transferred from hippocampus to cortex (Myers et al., 
1996). 

Accordingly, we consider the lesioned version of the general- 
ized cortico-hippocampal model seen in Figure 6B. The 
hippocampal region network is assumed to be unable to learn 
any new representations, though it continues to produce 
output that is a random, fixed remapping of its inputs. The rest 
of the system is otherwise unchanged from the intact model of 
Figure 6A. 

Because the hippocampal region network no longer adapts 
its representations, its outputs to the association cortex net- 
work are no longer biased by predictive differentiation or by 
redundancy compression across both odor information and 
spatial location. Instead, they are dominated by the odor 
clusterings developed by the piriform network and also the raw 
spatial input. The piriform outputs will tend to emphasize 
superficial similarity of odor inputs and to de-emphasize 
spatial location. They will also tend to compress together the 
representations of co-occurring odors, as discussed earlier. In 
the case of a simultaneous discrimination, this compression 
will impair learning to respond based on the spatial locations 
of those odors. In rare cases, where the piriform network 
output preserves spatial information, or where the hippocam- 
pal representation happens to emphasize its spatial inputs, 
learning a simultaneous odor discrimination may proceed 
unchecked. However, in general, the result will be overcom- 
pressed odor representations that do not maintain spatial 
information; this overcompression in the lesioned model gives 
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Figure 6. The cortico-hippocampal model is extended to allow olfactory preprocessing as well as odor 
discrimination learning. A: The intact model. The association cortex network now has two outputs, and a 
response generator chooses between them according to a probabilistic rule. Reward is contingent on the 
correct response. The hippocampal region network is also adapted to output a reconstruction of its inputs 
plus a prediction of the behavioral response: B: The fornix-lesioned model in which the hippocampal 
region network is disabled and can no longer construct new stimulus representations. The output of the 
hippocampal region internal layer is thus a fixed, random transform of the hippocampal network inputs: 
the spatial inputs and the compressed representations output by the piriform cortex network. 

rise to many of the behaviors seen in fornix-lesioned rats on the 
simultaneous odor discrimination task, as discussed next. 

S i m u l t a n e o u s  O d o r  D i s c r i m i n a t i o n :  

E m p i r i c a l  a n d  M o d e l  D a t a  

In their studies of simultaneous odor discrimination, Eichen- 
baum et al. (1988, 1989) found several basic effects. These 
include a relative impairment  in lesioned rats, progressive 
facilitation of successive discriminations in intact rats, bimodal 
distribution of solution times in the lesioned rats, and good 
transfer performance on mispaired odors in the intact but not 

lesioned rats. We show that the generalized cortico-hippocam- 
pal model  can capture each of these behaviors correctly and, in 
each case, does so for mechanistic reasons that are quite 
similar to the qualitative explanations previously offered by 
Eichenbaum and colleagues to explain their data. 

Simultaneous Odor Discrimination in Rats and Model 

In the basic simultaneous odor discrimination paradigm, 
rats are trained on several discriminations successively. As 
Figure 7A shows, control rats learn the first discrimination 
within a few hundred trials, and they learn subsequent discrimi- 
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Figure 7. Simultaneous odor discrimination. A: Control rats show a facilitation on successive discrimina- 
tions, requiring fewer training trials to reach criterion performance. Fornix-lesioned rats show no such 
facilitation. Figure is replotted from data presented in Eichenbaum et al. (1988). B: Like the rats, the 
intact but not lesioned model shows a significant facilitation on successive discriminations. 

nations between new odor pairs progressively faster (Eichen- 
baum et al., 1988). By contrast, fornix-lesioned rats are 
strongly impaired at the task and show no facilitation with 
successive discriminations (Eichenbaum et al., 1988). On each 
of the three discriminations, about half of the lesioned rats fail 
to reach criterion performance. 

Figure 7B shows that the intact and lesioned models show 
comparable performance to the control and lesioned rats. The 
intact model learns its first discrimination within an average of 
124.4 training epochs, and later discriminations are learned 
faster; the third discrimination is learned within an average of 
81.7 training epochs. The intact model's facilitation in learning 
the second discrimination relative to the first is highly signifi- 
cant, t(9) = 3.44, p < .005, and the facilitation of the second 
discrimination relative to the third is also highly significant, 
t(9) = 2.19, p < .05. The lesioned model shows a severe 
impairment on simultaneous discrimination and no facilitation 
on subsequent discriminations. The difference in learning 
times for the various discriminations all fail to reach signifi- 
cance (p > .1). Using a 300-trial pass-fail criterion similar to 
that used by Eichenbaum et al. (1988), we found that 40% of 
discriminations are not solved by the lesioned model, a failure 
rate comparable to that of the lesioned rats. 

Why does the lesioned model show an impairment on this 
task, while the intact model does not? In the intact model, the 
piriform model clusters odor inputs based on similarity and 
co-occurrence. For a given discrimination, say A + B - ,  the 
two odors A and B always co-occur, and so the piriform model 
will tend to cluster their representations. This information, 
together with the spatial inputs, is passed to the hippocampal 
region network. The hippocampal region network forms new 
internal representations that, among other things, must differ- 
entiate the information needed to solve the task. In this case, 
that information is which odors appear from which por t s - -  
whether the current trial is an AB or BA trial. All other 

information, including the odor cluster information arriving 
from the piriform cortex, is redundant for this end. (Note, 
however, that the hippocampal network is also required to 
reproduce all of its inputs, and so no input information can be 
completely ignored in the hippocampal network stimulus 
representations.) 

The way that the hippocampal region network creates 
different representations for AB and BA is to make sure that 
different internal layer nodes are activated by these two kinds 
of trials. Figure 8A shows that the internal layer nodes in the 
hippocampal region network are activated by two kinds of 
inputs: those from the piriform network, and those detailing 
spatial information. The hippocampal region network can 
construct a representation that emphasizes the latter spatial 
information by selectively weighting connections from the 
inputs carrying that spatial information and by assigning 
relatively weaker weights to the inputs from the piriform 
network. These weights may be positive (excitatory) or nega- 
tive (inhibitory); it is their magnitude that matters. When the 
hippocampal-mediated representation is adopted by the asso- 
ciation cortex, it must find a set of lower layer weights that 
allow its internal layer nodes to produce the same representa- 
tions. Thus, it also should generate strong weights for the 
inputs carrying spatial information and weaker weights for the 
inputs carrying compressed piriform outputs (see Figure 8B). 

