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Abstract

In probabilistic categorization tasks, various cues are probabilistically (but not perfectly) predictive of class membership. This means

that a given combination of cues sometimes belongs to one class and sometimes to another. It is not yet clear how categorizers

approach such tasks. Here, we review evidence in favor of two alternative conceptualizations of learning in probabilistic

categorization: as rule-based learning, or as incremental learning. Each conceptualization forms the basis of a way of analyzing

performance: strategy analysis assumes rule-based learning, while rolling regression analysis assumes incremental learning.

Here, we contrasted the ability of each to predict performance of normal categorizers. Both turned out to predict responses about

equally well. We then reviewed performance of patients with damage to regions deemed important for either rule-based or incremental

learning. Evidence was again about equally compatible with either alternative conceptualization of learning, although neither

predicted an involvement of the medial temporal lobe. We suggest that a new way of conceptualizing probabilistic categorization

might be fruitful, in which the medial temporal lobe help set up representations that are then used by other regions to assign patterns

to categories.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In probabilistic category-learning tasks, various cues are
probabilistically (but not perfectly) predictive of class
membership. They have been used extensively in cognitive
and neuropsychological research, especially because they
are thought to provide insight into implicit forms of
learning, cognitive flexibility and the use of feedback
signals in the brain. These tasks have also been used to
elucidate cognitive deficits in several patient populations,
including patients with medial temporal lobe damage and
patients with Parkinson’s disease (Knowlton et al., 1994,
1996; Hopkins et al., 2004; Shohamy et al., 2004).

While probabilistic categorization has been widely
embraced in cognitive neuroscience research, it is still
unknown exactly how individuals solve such tasks. It could
be that participants attempt to find a rule underlying the
category assignments, but repeated exposure to exemplars
could also slowly lead to a tendency for subjects to group
similar stimuli in the same categories. A third way to solve
the task is that subjects could simply memorize an answer
for each individual cue combination. Thus, there are
several ways in which a subject could approach probabil-
istic categorization tasks and achieve significantly better-
than-chance performance. Especially relevant from a
theoretical viewpoint is whether probabilistic categoriza-
tion can be considered a procedural memory task, or is in
part or whole a declarative memory task. Probabilistic
category learning was developed to tap procedural memory
(Knowlton et al., 1996), but more recently researchers have
been arguing for a declarative component to the task
(Meeter et al., 2006), or even that the task is entirely
declarative (Lagnado et al., 2006). Here, we will discuss
evidence for such a reclassification of probabilistic categor-
ization as a declarative memory task. As with similar
debates, the hardest questions to answer are what it means
for the task to be procedural, and what would count as
evidence for a reliance of the task on procedural or
declarative memory. We will first turn to these questions.

2. What does it mean for a task to be procedural?

Procedural memory refers to ‘‘knowing how’’ to do
things, and usually implies a lack of conscious access to the
memories underlying performance. Procedural memories
are acquired slowly through training, and are highly
specific: they underlie a precise skill or procedure.
Declarative memory refers to ‘‘knowing that’’, and under-
lies our knowledge of facts and events (Cohen and Squire,
1980). Declarative memories are flexible, in that they can
underlie multiple kinds of performance. They can be
reflected upon consciously, are representational (i.e.,
represent something in the world), and seem to rely on
the medial temporal lobe (Squire, 2004). A similar
distinction is that made between implicit and explicit
memories (Graf and Schacter, 1985); memories are explicit
when they can be accessed consciously, while implicit
memories are those that influence behavior without
conscious awareness. Although procedural and implicit
seem to denote the same construct, there is a difference in
focus that may be significant in some contexts. Indeed, a
recent model of skill learning firmly disconnects the two,
arguing for example for explicit procedural memories (Sun
et al., 2005).
These distinctions map only imperfectly to a typology of

learning in deterministic categorization, different from
probabilistic categorization in that each pattern is always
associated with a particular outcome. Say that a partici-
pant must classify colored line segments as belonging to
either category X or category Y. If there is some easily
verbalizable rule underlying the classification, such as that
all red items belong to X and all blue items to Y,
participants will usually discover the rule and use it. Ashby
and Ell (2001) call such tasks rule-based category-learning
tasks. The underlying model of learning is hypothesis
testing, in which rules are discarded when they lead to
wrong responses. Rule-based learning could be seen as
either declarative, as the rules are presumably flexible and
representational, or procedural, as the rules describe how
to do a task (for Sun et al., 2005, rule-based learning is
explicit and procedural).
In other tasks, there may be no easy rule: for example,

