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Functional MRI is widely used for imaging the neural correlates of

psychological processes and how these brain processes change with

learning, development and neuropsychiatric disorder. In order to

interpret changes in imaging signals over time, for example, in patient

studies, the long-term reliability of fMRI must first be established.

Here, eight healthy adult subjects were scanned on two sessions, 1 year

apart, while performing a classification learning task known to activate

frontostriatal circuitry. We show that behavioral performance and

frontostriatal activation were highly concordant at a group level at

both time-points. Furthermore, intra-class correlation coefficients

(ICCs), which index the degree of correlation between subjects at

different time-points, were high for behavior and for functional

activation. ICC was significantly higher within the network recruited

by learning than outside that network. We conclude that fMRI can

have high long-term test–retest reliability, making it suitable as a

biomarker for brain development and neurodegeneration.
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Introduction

Functional magnetic resonance imaging (fMRI) has become
the method of choice for non-invasive imaging of human
cognitive functions. Recent work has strongly linked fMRI

signals to synaptic activity and neuronal firing (reviewed in
Logothetis, 2003), and these data are confirmed by convergent
effects of stimulus manipulations (e.g., contrast of visual stimuli)
across both fMRI and neurophysiological techniques (Rees et

al., 2000). However, both the validity and reliability of fMRI
for measuring signals relevant to higher cognitive function
continue to be questioned (e.g., Uttal, 2001). Regarding the

reliability of fMRI signals, we note that meta-analyses generally
do find impressive concordance across studies, though there is

often substantial variability as well (e.g., Buchsbaum et al.,
2005; Derrfuss et al., 2005; Duncan and Owen, 2000;

Ridderinkhof et al., 2004; Wager et al., 2004; Wager and
Smith, 2003). Another aspect of reliability, which we investigate
here, regards the reproducibility of fMRI signals over different

scanning sessions.
A number of prior studies have examined the reproducibility of

fMRI signals in experiments of visual stimulation (Rombouts et al.,

1997), fear and disgust (Stark et al., 2004), auditory odd-ball
processing (Kiehl and Liddle, 2003), working memory (Manoach
et al., 2001; Wei et al., 2004) and sensorimotor control (Loubinoux
et al., 2001; Yoo et al., 2005). For five of these studies, the test–

retest interval was only on the short-term (i.e. for an inter-session
interval of at most a few weeks). Moreover, some of these studies
used an approach where they compared either group activation

maps or single-subject activation maps at different time-points.
Comparing activation maps in this way is not ideal for establishing
test–retest reliability of fMRI signals (McGonigle et al., 2000;

Poline et al., 1996). The problem is that thresholding of images can
exaggerate very small differences between maps: the signal level
could be highly reliable, yet small differences in the signal or noise

could result in substantial differences in thresholded maps due to
the nonlinearity of the thresholding operation. A more promising
approach is to extract signal change for each subject at each time-
point and compute intra-class correlation coefficients (ICCs) to

assess reliability (cf. Manoach et al., 2001). The question then
revolves around how to choose the regions of interest from which
to extract signal change. This could be achieved either by using a

priori defined regions, or, as we do here, by extracting ICC values
from the network that is activated at a group level for either session
1 or session 2 (inclusively).

Two other studies examined test– retest reliability over the
longer term, studying subjects at 9 time-points with at least 3
weeks between sessions (Wei et al., 2004; Yoo et al., 2005). Wei et
al. examined a working memory paradigm and showed that session

maps were consistent across time. However, as they did not model
subject as a random effect, the results are not generalizable outside
of that particular sample. Yoo et al. examined a finger-tapping

paradigm, using group activation maps to localize three ROIs in the
motor system. Again, the authors used an approach in which mean
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activation for each subject within each ROI was then computed
(moreover in native, not standard, space). There was substantial
variability in volume and spatial distribution of activation across

sessions, suggesting that, for this task and/or method, test–retest
reliability of fMRI signals was not high.

In summary, no study has yet demonstrated a high correlation

in functional activation across subjects between two or more
sessions over the long-term. This is a serious methodological
lacuna, as such reliability must be established before fMRI can be

effectively deployed to study long-term learning, development,
neurodegeneration or treatment (Casey et al., 2005; Paulsen et al.,
2004). For example, in Huntington’s disease research, the time is
nearing when treatments from mouse models may be translated to

human clinical trials (Beal and Ferrante, 2004). As such
treatments may be designed to protect neurons before they
degenerate, fMRI, rather than PET or structural MRI, may be the

method of choice for judging the functional integrity of brain
networks in response to a cognitive task. Yet, the interpretation of
longitudinal changes in fMRI signals in such studies first requires

that the measures be shown to be reliable over time in healthy
volunteers.