Figure 9 shows that the hippocampal region network starts 
with lower layer weights that are all random and generally 
small (see Figure 9A). After 500 epochs of training on the A +  
B -  discrimination, exactly those weights that code for the 
spatial location of A and B (i.e., which is on the right and which 
is on the left) grow in strength (see Figure 9B). Thus, their 
ability to influence the internal representation is high. This 
reflects the hippocampal-dependent mechanism of predictive 
differentiation: Because the spatial locations of A and B are 
especially predictive of the correct behavioral response, these 
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Figure 8. Stimulus representations in the internal layers of the intact model networks depend on the 
connections strengths (weights) from various inputs. A: The hippocampal region network receives inputs 
from the piriform cortex as well as spatial information; if the latter have strong weights, the internal layer 
representation will emphasize spatial information. B: The association cortex network receives the same 
two kinds of inputs; as it adopts the representations formed in the hippocampal region network, it must 
find lower layer weights that allow it to reconstruct those representations. If the hippocampal region 
representation emphasizes spatial information, the association cortex will selectively assign strong weights 
to inputs containing spatial information. 

inputs are strongly weighted to allow maximally different 
representations in the internal layer depending on the place- 
ment of the two odors. A few of the weights from the olfactory 
inputs also grow; these are used by the hippocampal region 
network as additional information regarding which odor inputs 
are present. Although this is superfluous, and could be 
deduced from the spatial input alone, it is a property of the 
autoencoding hippocampal region network to include informa- 
tion about all relevant inputs in its internal layer representa- 
tion. After 500 more epochs of training on the C + D -  
discrimination, these weights remain strong, but the weights 
encoding for the spatial location of C and D have now grown in 
strength (see Figure 9C). Again, the internal representations 
devote a great deal of emphasis to the spatial locations of the 
odor stimuli, and they largely de-emphasize all the other 
inputs. Later, in Figure 12, we will consider the contribution of 
individual internal layer nodes to the average profile shown in 
Figure 9D. 

This pattern of weight changes contrasts with that observed 
in the lesioned model. In the lesioned model, the piriform 
network continues to perform odor clustering, but the hippo- 
campal region network no longer can differentiate representa- 
tions based on spatial information. Thus, the new representa- 
tions acquired in the lesioned model's association cortex 

network are based wholly on the piriform network output. 
Because the piriform network output tends to cluster co- 
occurring stimuli, most of the spatial information regarding 
their locations is not preserved. Figure 9E shows the mean 
absolute values of the lower layer of weights in a representative 
lesioned model's association cortex network after 500 epochs 
of training on each of the A + B -  and C + D -  discriminations; 
little if any differentiation of the cue locations has occurred. 
Because the cue location is exactly the information needed to 
solve the discriminations, the lesioned network shows a pro- 
found impairment at this task. Conceptually, the lesioned 
model treats A and B as components of a single compound 
stimulus, ignoring their spatial arrangement, and therefore it 
does not distinguish AB and BA trials. Eichenbaum et al. 
(1989) interpreted the lesioned-rat data in a similar way. They 
suggested that fornix-lesioned rats perceive stimulus pairs as 
unitary compounds; for each such compound, nosepokes to the 
right and left odor ports are each sometimes rewarded, and the 
rat cannot predict the correct response on a given trial. 

On occasion, depending on the random initial configuration 
of weights in the lesioned network, some spatial information is 
preserved in the internal representation. Figure 9F shows the 
lower layer of weights for a different lesioned network trained 
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Figure 9. Magnitude of weights from the inputs to the internal layer nodes in the association cortex, 
which determine the internal representations activated, shown averaged across all internal layer nodes. 
For simplicity, only weights from the four relevant odors (A, B, C, and D) are shown. A: Initially, in a 
representative intact model, all weights are random and small. B: After training on A + B - ,  specifically 
those weights detailing the spatial locations of A and B gain strength. C: After additional training on C + 
D - ,  the weights from inputs indicating the spatial locations of C and D also increase; the weights 
indicating the locations of A and B remain strong. D: In a representative lesioned model, there is the same 
profile of initial weights. E: After training on A + B -  and C + D - ,  there is little increase to the relevant 
spatial weights; as a result, neither task is learned by this network. F: Occasionally, a lesioned network 
does manage to solve both the A + B -  and C + D -  discriminations. However, even in such a case, the 
average weight profile still shows little consistent growth on the relevant spatial weights. Although one or 
two individual units may maintain some spatial information--allowing the model to solve the discrimina- 
t ion- there  is no overall pattern as shown in the intact model in Figure 9C. L = left; R = right. 

on the A + B -  and C + D -  discriminations; in contrast to 
Figure 9E, this network happens to preserve some spatial 
information. It will be noted that the magnitude of  these 
weights is much smaller than that shown in Figure 9C for an 
intact network; nonetheless,  this lesioned network does man- 
age to solve the discriminations successfully. We will return to 
this point further, after the next section. 

Facilitation of Successively Learned Discriminations 
in Intact Rats and Model 

A second point of  similarity between the animal and model  
data shown in Figure 7 is that both the control rats and intact 
network show a facilitation of  subsequent discriminations after 
the first is learned. In the computational  model,  it is possible to 
see exactly why this facilitation is obtained. Figure 9, A and B, 

shows how learning occurs in the intact model  lower layer 

weights to differentiate the spatial locations of  A and B. These 
changes take place first in the hippocampal region network 
and are then adopted by the association cortex, where they 
begin to influence the behavioral response. This transfer is not 
immediate,  but it occurs with a slight t ime lag, as shown in 
Figure 10. Eventually, the same differentiation between AB 
and BA seen in the hippocampal region network internal 
representat ion is mirrored in the association cortex network 
internal representation. Now a second C + D -  discrimination 
is trained; Figure 9, B and C, shows that only a few lower layer 
weights must undergo significant change, namely those encod- 
ing the spatial locations of  C and D. The  association cortex 
network must only acquire these few changes before the task 
can be solved; this is done more quickly than in the original 
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Figure 10. Differentiation of internal representations in a representative simulation, in terms of the 
summed difference in internal layer node activations to two input patterns, in the hippocampal network 
(black line) and association cortex network (gray line). During the first A + B-  discrimination, the 
hippocampal region network develops representations that differentiate the two spatial arrangements of 
stimuli AB and BA. With a slight lag, the association cortex network adopts these representations, 
mirroring the differentiation of AB and BA. During the next C + D -  discrimination, the bippocampal 
region develops representations that differentiate the two spatial arrangements CD and DC. Because 
there is a high overlap between the input patterns in the A+B-  and C+D-  discrimination, particularly in 
terms of the large number of irrelevant inputs, the hippocampal network differentiates the input patterns 
in this second discrimination more quickly. This in turn leads to a facilitation in learning the second 
C + D -  discrimination, relative to the earlier A+B-  discrimination. Dist = Hamming distance. 

task (see Figure 10), and so there is a facilitation on the second 
task. Progressively more facilitation may be obtained with 
further discriminations, resulting in the pattern of results seen 
in Figure 7B. Eichenbaum et al. (1989) suggested that progres- 
sive facilitation of discrimination learning in the intact rats 
might reflect learning set acquisition; the modeling results 
suggest that it is not necessary to invoke higher level cognitive 
explanations to account for the facilitation: a representational 
account suffices. We note that this account is consistent with 
the finding that, during conditioning, cellular activity in the 
hippocampus mirrors and precedes the development of the 
behavioral response (Berger & Thompson, 1978). To establish 
whether this account is an accurate description of unit activity 
during the odor discrimination task would require electrophysi- 
ological studies monitoring the evolution of hippocampal cell 
activity during acquisition of the discriminations; it is certainly 
true that in the well-trained rat hippocampal cells exist that 
fire maximally during the sampling of specific, meaningful 
odors in particular spatial configurations (cf. Wiener, Paul, & 
Eichenbaum, 1988), which would be consistent with this 
account. 