long bluish segments belong to X, but not if they are too
long or too blue. In such cases, participants have to
integrate information from multiple dimensions, and
slowly learn where in the multidimensional stimulus space
the category boundaries are. Ashby and Ell (2001) term
this an ‘‘information integration’’ approach, but we will
here talk of incremental learning. This is because the
integration of information across dimensions seems less
essential than the slow, incremental learning of category
boundaries. Such learning is sometimes also seen in tasks
where integrating information across dimensions is not
important, for example in children (Raijmakers et al.,
2001). Incremental learning seems to fit characterizations
of procedural learning in that it is slow, but is not
necessarily inflexible given the variance over time often
seen in categorization performance.
A special case of tasks in which no rule can be found is

when there are so few exemplars that participants try to
memorize all exemplars, and just remember what category
each exemplar belonged to.
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These kinds of learning are generally linked to different
brain systems (Ashby and Ell, 2001). Tasks that allow
learning through rules appear to rely on the basal ganglia
and the prefrontal cortex. Incremental learning tasks are
thought to rely most on the basal ganglia. Finally, tasks
involving memorization of exemplars are affected mostly
by medial temporal lobe lesions. Since the medial temporal
lobe is usually thought to be the substrate of declarative
memory, such learning would most likely be declarative.

2.1. Application to probabilistic categorization

Can these distinctions be mapped onto the ways in which
individuals could solve probabilistic categorization tasks?
One such task is the weather prediction task, or WP task.
In this task, participants are shown sets of ‘‘tarot cards’’
that might predict the weather. Four cards can be part of
these sets, each linked to four roles. The four cards are
usually referred to as cues, while the sets of cards are
referred to as patterns. One cue strongly predicts rainy
weather (typically with 80% likelihood), one cue weakly
predicts rain (typically with 60% likelihood), one cue
strongly predicts sunny weather, and one weakly predicts
sun (Fig. 1). At each trial, participants are shown a pattern
consisting of one to three of these cues, and have to
indicate whether rainy or sunny weather is more likely. The
participants are given feedback. Participants are not
instructed regarding the predictive association of the
different cues, but have to learn via trial and error which
patterns predict rainy weather, and which predict sunny
weather.

Rule learning as the underlying mechanism would
suggest that participants go about this task by attempting
to find a rule to categorize all patterns (e.g., if the card with
squares is present, then respond ‘‘sun’’, else respond
‘‘rain’’). Strict testing of possible rules would be impractical
Fig. 1. Four cards in the weather task, and the likelihoods with which they

predict the outcomes, rain and sun. The strong rain (‘‘R’’) and sun (‘‘S’’)

cards each predict the weather (rain or sun) with 80% probability, while

the weaker rain (‘‘r’’) and sun (‘‘s’’) cards each predict the outcome with

60% probability. One, two or three cards are presented on each trial, and

the probability of each outcome on a given trial is a function of the

probabilities of all cards present on that trial.
in probabilistic categorization, as no rule will lead to 100%
correct performance. Instead, participants may try new
rules of sets of rules whenever they feel too many responses
were wrong in close temporal proximity. Incremental
learning would suggest that subjects learn slowly, over
trials, how to respond to individual cues (e.g., they could
slowly discover that patterns including the squares card are
more likely to be followed by sunny weather). Memoriza-
tion would be akin to that participants learn to respond in
a certain way to each individual pattern (e.g., the pattern
with both squares and circles cards present usually means
‘‘sun’’).
None of these alternatives have been proposed in quite

these words. Several papers have suggested that probabil-
istic categorization may rely on a habit-learning system
encompassing the basal ganglia, and a declarative memory
system centered on the medial temporal lobe (Poldrack
et al., 2001; Moody et al., 2004; Foerde et al., 2006). In
these papers, the habit-learning system is described in ways
that suggest incremental learning. The declarative learning
is not described in much detail, and might encompass either
rule-based or memorization learning.
Lagnado et al. (2006) provided a concrete proposal for

how learning in probabilistic categorization might be
incremental. They argued that learning in the weather
prediction task is gradual, and based on incrementally
learning the extent to which each of the four cards predicts
either sun or rain (i.e., finding the weight of each card).
Such learning cannot be characterized as either implicit or
procedural. Lagnado et al. (2006) argued that participants
are aware of their cue weights: When asked to judge
the contribution of cards to category assignment, subjects
made explicit judgments that resemble the card weights
revealed through their performance. Moreover, weights
were not inflexible, one of the main characteristics
of the outcomes of procedural learning. Data from
individual participants showed, instead, that weights
changed substantially throughout the experiment. Meeter
et al. (2006) provided a conceptualization of learning
that is suggestive of rule-based learning. They suggested
that participants base their responses in probabilistic
categorization tasks on a strategy, a rule or set of rules
that assigns patterns to the two categories of sun and rain.
An example of such a strategy is the ‘‘strong rain single-
card strategy’’. This strategy assigns all patterns containing
the strong rain card (the squares card in Fig. 1) to the
‘‘rain’’ category, and all other patterns to ‘‘sun’’. Fourteen
strategies were defined, all of which led to above-chance
performance and were simple enough to be formulated
and used. Meeter et al. (2006) identified discrete shifts in
the strategy used by participants over the course of an
experiment, termed strategy shifts. The strategy shifts
are akin to shifting from one rule to another, as occurs in
rule-based learning. Meeter et al. (2006) did not commit
to explicitly formulated rules, arguing only against
the underlying learning being incremental. The third
alternative, that participants memorize pattern–response
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combinations, has not been put forward, but will be
returned to in Discussion section.