The present study aimed to establish test– retest reliability for
functional MRI using a complex cognitive task that engages broad

networks in the brain, rather than discrete foci. As such, this task
could be useful in assessing longitudinal change in neurodegener-
ative conditions characterized by changes to such networks as the

frontostriatal system. Another important characteristic of a
candidate task is that it is shown to exhibit minimal practice

effects, wherein behavioral scores improve over time as subjects

become more practiced at the task they are performing. As practice
effects are also associated with changes in observed fMRI signal
(reviewed in Kelly and Garavan, 2005), it is clearly important to

choose a task with minimal practice effects in order to assess test–
retest reliability of fMRI signals (cf. Manoach et al., 2001;
McGonigle et al., 2000).

We employed a probabilistic classification learning (PCL) task
which met these desiderata. PCL is a difficult problem of
classification which requires subjects to learn on the basis of trial-

by-trial feedback (Fig. 1). We studied eight subjects in two fMRI
scanning sessions separated by just over 1 year. The nature of the
task was identical for the two sessions, but the material to be
learned changed in each session. Although it is possible that

subjects could develop skill or strategy in how they go about
learning a particular classification, pilot data suggested this would
not affect the accuracy of their classifications for new materials.

Hence, we expected that practice effects between the two versions
of the task would be minimal. Furthermore, we had already
established that, when PCL trials are contrasted with baseline

(non-learning) trials, a network of midbrain, striatal and frontal
regions, consistent with the mesencephalic dopamine system, is
robustly activated (Aron et al., 2004; Poldrack et al., 2001). In
the current study, we compared the level of activation across

sessions within this frontostriatal network and computed intra-
class correlations to quantify the level of reliability. The results
demonstrate that fMRI signals in the frontostriatal system are

highly reliable over the two sessions.

Methods

Subjects

Eight right-handed healthy English-speaking subjects partici-
pated twice each (3 males/5 females; age range 21–26 years; mean
age 23.25 T 1.83; mean interval between scans 13.5 T 0.93

months). All subjects were carefully screened to make sure they
had no history of neurological or psychiatric disorder. All subjects
gave informed consent according to a UCLA Institutional Review
Board protocol.

Behavioral task

Subjects performed a classification learning task, which has
been extensively studied previously (e.g., Aron et al., 2004;
Beninger et al., 2003; Keri et al., 2002; Knowlton et al., 1994,

1996; Moody et al., 2004; Poldrack et al., 2001; Shohamy et al.,
2004). On each trial, one to three (out of 4 potential) cards were
presented: giving 14 potential different combinations (we used

just 13 of these). The location of the cards was random. Each of
the combinations constituted a Fstimulus,_ and the subject had to
indicate whether the outcome would be sun (left button press) or
rain (right button press). The probability with which each

stimulus was associated with rain is shown in Table 1.
Frequencies were chosen in such a way that the cue–outcome
associations (i.e. the associations between each particular card

and the rain outcome) were 0.18, 0.37, 0.59 and 0.82; these
probabilities are similar but slightly more deterministic than

Fig. 1. Scanning design for probabilistic classification learning (PCL) and

baseline trials. (a) On each occasion (session), subjects performed 2 scans,

each consisting of 10 cycles of 5 PCL trials and 3 baseline trials (80 trials

total per scan). (b) On each weather prediction trial, a stimulus was

presented, comprising 1 to 3 cards, at randomized locations, for up to 4 s.

Within that time, the subject responded with left button press (sun) or

right button press (rain). Feedback (‘‘sunshine’’ or ‘‘rain’’) was presented

after button press for the remainder of the 4-s window. Intertrial interval

was 0.5 s. (c) Baseline trials controlled for visual stimulation, button press

and computer response to button press. A standard card was always

presented in all 3 positions along with the instruction to press (subjects

always pressed the right-hand key for these trials). (d) Four cards were

used for PCL trials in first and second sessions. Assignment of cards to

subjects was pseudo-random.
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previous studies (e.g., Knowlton et al., 1994). Therefore, both
individual cue–outcome associations as well as configuration–
outcome associations were generally probabilistic.

For each experimental session, there were 100 PCL trials,
randomized for each participant, and these were presented in two
scanning runs of 50 PCL trials each. In addition, each scanning run

contained 30 baseline trials for fMRI analysis purposes (i.e. to
control for visual stimulation, response and feedback). In each
scanning run of 80 trials total, there were 10 cycles consisting of 5

consecutive PCL trials followed by 3 consecutive trials of a
baseline task (Fig. 1a). Stimulus presentation lasted for 3 s, within
which time the subject responded with a left button press for sun or
a right button press for rain. As soon as the subject responded,

feedback (the word ‘‘rain’’ or ‘‘sunshine’’) was presented along
with the stimulus (the default was that feedback presentation lasted
for 1 s) (Fig. 1b). There was a 0.5-s second interstimulus interval.

Baseline trials consisted of a standard pattern at all three card
positions for 3 s, along with the instruction ‘‘press’’ (Fig. 1c). The
subject was instructed to always press the right button on baseline

trials. As soon as the button was pressed, the word ‘‘press’’
disappeared.