Bimodal Distribution of  Solution Times in Lesioned 
Rats and Model 

Curiously, while the fornix-lesioned rats are generally im- 
paired on simultaneous discrimination, they occasionally solve 
some problems; when they do, they solve them as quickly as 
control rats, as shown in Figure 11, A and C. 

The lesioned model shows a similar effect. Generally, the 
overcompressed representations in the lesioned model fail to 
preserve the spatial information needed to acquire the discrimi- 

nation. On occasion, however, the representation may fortu- 
itously preserve information regarding stimulus arrangement. 
If so, then that information may be simply mapped to the 
correct output response. In this case, learning may occur very 
quickly in the lesioned model. Combining the simulation data 
across all three discriminations, the lesioned model shows a 
bimodal distribution of learning time, as shown in Figure l iD:  
tasks are either unlearned or learned about as quickly as by the 
intact model. Using a 300-epoch pass-fail cutoff similar to that 
reported in Eichenbaum et al. (1988), the intact model reaches 
criterion on 30 discriminations and fails on none (see Figure 
l lB),  while the lesioned model succeeds on 18 and fails on 12. 
A chi-square analysis of this distribution indicates a highly 
significant difference between the intact and lesioned model 
performances, ×2(1, N = 30) = 15.0,p < .01. In this way, the 
model correctly accounts for the different distributions of 
learning rates in the intact and lesioned rats. 

Why do some lesioned systems learn some discriminations 
quickly? To answer this question, it is necessary to look at the 
roles of individual internal layer nodes in the model. Because 
the internal representation as a whole is a concatenation of the 
activity levels of these units, saying that two stimuli evoke 
broadly different internal representations means that those 
stimuli evoke broadly different activity levels on at least some 
of the internal units. A particular unit will respond differently 
to two stimuli, say AB and BA, if it has strong weights from the 
inputs detailing the locations of A and B and if these weights 
differ in magnitude for the two spatial arrangements of these 
stimuli. 

For example, Figure 12 shows the weights to each internal 
layer node in the association cortex network of an intact system 
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Figure 11. Distribution of learning times on simultaneous discrimination, in terms of trials to reach 
criterion, pooled over all tasks. A: Control rats show a unimodal distribution, solving most tasks within less 
than 300 trials (replotted from Eichenbaum et al., 1988). B: The intact model shows a similar distribution 
of solution times. C: Fornix-lesioned rats show a bimodal distribution, either failing to learn the 
discrimination or learning just as quickly as control rats (replotted from Eichenbaum et al., 1988). D: The 
lesioned model shows a similar bimodal distribution, with one peak near 200 and another greater than 500 
trials. 

that has been trained on the A + B -  and C + D -  discrimina- 
tions; for simplicity, only those weights from inputs detailing 
the spatial locations of A, B, C and D are shown. (These 
graphs are therefore a subset of the type of information that 
was averaged to construct Figure 9.) For many of the nodes, 
many of the weights differ significantly from 0, meaning that 
those nodes encode information about the spatial locations of 
these stimuli. For example, consider the weights shown for 
Node 4. This unit has strong positive weights from inputs active 
when the stimulus pair AB is present and has strong negative 
weights activated by stimulus BA. This unit will respond much 
more strongly to AB than to BA, contributing to a differentia- 
tion of stimulus representations for these two trial types. Node 
19 performs a roughly complementary function. It is active 

when stimulus pair BA is present and is inactive when stimulus 
AB is present; therefore, it also contributes to differentiating 
the representations of AB and BA. Note also that these two 
nodes suffice to allow the discrimination itself to be learned: 
the model simply has to learn to output a "go-left" response 
when Node 4 is active and a "go-right" response when Node 19 
is active. 

Nodes 11 and 16 perform roughly analogous functions for 
the stimulus pairs CD and DC. Various other nodes shown 
perform variants on these functions, leading to stimulus 
representations that are quite different for AB than for BA 
and for CD than for DC. (Figure 10 is another way of 
illustrating this claim by showing the differences in internal 
layer node activation for AB and BA or CD and DC, summed 
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Figure 12. Weights to each of the 25 internal layer nodes in the hippocampal region network of an intact 
system trained on the A + B-  and C + D -  discriminations. Only the inputs detailing spatial location (left 
or right placement) of relevant odors A, B, C and D are shown. Node 4 responds strongly when A is on the 
left and B is on the right, but not for the opposite spatial placement; Node 19 responds more strongly to 
the AB placement. Nodes 11 and 16 perform roughly analogous functions for C and D. Some nodes such 
as 2, 5, and so on, respond to preferred spatial arrangements for both discriminations. The internal layer 
representation of a particular input pattern is the concatenation of the activation levels of all 25 internal 
layer nodes. L = left; R = right. 

over all the nodes.) These differences increase as training 
progresses. This increasing difference reflects the construction 
of internal nodes that are especially sensitive to the spatial 
locations of these odors. Some nodes (e.g., 2, 5, etc.) have 
strongly preferred spatial orientations for both odor pairs. 
Some nodes (e.g., 1, 6, 9, etc.) do not show strong weights to 
any of the inputs encoding spatial information. This does not 
imply that these nodes are unused, but merely that they are 
performing some other function, such as helping the hippocam- 
pal region network reconstruct its inputs, which does not make 
particular use of spatial information. 

Interestingly, there is an important correspondence between 
the activation patterns of the intact model's internal layer 
nodes and the activation of hippocampal CA1 cells in a rat that 
is well trained on two odor discriminations. In particular, 
electrophysiological recordings from the behaving rat reveal 
some hippocampal cells that respond differentially to a particu- 
lar locus of response and other cells that respond most strongly 
when a particular pair of odors is presented in a particular 
spatial configuration (Wiener et al., 1988). The intact model 
develops nodes that fall into similar classes, as shown in Figure 
12. For example, Node 5 responds strongly when either 

positive odor (A or C) is present at the right-hand odor port 
and thus the correct response is nosepoke right; Node 4 shows 
the opposite tendency. Node 11 responds most strongly when 
odor pair CD is present in a particular spatial ordering (C on 
the left, D on the right); Nodes 16 and 19 respond preferen- 
tially to other particular spatial configurations of specific odor 
pairs. Eichenbaum (1992) concluded that hippocampal cells 
encode "whatever critical relationships among cues guide 
accurate performance on the task at hand" (p. 226); this is 
exactly the result of the representational compression and 
differentiation mechanisms in the intact model as well. 