Can a choice between these alternatives be made on
empirical grounds? The positions appear to make contrary
predictions in at least two areas. A first set of contradictory
predictions concerns the trajectory of learning. Incremental
learning approaches predict gradual learning, as exempli-
fied by gradient descent algorithms. Rule-based learning,
on the other hand, predicts a ‘‘jerky’’ learning trajectory,
with sudden jumps in performance. Moreover, the two
approaches suggest that different techniques are best suited
to predict performance of participants: one geared towards
uncovering weights of cards and the other geared towards
uncovering strategies.

Second, the positions predict different brain substrates
for probabilistic category learning. If probabilistic categor-
ization is primarily or partly an incremental learning task,
deficits should be apparent in patients with basal ganglia
abnormalities. If, on the other hand, probabilistic categor-
ization is primarily or partly a rule-based learning task,
deficits should occur both in patients with basal ganglia
and in patients with prefrontal lobe lesions. Neither
position would prima facie predict deficits in patients with
medial temporal lobe damage, which would, however, be
expected if memorization plays a role.

In the following text, we will first discuss how normal
performance in the weather prediction task can best be
analyzed, followed by evidence from patient populations
with damage in neural areas thought to be involved in
probabilistic categorization.

3. What can we learn from a precise look at performance?

Traditionally, category-learning data is analyzed by
calculating the proportion of optimal responses over the
course of the experiment. The resultant learning curves
depict how fast participants solve the task, but do not
divulge much about how participants solve it. Two richer
ways of analyzing performance have been introduced. One
is strategy analysis, introduced by Gluck et al. (2002) and
fine-tuned by Meeter et al. (2006); the other is rolling
regression, adapted to the weather prediction task by
Lagnado et al. (2006) following Kelley and Friedman
(2002). We will discuss both in turn.

3.1. Strategy analysis

Gluck et al. (2002) recognized that in weather prediction,
responses of participants to particular stimuli may occur in
consistent patterns that are informative about how
participants approach the task; they termed these consis-
tent patterns strategies. Gluck et al. considered a finite set
of four basic strategies, and were able to show that the
behavior of most healthy participants was consistent with
one of these strategies. Gluck et al. were also able to show a
progression in individual participants from simple strate-
gies to more complex ones as the experiment progressed.
Meeter et al. (2006) later extended and elaborated on the
strategy analysis, and it is this extension that we will discuss
here.
On any one trial in weather prediction, participants are

presented with a pattern consisting of one, two, or three
cards, and have to give a binary response (i.e., ‘‘sun’’ or
‘‘rain’’). This response can be thought of as being based on
a disposition to answer ‘‘sun’’ or ‘‘rain’’ to the presented
pattern with a certain probability. In fact, the participant
might have such a disposition to each of the patterns in the
task. Strategy analysis is an attempt to infer this set of
dispositions for each participant from series of trials. From
one response on a trial, it is impossible to deduce the set of
dispositions of the participant towards all patterns. Even
the disposition to the specific pattern presented on a trial
cannot be deduced (e.g., if the participant answered ‘‘sun’’,
only a likelihood of 0 of answering ‘‘sun’’ is ruled out; all
other values are still possible). However, if the set of
dispositions of the participant remains constant over a
number of trials, it might be possible to identify the
disposition from the pattern of responses.
Meeter et al. (2006) showed, using Monte Carlo

simulations, that such identification of dispositions was
possible, provided that the set of possible dispositions is
limited. Possible sets of dispositions are called strategies in
strategy analysis, and their number is limited by two
principles: that all strategies lead to above-chance perfor-
mance, and that they must be simple enough to be
formulated and used. Each strategy is formulated as an
ideal type of responses, which is fitted to series of 24 trials.
In this way, the strategies used by a participant can be
monitored throughout the experiment, and a switch from
one strategy to the next can be pinpointed with reasonable
precision.
Strategy analysis makes two strong assumptions. First,

that there are stable states in performance that map onto
the set of strategies and, second, that learning involves
rather discrete switches that typically involve all patterns at
once. The second assumption is the one that ties strategy
analysis to rule-based learning: if responses to each cue
evolve independently of one another, then learning will
typically not affect all patterns at once; thus it will not be
equivalent to the kind of switches strategy analysis looks
for. Moreover, if dispositions of participants towards cues
or patterns evolve slowly over trials, then any discrete
switch in performance is an artifact.