Now consider a lesioned model that is trained on the same 
A + B -  and C + D -  discriminations. It cannot develop repre- 
sentations in its hippocampal region network that differentiate 
on the basis of spatial information; it can only learn based on 
the hippocampal network's random recoding of the spatial 
input and compressed piriform output. As a result, the internal 
nodes (in the association cortex network) tend not to be able to 
emphasize spatial information. Figure 13A shows the weights 
that develop to encode spatial information in the internal layer 
of a lesioned model that fails to solve either A + B -  or C + D - .  
In strong contrast with the intact weights shown in Figure 12, 
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Figure 13. Weights to each internal layer unit in the lesioned network association cortex, from inputs 
detailing the spatial locations of A, B, C and D, after training on the A + B -  and C + D -  discriminations. 
A: In a lesioned system that fails to solve either discrimination, no units develop particularly strong 
weights from the inputs encoding spatial placement of the relevant stimuli. B: By contrast, in a lesioned 
system that does solve both discriminations, a few nodes (e.g., 2, 5) do preserve spatial information about 
the locations of the odors, allowing the discriminations to be solved, L = left; R = right. 
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no internal layer nodes in the lesioned model develop any 
particularly strong weights from any of the inputs encoding the 
spatial locations of the four relevant stimuli. Thus, the exact 
information necessary to solve the task is not preserved in the 
internal representation, and the task is not solved. 

However, sometimes and at random, the representation 
does not completely abandon all spatial information. When 
this occurs, the lesioned network maintains at least some 
spatial information in its internal representations, and the task 
may be solvable. Figure 13B shows the weights of the internal 
layer nodes in a lesioned network that happens to be able to 
solve A + B -  and C + D - .  This profile is more like the lesioned 
nonsolver of Figure 13A than like the intact solver of Figure 
12: only a few nodes show any selectivity, and, even so, the 
magnitude of these weights is small. For example, Node 5 
shows a slight preference for the DC arrangement over the CD 
arrangement, and Node 2 shows a slight preference for the BA 
arrangement over the AB arrangement, but the weights are 
only a fraction of the strengths of the weights in the intact 
model. However, they contain enough information to allow the 
two discriminations to be solved. When either node is acti- 
vated, the correct behavioral response is "go-right," and 
otherwise it is "go-left." When this information is present, 
then, learning the behavioral response is trivial. As a result, 
learning is quite fast--about as fast as in the intact networks. 
This explains the pattern of general failure but occasional 
quick solution on the simultaneous discrimination in the 
lesioned model that is shown in Figure 11. It should also be 
noted that on a simple conditioned discrimination, in which 
stimuli are presented successively and hence no compression is 
expected, there is no impairment of learning in either the 
lesioned model (Gluck & Myers, 1993) or lesioned rats 
(Eichenbaum et al., 1989). 

This explanation of why the lesioned model generally fails to 
solve simultaneous discriminations, but sometimes solves a 
random discrimination quickly, is similar to the explanation 
posited by Eichenbaum et al. (1989) to explain the animal data. 
The fornix-lesioned rats are expected to solve a discrimination 
only "as a fortuitous consequence of idiosyncratic perceptual 
variations that permitted each rat to discriminate some left- 
right odor configurations as distinct stimulus compounds" 
(Eichenbaum et al., 1989, p. 1214); "for just those problems in 
which different [spatial] arrangements of the same odors can 
be perceived as distinct stimulus compounds, the [fornix- 
lesioned[ animals could learn the appropriate go-left/go-right 
response" (p. 1208). 

It should be noted that there is an additional, intertrial 
difference between the fornix-lesioned and control rats that 
our trial-level models cannot address: The fornix-lesioned rats 
show a unimodal distribution of response times, whereas the 
control rats show a bimodal distribution (Eichenbaum et al., 
1989). That is, the control rats appear to sample one of the two 
cues, decide whether or not to respond, and then sample the 
second cue and decide whether or not to respond. This gives 
rise to a bimodal distribution of response times, depending on 
whether the positive odor is the first or second sampled. In 
contrast, the fornix-tesioned rats appear to sample both cues 
together, as if they were determining the correct spatial 

response to the compound odor; this gives rise to a unimodal 
distribution of response times. The current trial-level model 
cannot address this aspect of the data because it does not 
currently include any mechanism to simulate response latency. 
However, these data are consistent with the idea that intact 
rats perceive stimuli individually, perhaps sampling them 
sequentially, while fornix-lesioned rats perceive unitary stimu- 
lus compounds (Eichenbaum et al., 1989). It is also broadly 
consistent with the tendency of the lesioned model to overcom- 
press stimuli, while the intact model allows differentiation of 
stimulus representations. 

Probe Mispairings in Rats and Model 

Although fornix-lesioned rats can occasionally solve a dis- 
crimination as quickly as control rats, this does not necessarily 
imply that the two populations are using the same mechanisms 
to learn. Eichenbaum et al. (1989) demonstrated such a 
difference through an ingenious transfer task: Fornix-lesioned 
rats that had solved two simultaneous discriminations (e.g., 
A + B - ,  C + D - )  were yoked with control rats trained on the 
same two discriminations. Training then continued on the two 
solved discriminations concurrently, interleaved with probe 
mispairings of the familiar stimuli (e.g., A + D - ,  C + B - ) .  
Control rats continue to perform well on the mispairings, while 
fornix-lesioned rats perform at chance on the mispairings (see 
Figure 14A). 

The intact and lesioned models can also be applied to this 
task. For each simulation run, the lesioned model is trained on 
up to six simultaneous discriminations until it has solved two 
(e.g., A + B -  and C + D - ) .  The intact model is then trained on 
the same two discriminations, thus yoking intact and lesioned 
model simulations. During a final training phase, the models 
are presented with probe trials involving the trained stimuli in 
novel "mispairings" (e.g., A + D -  and C + D - ) .  Again, the 
model performance captures many aspects of the animal data. 

Like control rats, the intact model shows good performance 
on the mispairings, as shown in Figure 14B. After reaching 
criterion on the concurrent discriminations (90% of simula- 
tions do this without error), all intact simulations performed 
perfectly over 10 blocks of training on the mispairings. Like 
fornix-lesioned rats, the lesioned model shows a drastic impair- 
ment. After successfully learning two simultaneous discrimina- 
tions, the rats have a significantly worse performance on the 
mispairings than on the trained pairs, although performance is 
still above chance. By the end of training on the concurrent 
discrimination, the lesioned model performs at an average 
95.4% correct on trained pairings, but then performs at only 
84.7% correct on the mispairings, a highly significant differ- 
ence, t(9) = -5 .85 ,p  < .001. One discrepancy is that although 
the lesioned rats do show gradual improvement on the mispair- 
ings, the lesioned model does not. 

Why does the intact model perform well on probe trials, 
while the lesioned model does not, even when it can learn the 
original pairings? The answer again lies in the function 
computed by individual internal layer nodes. In both the intact 
model and in a lesioned model that solves A + B -  and C + D - .  
hidden nodes evolve that respond preferentially to different 
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Figure 14. A: Performance on trained pairings and probe mispairings in control and fornix rats, after 
successful acquisition of two concurrent simultaneous discriminations. Control rats perform as well on 
mispairings as trained pairings; fornix-lesioned rats perform at chance on mispairings. Replotted from 
data presented in Eichenbaum et al. (1989). B: Performance on trained pairings and probe mispairings in 
the intact and lesioned model. The intact model performs well on mispairings, the lesioned model 
performs much worse, though still well above chance. 

spat ial  a r r angemen t s  of  A and  B and  of C and  D; such nodes  
appea r  in Figures  12 and  13B. However,  while the  lesioned 
mode l ' s  nodes  tend  to r e spond  to spatial  p references  regarding 
e i the r  A and  B or C and  D, the intact  model  evolves nodes  tha t  

have spatial  p re fe rences  regarding bo th  st imulus pairs. For  
example,  the  intact  mode l ' s  in ternal  layer Node  5 ( r ep roduced  
from Figure 12 in Figure 15A) responds  strongly to the  B A  
a r r an g emen t  but  not  to the  A B  a r r an g emen t  and  to the  D C  

(A) (B) 

5 2 5 

, RI ,I -07  JL21L 

16 21 

Figure 15. Reproduction of some of the relevant internal layer nodes from Figures 12 and 13B. A: In the 
intact model hippocampal region network, internal layer Node 5 responds strongly to the spatial arrangement BA 
and also to the spatial arrangement DC; because this node differentiates both pairs of stimuli, it continues to be 
strongly activated by stimulus mispairings. B: In the lesioned model association cortex network, internal layer 
Nodes 2 and 5 respond strongly to particular spatial arrangements of A and B or C and D. Because none of these 
nodes contains strong weights from more than one pair of odors, none is fully activated by a mispairing. 
Additionally, some nodes (e.g., 16 and 21) respond most strongly to a single odor in a single location, 
regardless of what other odor is present. Taken together, the activations of many such nodes may allow the 
system to respond with at least partial correctness on mispairing trials; this accounts for the better-than- 
chance performance of the lesioned system on probe mispairings. L = left; R = right. 
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arrangement but not to the CD arrangement. In effect, this 
node is active whenever the behavioral response should be 
"go-right" and inactive whenever the behavioral response 
should be "go-left." Because this node can differentiate the 
spatial arrangements of both pairs of stimuli, it will continue to 
respond to the spatial arrangements of mispaired stimuli. The 
node will respond strongly to the DA and BC ("go-right") 
mispairings and not to the AD and CB ("go-left") pairings. 
Therefore, this node alone carries enough information to allow 
the intact system to respond correctly on the mispairings, as 
well as on the trained pairings. To a lesser extent, Nodes 4, 14, 
and 18 perform similarly. 

The few spatially sensitive nodes that evolve in the lesioned 
system are reproduced (from Figure 13B) in Figure 15B. By 
contrast with Figure 15A, the lesioned model nodes only 
contain information about one or the other of the two stimulus 
pairs. Thus, when a mispairing is presented, none of these 
nodes can respond fully. For example, when DA is presented, 
Node 2 will respond partially to the presence of A on the right, 
and Node 5 will respond partially to the presence of D on the 
left; but neither node will be fully activated, because Node 2 
also looks for the presence of B on the left, and Node 5 also 
looks for the presence of C on the right. The partial activation 
of these two nodes may be enough to allow a mild behavioral 
tendency to "go-right." Additionally, other nodes such as 16 
and 21 respond most strongly to the presence of a particular 
odor in a particular location, regardless of what other odor is 
present: Node 16 responds strongest to odor B on the left, and 
Node 21 responds strongest to odor C on the right. These 
weights are weak, but the partial activations of many such 
nodes together may also contribute to a correct response. As a 
result, the lesioned network behavior on the probe trials shown 
in Figure 14B is above chance; however, transfer is not nearly 
as good as in the intact model. Further, because these weights 
are not adapted in the hippocampal region network, perfor- 
mance improves little even with extended training on the 
mispairs. 

Conclusions 

We have argued that critical aspects of the simultaneous 
odor discrimination learning in control and fornix-lesioned 
rats (Eichenbaum et al., 1988, 1989) can be interpreted via an 
existing computational model of the role of hippocampal 
region in associative learning (Gluck & Myers, 1993; Myers & 
Gluck, 1994). The model assumes that the hippocampal region 
is able to compress and differentiate stimulus representations 
according to both stimulus-stimulus and stimulus-outcome 
regularities. We showed that the model could be generalized 
to apply to Eichenbaum et al.'s operant paradigm. The intact 
model, like intact rats, shows facilitation on subsequent dis- 
criminations and a unimodal distribution of learning times. A 
lesioned version of the model, without hippocampal region 
representational changes (but with piriform-mediated odor 
compression) captures many aspects of fornix-lesioned rats' 
performance. The lesioned model correctly shows an overcom- 
pression deficit, which impairs discrimination learning; al- 
though occasionally, and at random, a particular discrimina- 
tion may be solvable. When it does solve a task, it does so just 

as fast as the intact model. Finally, while both the intact model 
and control rats show good transfer to novel pairings of trained 
stimuli, both the lesioned model and fornix-lesioned rats show 
little transfer. The computational mechanisms and representa- 
tional processes underlying the model behavior are quite 
similar to the qualitative explanations proposed by Eichen- 
baum et al. (1988, 1989) to explain the rat data, namely, the 
tendency of lesioned rats and model to overcompress or fuse 
co-occurring odors and to treat them as a single stimulus 
compound, rather than recognizing distinct cue components. 
This is an elaboration of the idea presented by Eichenbaum 
and colleagues (e.g., Eichenbaum et al., 1992) that the hippo- 
campus is necessary for flexible learning that can be expressed 
in novel situations, such as when familiar odors are presented 
in novel pairings. 

Similarly, Schacter (1985) has noted that human hippocam- 
pal-damaged amnesics often seem inflexible or "hyperspecific" 
in their learning. Although amnesics may be able to acquire 
new information, they are often un'able to express that learning 
if test conditions differ significantly from learning conditions. 
This could reflect a kind of overcompression deficit, in which 
stimulus and context are compressed or fused together, so that 
the familiar stimulus presented in a new context is unrecogniz- 
able and, therefore, the learned association cannot be re- 
trieved. Related ideas have been circulated that the hippocam- 
pus is involved in the ability to learn configural tasks in which 
cue compound and components are assigned different mean- 
ings (e.g., Sutherland & Rudy, 1989; Schmajuk & DiCarlo, 
1992) and in the ability to utilize contextual cues (Hirsh, 1974; 
Winocur & Olds, 1978). 