3.2. Rolling regression

An alternate way to describe subject learning in the
weather prediction task is rolling regression analysis
(Lagnado et al., 2006). Rolling regression analysis is based
on a model of learning in which participants try to uncover
the weights of each card, and then combine the weights of
the cards in a pattern to compute the odds of responding
‘‘sun’’ or ‘‘rain’’ to that pattern. The weights quantify how
much each card predicts rain or sun, in more or less the
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same way that regression coefficients quantify the relation
between independent and dependent variables. Rolling
regression analysis tries to uncover the weights through a
logistic regression of participants’ responses. If, for
example, a participant tends to respond ‘‘rainy’’ to patterns
that contain the square card, the analysis will lead to a high
weight for the squares card (weights are positive for those
cards that predict rain, and negative for those that predict
sun). Lagnado et al. (2006) showed that when data are
analyzed in this fashion, the weights of cards move away
from 0, for most participants during the experiment, to
positive values for cards that predicted rain, and negative
values for cards that predicted sun.

Just as strategy analysis assumes a certain form of
learning on the part of the participants, the same is true for
rolling regression analyses. Rolling regression analysis
assumes that learning is incremental, and consists of slowly
developing weights for the four cards. The weights are then
integrated into odds of responding ‘‘rain’’ or ‘‘sun’’ for a
particular pattern of cards. It is fair to say that both
strategy analysis and rolling regression analysis make
strong assumptions about the ways in which participants
are learning, and that the analyses are valid only if
participants are indeed learning in the assumed manner.
This begs the question of which manner of learning is in
fact more often used by humans learning the weather
prediction task. One way to investigate which form of
learning is more prominent is to investigate which type of
analysis is best at extracting patterns from human
performance in probabilistic categorization tasks.

4. Predicting responses of healthy subjects

To test which type of analysis is superior, we applied
analyses to an existing set of data collected from healthy
young adults (university students) performing the weather
prediction task. We set out to ascertain how well the
analyses could predict an individual’s future responses, on
the basis of that individual’s prior responses. If the analysis
does not predict subsequent responses, it would indicate
that the analysis is not a good descriptor of the response
pattern—at least for that individual.

We analyzed data first reported by Gluck et al. (2002),
Experiment 2. In brief, participants were 30 Rutgers
University undergraduates (17 female, mean age 20.7
years) receiving class credit for their participation. They
were given a 200-trial weather prediction task; on each
trial, they were given 1 of 14 patterns consisting of the
cards shown in Fig. 1, and asked to predict whether the
weather would be rain or sun. After their response,
participants received visual feedback about the actual
weather outcome. Two hundred trials were generated to
satisfy the card-outcome probabilities shown in Fig. 1;
ordering of the trials was random but fixed across subjects.
Responses were scored as ‘‘optimal’’ based on whether
participants predicted the weather outcome most often
associated with the current pattern, independent of the
actual weather on the trial. Fig. 2 shows performance of
participants over the 200 trials, as reported in Gluck et al.
(2002). From a level close to chance, performance
increased to about 80% optimal answers.

4.1. Fitting responses

Fig. 3 shows the outcomes of the analyses, both for all
participants and for three individual subjects. The strategy
analysis yields a progression from simple to complex
strategies (also see Meeter et al., 2006). Early in training,
most participants were best fit by simple strategies, with
few or none best fit by a strategy in which all responses
are optimal. By the end of training, more than half of
participants were best fit by either an optimal strategy or
by a strategy of intermediate complexity (Fig. 3A). At the
individual level, however, progress was not smooth.
While some participants progressed relatively smoothly
from simple to complex strategies (e.g., participant 1 in
Fig. 3B), others switched back from simple to no strategy
(e.g., participant 2) or from complex to simpler strategies
(e.g., participant 3 and participant 1 at the end of the
experiment, see Fig. 3B).
The outcomes of the rolling regression analysis are

shown in Fig. 4A. Weights of the cards were capped at 10
before averaging, because some reached very high values
that distorted the results. Participants on average gave
negative weights to cards that predict rain, and positive
weights to cards that predict sun. Moreover, the weights of
the ‘‘strong’’ cards (i.e., the cards with strong predictive
power) were larger than those of the ‘‘weak’’ cards.
Replicating Lagnado et al. (2006), card weights exceeded
the values that corresponded to the cards’ objective
predictive power (gray lines in Fig. 4A). Learning seemed
to be gradual, with card weights moving away from 0
throughout the experiment.
This was again not what appeared at the individual level.