Elsewhere, we have proposed that the entorhinal cortex has 
anatomical and physiological substrates sufficient to perform a 
particular subfunction of the representational modifications 
assumed in the intact model (Myers et al., 1995). In particular, 
we noted the correspondence between superficial entorhinal 
cortex and superficial layers of the adjacent piriform cortex 
(Gluck & Granger, 1993), suggesting the possibility of related 
function. Following the suggestion of Ambros-Ingerson et al. 
(1990) that the piriform cortex could perform stimulus cluster- 
ing of olfactory inputs, as described earlier in this article, we 
suggested that the entorhinal cortex could also perform 
stimulus clustering based on superficial similarity and also on 
stimulus co-occurrence (Myers et al., 1995). The remaining 
aspects of the proposed hippocampal region function, espe- 
cially predictive differentiation, would then be implemented 
elsewhere, such as in the dentate gyrus and hippocampus 
proper. Eichenbaum and Bunsey (1995) have made a similar 
suggestion that the parahippocampal region (including entorhi- 
nal cortex) mediates "fusing" stimuli into compound percepts 
while the hippocampal formation mediates relational memory 
processing that allows flexible use of memories. Their concept 
of entorhinal-mediated fusion includes allowance for temporal 
fusion across intermediate-term delays. 

This hypothesis about the particular contribution of entorhi- 
nal cortex to hippocampal region function has implications 
about the functional effects of various lesion extents. For 
example, to the extent that a selective lesion of hippocampus 
spares entorhinal processing, such a lesion might not disrupt 
hippocampal-dependent tasks that arise from stimulus compres- 
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sion. One example is latent inhibition: Unreinforced preexpo- 
sure to a stimulus retards later learning to associate that 
stimulus with a response (Lubow, 1973). Our intact model 
shows latent inhibition as a result of stimulus compression. 
During the preexposure phase, the representation of the 
stin.Jlus is compressed together with the co-occurring (and 
equally nonpredictive) background contextual cues. Later, in 
the learning phase, the stimulus and context must be explicitly 
redifferentiated to allow selective responding to the stimulus 
but not to the context alone (Myers & Gluck, 1994). Because 
this effect is explained in terms of hippocampal-dependent 
compression processes, it is expected to be eliminated in 
subjects with hippocampal region damage. Consistent with this 
prediction, hippocampal ablation abolishes latent inhibition 
(Kaye & Pearce, 1987; Solomon & Moore, 1975; Schmajuk, 
Lain, & Christiansen, 1994). By contrast, the hypothesis that 
the entorhinal cortex is sufficient to underlie stimulus compres- 
sion argues that a selective hippocampus-only lesion should 
not eliminate latent inhibition. Consistent with this prediction, 
latent inhibition survives selective ibotenate hippocampal 
lesion (Honey & Good, 1993). 

How does this argument apply to the simultaneous odor 
discriminations considered in this article? We have argued that 
the odor compression in the piriform cortex is sufficient to give 
rise to overcompression deficits in animals with broad hippo- 
campal lesions. In an animal with a selective hippocampal-only 
lesion, this behavior should continue, or even be exacerbated 
by, additional stimulus compression in the entorhinal cortex. 
Therefore, whether the fornix lesion in the rats tested by 
Eichenbaum et al. (1988, 1989) is more comparable to a broad 
hippocampal region lesion or a selective hippocampal-only 
lesion, the theory still expects overcompression deficits on 
simultaneous odor discrimination--as long as the piriform 
cortex survives but the hippocampus is damaged. Consistent 
with this idea, an entorhinal lesion (which may be assumed to 
also functionally isolate hippocampus from its major source of 
sensory input) appears no more disruptive than fornix lesion 
on discriminations where odors are presented simultaneously 
(Staubli, Fraser, Kessler, & Lynch, 1986) or successively (Otto 
et al., 1991). 3 There is also some evidence that hippocampal 
region damage impairs retention and relearning of simulta- 
neous odor discrimination in monkeys (Santibanez & Pinto 
Hamuy, 1957). 

How does this argument apply to other paradigms, espe- 
cially simultaneous discriminations in other modalities? The 
answer depends on the extent to which stimulus compression 
occurs in sensory cortices dealing with other kinds of stimulus. 
It seems reasonable to assume that many areas of the cortex 
could process information in similar ways, differing mainly in 
the particular types of information they process as a result of 
particular input and output connections (cf. Mountcastle, 
1979; Szenthagothai, 1975). There is some evidence that 
stimulus clustering occurs in the auditory cortex (e.g., Bakin & 
Weinberger, 1990; Weinberger et al., 1990) and in the striate 
cortex (e.g., von der Malsburg, 1973), which would be consis- 
tent with our basic argument. However, the data regarding the 
effects of hippocampal region damage on nonolfactory simulta- 
neous discriminations are quite mixed. For example, broad 
hippocampal region lesions can disrupt simultaneous visual 

discrimination in monkeys (Mishkin & Pribam, 1954; Pinto 
Hamuy, Santibanez, Gonzales, & Vicencio, 1957) and dogs 
(Fuller, Rosvold, & Pribam, 1957). On the other hand, 
hippocampal ablations in rats do not impair learning to enter 
arms of a Y maze depending on their brightness (Kimble, 
1963) or relearning a simple tactile discrimination (Whishaw & 
Tomie, 1991). Aside from differences arising from the use of 
different species, paradigms, and lesion techniques, one possi- 
bility for these mixed data is that different sensory modalities 
are differentially prone to compress the representations of 
co-occurring stimuli. Some light might be shed on this issue by 
extending the current model to include additional modules 
representing the processing in additional sensory cortical 
areas, and the current work would provide a framework for 
this kind of extension. 

In the meantime, the idea that co-occurring olfactory stimuli 
may be especially prone to overcompression would be consis- 
tent with their chemical nature and high tendency to blend 
together into compound percepts. Lesioned rats may simply be 
especially unable to separate out the features of co-occurring 
olfactory stimuli, resulting in the observed overcompression 
deficit. The idea that olfactory learning is somehow especially 
dependent on hippocampal mediation would also be consis- 
tent with the fact that the olfactory cortex, alone among 
sensory areas, has strong direct connections with the hippocam- 
pal region (Suzuki, 1994). If this explanation is correct, then 
there should be much less impairment in hippocampal- 
lesioned rats on olfactory discriminations where odors do not 
co-occur. Consistent with this interpretation, fornix-lesioned 
rats are not impaired on a successive odor discrimination 
(Eichenbaum et al., 1988) nor on simple discriminations 
including odors and tactile cues (Whishaw & Tomie, 1991). 
There might also be less hippocampal lesion impairment on 
simultaneous odor discrimination if the odors are delivered at 
sufficient spatial distance from each other; to our knowledge, 
this remains to be investigated. 

Consistent with the rat data, monkeys with hippocampal 
damage are generally not impaired on nonolfactory simulta- 
neous object discriminations involving brightness, hue, pat- 
tern, or objects (Mahut, 1971; Zola-Morgan, Squire & Amaral, 
1986). Fornix-lesioned monkeys are also not impaired at 
acquiring discriminations between pairs of objects (Saunders 
& Weiskrantz, 1989). Fornix-lesioned monkeys also perform 
much worse than controls on a transfer task where they are 
challenged to respond to familiar stimuli in new combinations 
(Saunders & Weiskrantz, 1989). In this task, monkeys first 
learn to choose between object pairs (e.g., choose AB+ over 
A C - ) ;  in the transfer task, they are presented with one object 
(A) and must choose the object that completes a positive pair 
(e.g., B to form AB+,  not C to form A C - ) .  Control monkeys 
perform well on the transfer task, whereas fornix-lesioned 
monkeys initially perform near chance. Although the transfer 
task is complicated, and other issues may be relevant, the 

3 The rats in the Staubli et al. (1986) experiment are trained 
preoperatively on simultaneous discriminations, and so direct compari- 
son with the Eichenbaum et al. (1988, 1989) rats is somewhat 
hindered. Additionally, the Staubli et al. (1986) task involved choosing 
maze arms rather than simply nosepoking to odor delivery ports. 
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result could suggest that, in the original phase, the fornix 
monkeys tend to overcompress information in the first phase 
(perceiving AB and AC as compound stimuli) and are unable 
to recognize and to respond to the components (A, B, and C) 
in the transfer phase. 

However, with broader lesions including entorhinal cortex, 
monkeys show a transient impairment at simultaneous object 
discrimination (Zola-Morgan & Squire, 1985; Zola-Morgan, 
Squire, & Amaral, 1989a). Human hippocampal-damaged 
amnesics, who also generally have additional extrahippocam- 
pal damage, also show an impairment on simultaneous object 
discrimination (Squire, Zola-Morgan, &Chen,  1988). These 
data suggest that extrahippocampal structures, such as entorhi- 
nal cortex, are critical for learning simultaneous object discrimi- 
nations. 

Unfortunately, in the absence of an experiment like the 
probe mispairings of Eichenbaum et al. (1989), it is difficult to 
speculate on whether the impairment in broadly lesioned 
monkeys and humans results from an overcompression deficit 
or from some other difficulty. One theoretical possibility is that 
the entorhinal cortex is required for buffering stimulus informa- 
tion across intermediate-term delays (a few minutes), as 
suggested by Eichenbaum, Otto, and Cohen (1994). Given this 
assumption, the deficits in simultaneous discrimination would 
have more to do with remembering trial-by-trial information 
than with difficulty distinguishing stimuli. In partial confirma- 
tion of this idea, Staubli, Ivy, and Lynch (1984) found that rats 
with entorhinal lesions were not impaired at simultaneous 
odor discrimination with 45-s intertrial intervals (ITIs), but the 
entorhinal-lesioned rats were severely impaired with 3-min 
ITIs. 4 An important future extension of our modeling work 
remains the inclusion of temporal information to explore this 
idea of entorhinal buffering, as well as addressing other 
aspects of the simultaneous odor discrimination data, such as 
the differing response latencies in intact and fornix-lesioned 
rats. 

The aim of this commentary has been to provide a new, 
computational framework for interpreting existing data on 
simultaneous odor discrimination in intact and lesioned rats 
(Eichenbaum et al., 1988, 1989). Not only does the model 
succeed at accounting for the rat behaviors, but the computa- 
tional mechanisms involved are broadly consistent with the 
qualitative interpretations suggested by Eichenbaum et al. to 
explain their experimental data. We have shown that a model 
originally conceived to address hippocampal region function in 
classical conditioning requires only minimal extension to 
address an operant paradigm, simultaneous odor discrimina- 
tion. Clearly, there is scope for much more development to 
allow the model to capture more complex behaviors known to 
depend on hippocampal region mediation, including temporal 

4 The ability of Staubli et al.'s (1984) lesioned rats to learn the 
simultaneous odor discrimination with a short intertrial interval (ITI) 
does not necessarily contradict Eichenbaum et al.'s (1988, 1989) 
finding that lesioned rats were severely impaired on simultaneous odor 
discriminations with an even shorter (10 s) ITI, because Staubli et al.'s 
lesioned rats had received prelesion training on identical discrimina- 
tions with different odors, which may have improved their subsequent 
performance. 

processing, spatial processing, and so on. Nevertheless, even 
this small step suggests that there may be similar mechanisms 
underlying hippocampal region involvement in a wide range of 
paradigms and task demands and that these may eventually be 
captured within a single, unified computational framework. 
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A p p e n d i x  

S i m u l a t i o n  D e t a i l s  

The simultaneous odor discrimination task is modeled after that 
used in the empirical studies of Eichenbaum, Mathews, and Cohen 
(1989). The first phase consists of 500 blocks of training on the A + B -  
discrimination. Reward is delivered if the output choice matches the 
spatial location of A on the current trial. One block of training is 
defined as a set of trials with one presentation of each stimulus 
compound being trained; in this phase, one block therefore contains 
one AB trial (A on the left and B on the right) and one BA trial 
(B on the left and A on the right). Trial order is random within a 
block. This phase is followed by up to five similar phases of training 
with new stimulus pairings (i.e., C + D - ,  E + F - ,  G + H - ,  I + J - ,  
K + L - ) .  The rewarded response is the selection of the positive odor 
of the current pair, regardless of spatial ordering. Learning criterion 
is defined to be at least 90% correct performance on i0 consecutive 
trial blocks. 

The probe trials are implemented first by training the lesioned 
system on six discriminations as previously mentioned, and then by 
selecting two discriminations (e.g., A + B -  and C + D - )  solved by the 
system. (No lesioned-model simulation runs failed to reach criterion 
on a minimum of two discriminations; if simulations solved more than 
two discriminations, the two were chosen for which criterion was 
reached in a minimum number of blocks.) These two selected 
discriminations are then trained concurrently, intermixing trials with 
each pair in each spatial arrangement, until the 90% correct criterion 
is again reached. Any simulations that fail to reach criterion on the 
concurrent task within 500 training blocks are discarded from the 
analysis. Finally, the mispairings are trained, each block consisting of 
one trial each of the mispairings (e.g., A + D - ,  B - C + )  in each 
possible spatial arrangement. The performance reported in Figure 14 
compares percent correct over the last 10 blocks of concurrently 
trained pairs and the first 10 blocks of mispair trials. Intact system 
simulations runs were then yoked to the lesioned simulations, such 
that the same probe discriminations were chosen for the nth intact 
simulation as for the nth lesioned simulation. 