Fig. 4B–D shows the weights computed from the perfor-
mance of the same three participants of whom fitted
strategies are shown in Fig. 3B. For participants 1 and 3
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(Fig. 4B and D), weights brusquely changed from low to
high values. The trials at which this occurred were
generally those at which the strategy analysis identified a
switch from one strategy to the next. For participant 2,
who was best fit by the ‘‘random’’ strategy throughout
most of the experiment, weights changed smoothly but
remained close to zero.

4.2. Response prediction

The results of both analyses were used to generate
predictions for the responses. For strategy analysis, the
strategy fit on trials t�d to t�1 was used to generate a
prediction for trial t. For example, if a strong rain single-
cue strategy (respond ‘‘rain’’ of strong rain card is present
in the pattern, else respond ‘‘sun’’) fit best on a
participant’s responses on the d previous trials, the
prediction for trial t would be ‘‘rain’’ if the strong rain
card was present in the pattern, and else it would be ‘‘sun’’.
For rolling regression analysis, the weights fit on trials t�d

to t�1 were used to generate the prediction. Weights were
combined into an odd of a rain response, which was then
transformed into a likelihood. Likelihoods above 0.50 were
taken to predict a rain response, those below 0.50 as
predicting a ‘‘sun’’ response. Lagnado et al. (2006) used 50-
trial windows in their analysis, while Meeter et al. (2006)
used windows of 24 trials. To equate the two, we ran both
with 30-trial windows (i.e., d ¼ 30), although for both, d

did not matter much for the quality of the predictions (see
Fig. 5). This means that only the trials after the 30th were
analyzed, as the first 30 trials were necessary to generate
predictions for trial 31.
Fig. 5 shows that the strategy analysis made fewer

prediction errors than the rolling regression analysis. The
comparison is unfair, however, as strategies often predict
random behavior on certain patterns, and thus in fact do
not make a prediction for trials in which one of these
patterns was presented. By contrast, even when the rolling
regression analysis gives a likelihood of responding ‘‘rain’’
of 0.51 (i.e., very close to chance level), this was counted as
a prediction of rain. Indeed, the likelihood that a
prediction of the rolling regression analysis was correct
was dependent on the distance from 0.5—e.g., a trial in
which the rolling regression analysis predicted a ‘‘rain’’
response with a likelihood of 0.8 was more likely to indeed
have had a rain response than a trial on which the
predicted likelihood was 0.6 (see Fig. 6). To correct for this,
we added one half of the trials in which no prediction was
made by the strategy analysis to the error trials. With
this correction, the two forms of analysis seem largely
equivalent in their ability to predict responses.
Given that the two forms of analysis are based on very

different assumptions, it is surprising that they are so
similar in their ability to predict responses. One possibility
is that some participants engage in rule-based learning and
others in incremental learning, as has been shown in
deterministic categorization tasks (Raijmakers et al., 2001).
Some participants would then be well characterized by
strategy, others by rolling regression analysis. This turns
out not to be the case: overwhelmingly, the same
participants who are characterized correctly (or incor-
rectly) by one analysis tend to be characterized correctly
(or incorrectly) by the other analysis (see Fig. 7). The
correlation between the number of responses predicted well
by the one or the other was 0.95. It was also not the
case that rolling regression was superior in predicting
early trials and strategy analysis in later trials. Both were
better at predicting responses in the second half of the
experiment (trials 101–200) than in the first half (trials
31–100), F(1,29) ¼ 8.33, po0.001, but no interaction was
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found between experiment half and type of analysis, Fo1
(there was also no main effect of type of analysis,
F(1,29) ¼ 1.93, p40.1).

A reason for the similar performance of the two analyses
is that their predictions are highly correlated. Table 1
shows trials of all participants separated out by prediction
of the rolling regression analysis and of the strategy
analysis. The table shows both the number of trials in each
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Table 1

The proportion of trials on which a ‘‘sun’’ response was given, as a

function of the predictions made by strategy analysis (rows) and rolling

regression analysis (columns)

Rolling regression prediction

Rain response Sun response Average

Strategy prediction

Rain response 0.14 (25%) 0.33 (2%) 0.15

Sun response 0.65 (1%) 0.90 (26%) 0.89

No prediction 0.38 (22%) 0.62 (24%) 0.51

Average 0.26 0.75

Also given, in the parentheses, is the proportion of trials in each category.
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cell (as a percentage of all trials), and also the proportion
of trials in which the respondent answered ‘‘sun’’. From the
table, it is evident that on most trials the predictions of the
two forms of analysis are the same. For those trials in
which the two analyses make opposite predictions,
responses are most often in line with the prediction made
by the strategy analysis (i.e., the proportion of ‘‘sun’’
responses is high for trials in which strategy analysis
predicts sun but rolling regression analysis rain, and vice
versa). On the other hand, on the trials on which strategy
analysis does not make a prediction, the prediction of the
rolling regression analysis is clearly above chance. These
findings suggest that strategy analysis is better at capturing
stable patterns in performance, but that some learning is
overlooked which is captured by the rolling regression
analysis. These responses are not characterized very well by
rolling regression analysis either, however, as the odds
of a ‘‘sun’’ response is 1.63 in the trials in which rolling
regression analysis predicts ‘‘sun’’ and strategy analysis
makes no prediction.
4.3. Jerkiness of learning

A difference between the assumed learning profiles is
that strategy analysis assumes a ‘‘jerky’’ learning trajec-
tory, while rolling regression analysis is based on the idea
of smooth, incremental learning. As shown in Fig. 4B and
D, in some participants cards weights change dramatically
from one trial to the next, more suggestive of a ‘‘jerky’’
learning trajectory than of incremental learning. Such
jumps in card weights seem indicative of strategy switches,
which are indeed diagnosed by the strategy analysis at
about the same trial. We investigated whether such jumps
in cards weights occurred more often than could be
expected if learning were gradual.
To provide a fair baseline, we generated a simulated

weight change for each transition from trial n to trial n+1,
assuming gradual weight change. Again, 30-trial windows
were used. We took the fitted weights at the start and the
end of the windows used to fit trial n and n+1, and then
assumed a linear change of weights over the course of the
30 trials (i.e., if the weight for a cue increased from 0.2 on
the first trial of the window to 0.5 on the 30th trial, the
weight for this cue on trial 5 in the window was assumed to
be 0.25). For each trial, we then computed from the weights
a likelihood of responding ‘‘sun’’ or ‘‘rain’’ given the
pattern that, in that trial, was being presented to the
observer. Monte Carlo simulation was then used to create a
concrete set of responses from the likelihoods. These were
fitted using rolling regression, resulting in weights for trial
n, and weights for trial n+1. The difference between these
two sets of weights was taken as the baseline for the weight
changes observed in the data. Both the real and the
baseline weights were first capped at 10 or –10 before
weight changes were computed.
Fig. 8 shows the distribution of weight changes over the

trials 51–150 in the experimental data, and in the simulated
weight change baseline. Larger weight changes (i.e., larger
than 0.10) were more frequent in the data than in the
baseline, t(29)48, po0.001 for all four cues. In a further
difference, changes of the weights of individual cards are
correlated in the data (r ranging from 0.07 for the strong
and weak ‘‘sun’’ cue, to �0.486 for the two strong cues, all
po0.001); this is not the case in the baseline changes
(r ranging from 0 to 0.04, all insignificant by the criterion
of 0.009 set by the Bonferroni correction). Correlated
weight change would be expected if sudden strategy shifts
underlie the weight changes, as in such shifts weights of all
cues would shift at once.

4.4. Conclusion

Strategy analysis and rolling regression analysis are more
or less equivalent in the ability to predict responses in
healthy subjects. Neither is particularly good as a
predictive tool: for rolling regression analysis, approxi-
mately 30% of responses were counter to the prediction.
Strategy analysis led to fewer faulty predictions, but in
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many trials no prediction was made. Correcting for the
trials with no prediction led to approximately the same
error rate as rolling regression analysis. This was the case at
a collective level, but also at an individual level. Some
participants respond in a predictable fashion to the
patterns, others do not, and this is independent of the
analysis used.

There are several ways in which this data pattern
can be understood. First, it is possible that the rule-based
learning analyzed with strategy analysis and the incre-
mental learning analyzed with regression are present
in all participants, and are highly correlated. In this
case, a combination of both types of analysis would be
best at characterizing learning. Second, it is possible that
one form of analysis mimics the other. For example, it
could be that the regression analysis captures true learning,
and that the strategy analysis is able to capture variance in
the learning, because certain sets of weights resemble
strategies.

A suggestion of regression analysis mimicking strategy
shifts can be found in sudden weight changes. At trials in
which the strategy analysis identifies a strategy switch,
large changes of cue weight are found by regression
analysis. Such large changes occur with higher frequency
than can be explained by incremental change in underlying
weights used by participants. There are several caveats in
interpreting this result, however. First, the weights and
strategies were derived from windows of trials, which by
necessity entails a smoothing of the learning trajectory. If,
for example, the strategy of a participant changes at trial
63, this will not immediately become apparent in the
weights for trial 64, as these are based on trials 35–64. On
most of these trials, the ‘‘old’’ strategy was still used.
A second problem is that a less smooth progression of
weights than assumed here might produce more large
weight changes, in line with what is found in the data.
Future studies will need to determine to what extent the
‘‘jerkiness’’ of the learning trajectory is real, and to what
extent it is a methodological artifact.