All results described in this article are averaged over 10 different 
simulation runs. 

External  Inputs  

On each trial, input consisting of a 48-element vector is presented to 
the system. The first 12 elements represent the 12 possible distinct 
odor stimuli, A, B . . . . .  L. If an odor is present, the corresponding 
element is activated (set to 1.0); otherwise, it is set to 0.0. The 
remaining 36 elements comprise 12 three-element subfields, contain- 
ing location information about each of the 12 possible odors. If a 
stimulus is present, exactly one element of its subfield is activated, 
indicating that it is present at the left, center, or right odor port. For 
the experiments reported here, two stimuli are presented at each trial, 
one at the left and one at the right odor port (the center odor port is 
never used in the experiments reported here). 

In tac t  Model  

The intact model shown in Figure 6A consists of three interacting 
modules. The piriform cortex network is assumed to preprocess and 
cluster odor stimuli according to superficial similarity and co- 
occurrence. Because the representations of the odors in the original 
system input are orthogonal, there is no particular basis for clustering 
based on superficial similarity; however, odors are clustered based on 
co-occurrence. This piriform network is based on the piriform cortex 
model described by Ambros-Ingerson, Granger, and Lynch (1990), 
altered to eliminate feedback input masking that depends on recipro- 
cal connections between piriform cortex and olfactory bulb, not 
assumed present in our model. The resulting simplified network is 
similar to the unsupervised, competitive-learning networks proposed 
by Grossberg (1976), Kohonen (1984), Rumelhart and Zipser (1985), 
and others. 

The piriform network consists of 25 nodes, each receiving 156 
inputs: the 12 odor inputs each magnified to occupy a 10-element 
subfield (all ls if the odor is present and all 0s otherwise) and the 36 
spatial inputs. The connections are then initialized from the uniform 
distribution U[0.0 . . .  1.0], and then normalized so that the total 
weight to each node sums to 1.0. The nodes are divided into five 
patches of five nodes each. 
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On each trial, each patch individually determines its winning node j  
with greatest activationyj determined as: 

where w 0 is the connection strength from input i to unit j, Yi is the 
activation of input i, andf(x)  = 1/(1 + e-x). The output of each winner 
j is set to 1.0, and the outputs of all other nodes in the patch are set to 
0.0. Each node j  then updates its weights as: 

a w i j  = 13(tj - y j ) y i ,  

with learning rate 13 = 0.005, tj = 1.0 for winning nodes and tj = 0.0 for 
all other nodes, and all weights are bounded as 0.0 < wq < 1.0. 

The second module, a hippocampal region network, receives as 
input the output from the piriform network as well as the external 
inputs detailing spatial information. This is a fully connected predic- 
tive autoencoder with 61 inputs (36 spatial external inputs plus 25 
outputs from the piriform network), 25 internal layer nodes, and 63 
output nodes trained to reconstruct the 61 inputs plus a prediction of 
whether the behavioral response was "go-left" or "go-right." The 
activation of each internal layer and output node j  is computed as: 

+ 

where wij is the connection strength to j  from a node i in the previous 
layer, 0j is the bias of node j, andf(x)  = 1/(1 + e-x) .  The wij and 0j are 
initialized from a uniform distribution U [ - 0 . 1 . . .  +0.1]; two random 
weights on each internal layer node are initialized as U [ -  1 .0 . . .  + 1.0]. 
The training signals ti to the first 61 output units are simply the 61 
inputs, while the training signals ti to the last 2 output units were 1.0 for 
the chosen output response and 0.0 for the unchosen output. The 
weights wij are trained by error backpropagation (Rumelhart, Hinton, 
& Williams, 1986), such that on each trial: 

Awi j  = 13errjyj(1 - y j )  + a A ' w i j ,  

with learning rate 13 = 0.25 and momentum ct = 0.9; biases 0j are 
trained as if they are weights from a unit i that constantly outputsyi = 
1.0; and A'wij represents the last change to weight wij. For output units, 
errj = tj - yj, whereas for internal layer units, 

errj = ~ errky k . 
k 

The association cortex network contains 61 input nodes, which 
receive the same inputs as the hippocampal region network: 36 spatial 
external inputs plus the 25 outputs of the piriform network. It also 
contains 25 internal layer nodes and 2 output nodes L and R 
corresponding to the possible left and right output response choices. 
Initialization and activation functions are identical to the hippocampal 
region network. The actual system behavioral response, a choice of the 
left or right odor port, is computed from the 2 output nodes L and R 
according to: Pr(response = choose left) = 1/1 + e 4'~yR - YL) with cb = 
10.0. The output units are trained as in the hippocampal region 
network, except that 13 = 0.5 and there is no momentum (ct = 0.0). The 
internal units are trained similarly except that the error errj on an 
internal layer node j  in the association cortex network is computed as 
the difference between yj  and the activation of the j th hippocampal 
region network internal layer node. In this model, for simplicity, t~ere 
is a one-to-one mapping between the internal layer nodes of the 
hippocampal region and association cortex networks; elsewhere we 
have shown that this one-to-one mapping is not necessary and a fixed 
linear recombination suffices (Gluck & Myers, 1993). 

The number of nodes in each of the model's networks is essentially 
arbitrary. After the size of the input and output vectors was fixed, the 
remaining parameters of a number of units in the hippocampal 
network hidden layer, association cortex hidden layer, and piriform 
network were set equal for simplicity. Although we did not conduct 
parametric studies regarding the optimal value for this number, 
informal tests showed that the model performance was not particularly 
fragile with respect to the number of nodes. The most critical 
parameters are the width of the patches in the piriform network, 
because this governs the amount of compression that will occur "across 
inputs, and the variance in weight initialization, because a lesioned 
system with too little variance will never solve any discriminations, 
whereas too much variance will allow solution of all discriminations. 
The parameters used here represent a trade-off between these 
tendencies. 

L e s i o n e d  M o d e l  

The lesioned model assumes that the hippocampal region network is 
disrupted to preclude weight adaptation. This is implemented by 
reducing the hippocampal learning rate to 0.0. As a result, the internal 
representations in the hippocampal region network are a random 
(fixed) transformation of the piriform cortex output and the spatial 
input. This is a significant departure from the simpler cortico- 
hippocampal model presented in Gluck & Myers (1993) that imple- 
mented the lesioned model by assuming the absence of all hippocam- 
pal region stimulus preprocessing and assuming that cortical network 
internal layer representations were fixed. 

The external output of this module is a 25-element vector, specifying 
the activations of the hippocampal network internal layer nodes, and 
represents the new representation formed by the hippocampal region 
network. 
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