5. Patient populations and probabilistic categorization

We now turn to evidence from patient populations. To
reiterate, if probabilistic categorization would rely on
procedural learning, the task could be assumed to rely on
the basal ganglia. Rule-based learning would imply a
reliance on both the basal ganglia and the frontal cortex,
while instance memorization would imply a reliance on the
medial temporal lobe. We will discuss evidence with regard
to each region in turn.

5.1. Basal ganglia

Several papers have investigated probabilistic categor-
ization in patients with basal ganglia abnormalities. These
studies have predominantly included participants with
Parkinson’s disease. In Parkinson’s disease, dopaminergic
projections to the basal ganglia are affected, leading
to abnormal basal ganglia functioning. As is reviewed in
more detail elsewhere in this issue, patients with Parkin-
son’s disease are consistently impaired on probabilistic
categorization tasks. Although participants with Parkin-
son’s disease do achieve above-chance performance,
their learning is significantly slower than that of
matched controls. (Shohamy et al., 2004; Perretta et al.,
2005). In a somewhat different study, degeneration of brain
tissue in patients with Alzheimer’s disease was measured
through magnetic resonance spectroscopic imaging
(MRSI). Basal ganglia degeneration correlated with poor
performance in the Weather Prediction task (Colla et al.,
2003).
Corroborating evidence for a role of the basal ganglia in

category learning comes from several studies that assessed
brain function of healthy volunteers via functional
magnetic resonance imaging (fMRI), while the participants
performed the weather prediction task. All found increased
activity in the striatum of the basal ganglia after the first
few trials (Poldrack et al., 2001; Aron et al., 2004; Foerde
et al., 2006).

5.2. Prefrontal cortex

Whereas results on basal ganglia involvement are quite
clear-cut, this is not the case for the prefrontal cortex.
One study investigated a population with varying pre-
frontal lesions, and did not find any effects of these lesions
on probabilistic categorization (Perretta et al., 2005),
although this may have been due to variability in the
location of lesions. By contrast, fMRI studies do suggest
involvement of prefrontal cortical areas in probabilistic
categorization (Aron et al., 2004; Flanery, 2005). In these
studies, probabilistic categorization was compared either
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with a memorization task (Aron et al., 2004) or with a
prototype distortion categorization task (Flanery, 2005).
Furthermore, a transcranial magnetic stimulation (TMS)
study found that stimulating the prefrontal cortex (in a
regime thought to enhance excitatory transmission) was
beneficial for probabilistic categorization performance
(Kineses et al., 2004). Whereas lesion evidence thus
suggests only a limited role of the prefrontal cortex in
probabilistic categorization, imaging and TMS studies
suggest the opposite.

5.3. Medial temporal lobe lesions

Whether amnesic patients with hippocampal damage are
impaired at probabilistic category learning has been
debated in the literature. The first report with amnesic
patients of mixed etiology (including hippocampal and
diencephalic patients) found no learning impairment
relative to healthy controls early in learning, although an
impairment did emerge with extended training (Knowlton
et al., 1994). Moreover, patients with Alzheimer’s disease
were found to be unimpaired in weather prediction
(Eldridge et al., 2002). A later report considering only
amnesic patients with bilateral hippocampal damage due to
hypoxic brain injury found that amnesic patients were
impaired both early and late in learning (Hopkins et al.,
2004). This latter paper conducted strategy analyses on the
amnesic patients and controls, and suggested that the
amnesic patients did not use complex strategies as often as
control participants did.

The strategy analyses reported by Hopkins et al. (2004)
could not determine, however, whether the amnesic
patients failed to acquire any strategy, whether they
acquired a simple strategy but then did not switch to a
complex one later, or whether they could acquire a
complex strategy but abandoned it more often than control
participants. Meeter et al. (2006) reanalyzed the data from
Hopkins et al. (2004) to more precisely determine the cause
of the learning decrements in the amnesic patients. Meeter
et al. (2006) found that at the start of learning, there was
little that differentiated the performance of amnesic
patients and control participants. In both groups, some
participants adopted simple strategies whereas others did
not. Nevertheless, differences in strategy use between
amnesic patients and control participants appeared quite
early in learning (i.e., around trial 40). Normal controls
gradually moved to more complex strategies. Amnesic
patients, on the other hand, fell back to having no
recognizable strategy as often as they switched to a
different strategy. These findings suggest that the amnesic
patients are unable to keep track of attempted strategies
and of the feedback received over the course of the
experiment. Such an inability to remember the strategies or
feedback would fit with the general pattern of abnormally
rapid forgetting in amnesic patients.

In apparent contrast with the clinical results, evidence
from functional imaging (fMRI) is suggestive of an MTL
role early in learning. In one study, MTL activity was only
observed in the first 15 trials of the weather task. After
these trials, activity in the MTL was even lower in
probabilistic categorization than in the control condition.
(Poldrack et al., 2001; Aron et al., 2004). Foerde et al.
(2006) provided evidence that this activity is not artifactual.
They subjected participants to a distracting secondary task
while performing weather prediction. In a control condi-
tion in which participants concentrated on weather
prediction, activity in the MTL was predictive of perfor-
mance in a probe phase in which no feedback was given.
When participants were distracted, performance was as
good as in the control condition, but now activity in the
basal ganglia, and not in the MTL, predicted performance.
Moreover, explicit knowledge of the task, as measured by a
questionnaire, was lower after distraction than in the
control condition. This suggests that during normal task
performance, the MTL is involved in performance, even
though it is not necessary as shown by normal performance
in the distraction condition.
6. Discussion

A typology used in deterministic categorization identifies
three ways in which to approach a categorization task,
with the categorization structure determining which
of the three was chosen by most categorizers (Ashby and
Ell, 2001). Rule-based learning, reliant on the frontal
lobes and the basal ganglia, consists of trying to find rules
to base categorization on. Incremental learning, reliant
on the basal ganglia, consists of finding category bound-
aries in the stimulus space slowly over trials. The third
approach consists of simply memorizing all exemplars
in the task, together with their category assignment.
This kind of learning relies on the temporal lobes.
Here, we investigated which of these three offers the
best description of learning in probabilistic category
learning. Two kinds of evidence were considered: perfor-
mance of normal categorizers, and data from clinical
populations.
Two characteristics of learning could help determine

how normal categorizers approach probabilistic categor-
ization. First, different types of analysis are suited to detect
different kinds of learning: strategy analysis for rule-based
learning, rolling regression analysis for incremental learn-
ing. If one type of analysis were better at characterizing
performance, this would suggest that its associated kind of
learning is more prominent than the other kind. In fact,
both types of analysis proved equally good at predicting
performance. Second, rule-based learning predicts ‘‘jerky’’
learning, with sudden jumps in performance whenever the
categorizer adopts a new rule or strategy. By contrast,
incremental learning assumes a smooth progression of
learning over the course of the experiment. Here, evidence
was found for a jerky progression of learning, but more
studies are clearly needed to draw firm conclusions.
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We then turned to evidence from cognitive neuroscience
and neuropsychology. Ample evidence was found for an
involvement of the basal ganglia in probabilistic categor-
ization. Evidence for a prefrontal involvement was mixed.
Although patient data was not suggestive of a strong
prefrontal role, data from imaging and TMS studies did
suggest that the prefrontal cortex is important in prob-
abilistic categorization. Rule-based learning would suggest
a reliance of probabilistic categorization on the prefrontal
cortex, while incremental learning would not. Neither
option is thus falsified by evidence from cognitive
neuroscience and neuropsychology.

Neither option would prima facie predict on involvement
of the medial temporal lobe in probabilistic categorization.
Yet, evidence from patient and imaging studies clearly
suggest such a role. This could point to a role of
memorizing instances in probabilistic categorization. In
this case, however, only deficits late in learning would be
expected in patients with MTL damage (Ashby and Ell,
2001), whereas deficits in patients are apparent relatively
early in the task (Hopkins et al., 2004), as is MTL activity
as evidenced by fMRI (Poldrack et al., 2001). Moreover, if
participants memorize patterns and their category assign-
ment, the response to pattern i presented on trial t should
be the same as previous responses to that same pattern.
Meeter et al. (2006) found, however, that the response on
to a pattern i was predicted relatively badly by the response
given on the previous trial with pattern i. This suggests that
memorizing category assignments of individual patterns
did not play a very large role in the performance of the
participants.

All data together give the impression that a contrasting
rule-based learning, incremental learning and memorizing
pattern–category pairings are not sufficient to understand
probabilistic categorization. Two aspects of the data
suggest that a new synthesis, involving all three, might give
a better account of learning in such tasks. First, it was
found that individual participants are characterized well to
the same extent by strategy analysis and rolling regression
analysis. Whereas strategy analysis gave a better account of
robust patterns in performance, the rolling regression
analysis identified patterns in behavior in trials that the
strategy analysis does not give a prediction for. Participants
may thus engage in both types of learning, with strategy
analysis picking up rule-based components and rolling
regression incremental learning that occurs at the same time
and perhaps underlies the formation of rules. Third, fMRI
data shows high MTL involvement and low basal ganglia
activity early in learning, but high basal ganglia and low
MTL activity late in learning (Poldrack et al., 2001). This
can be taken to suggest that the MTL helps set up
representations of the stimulus set early in learning. These
are then used by other brain areas (such as basal ganglia or
the prefrontal cortex) to assign patterns to categories later
in learning. Such a role—setting up the right representa-
tions for other brain areas to use—has been proposed for
the MTL in a computational model of classical condition-
ing (Gluck and Myers, 1993, 2001). Similar computational
work could shed a new light on how brain regions together
underlie probabilistic categorization.
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