Procedure

In each session, subjects were briefly practiced on one cycle (5
PCL trials, randomly chosen, and 3 baseline trials) outside the

scanner to familiarize them with task requirements. It was
emphasized that the left key should be pressed with the left index
finger for a prediction of Fsunshine_ and the right key with the right

index finger for a prediction of Frain._ It was explained to the
subject that s/he would be guessing at first, but should respond on
every trial, that location of the cards was not important and that

cycles would be presented of 5 PCL trials followed by 3 baseline
trials. Once in the scanner, subjects performed two scanning runs
(80 trials each, 4.5 s per trial, 6-min duration) with a short break

between scans. Subjects used left and right index fingers to press
left and right buttons on the MR-compatible button box. The only
difference in procedure between the two scanning sessions was that

the color and shapes making up the stimuli changed in order to
prevent transference of learning to the second session (Fig. 1d). For
each session, the assignment of the four cards to each of the four

cues was pseudo-randomized across subjects.

Behavioral analyses

Accuracy was estimated with a Fmaximizing metric_ by
assessing whether the subject’s response was correct with respect

to p(rain) for each of the 13 stimulus types (cf. Knowlton et al.,
1994). A response for a particular PCL trial counted as correct if
p(rain) > 0.5 and the subject pressed the key for rain or if

p(rain) < 0.5 and the subject pressed the key for sunshine
[p(rain) was computed over all 100 trials]. If p(rain) equaled 0.5
(for one stimulus type), the trial was excluded from behavioral
analysis. Percent correct scores were computed for each subject

for each block/scan of each session and entered into ANOVA
(2 sessions ! 2 blocks) with subject as a random factor.
Additionally, reliability of behavioral scores was computed (for

the scan blocks 1 and 2) at the two time-points using the intra-
class correlation coefficient (ICC; see Reliability analyses section
below). (Note: behavioral data and scan data were missing from

one block for one subject on the second session, so this subject’s
data were not entered into ANOVA but were used for computing
ICC for scan 1.)

MRI data acquisition

A 3 T Siemens Allegra MRI scanner was used to acquire 180

functional T2*-weighted echoplanar images (EPI) (4 mm slice
thickness, 33 slices, TR = 2 s, TE = 30 ms, flip angle = 90-,
matrix 64 ! 64, field of view 200). Stimulus presentation and

timing of all stimuli and response events were achieved using
MATLAB (http://www.mathworks.com) and the Psychtoolbox
(http://www.psychtoolbox.org). Additionally, a matched-band-

width High-Resolution scan (same slice prescription as EPI)
and MPRAGE were acquired for each subject for registration
purposes. The MPRAGE had parameters: TR = 2.3, TE = 2.1,
FOV = 256, matrix = 192 ! 192, saggital plane, slice thickness =

1 mm, 160 slices.

Imaging analysis

Identical methods were used for analysis of functional MRI data
for the two scanning sessions. Initial analysis was carried out using

tools from the FMRIB software library (http://www.fmrib.ox.ac.uk/
fsl). The first two volumes were discarded to allow for T1
equilibrium effects. The remaining images were then realigned to

compensate for small head movements (Jenkinson et al., 2002)
and were spatially smoothed using a 5-mm full-width half-
maximum (FWHM) Gaussian kernel. Translational movement
parameters never exceeded 0.5 of a voxel in any direction for

any subject or session. The data were filtered in the temporal
domain using a nonlinear high-pass filter with a 66-s cut-off. A
three-step registration procedure was used whereby EPI images

were first registered to the matched-bandwidth High-Resolution
scan, then to the MPRAGE structural image and finally into
standard (MNI) space, using affine transformations (Jenkinson

and Smith, 2001).
For each scan, PCL trials alone were modeled after convolution

with a canonical hemodynamic response function. A nuisance

Table 1

Complete information about stimuli for 100 trials

Card1 Card2 Card3 Card4 Stimulus Frequency Rain p(rain)

1 0 0 0 1 7 1 0.14

0 1 0 0 2 7 1 0.14

0 0 1 0 3 7 5 0.71

0 0 0 1 4 7 4 0.57

1 1 0 0 5 8 0 0.00

1 0 1 0 6 12 11 0.92

1 0 0 1 7 1 1 1.00

0 1 1 0 8 7 1 0.14

0 1 0 1 9 1 1 1.00

0 0 1 1 10 19 18 0.95

1 1 1 0 11 19 6 0.29

1 0 1 1 12 2 1 0.50

1 1 0 1 13 3 2 0.67

Each of 13 stimuli consists of presentation of 1, 2 or 3 cards (the presence/

absence of a card is indicated by 1/0 respectively). Each individual card is

associated with the rain outcome across all 100 trials with the following

probabilities: 0.18, 0.37, 0.59 and 0.82. The frequency of presentation of

different stimuli ranges between 1 and 19. Each stimulus (consisting of 1, 2

or 3 cards), is associated, across the 100 trials, with varying probabilities of

rain, ranging from 0 to 1.
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regressor was added, which consisted of trials on which no
response was made (usually fewer than 5% trials). Temporal
derivatives were included as covariates of no interest to improve

statistical sensitivity. This procedure produced, for each subject,
each scan and each session, a contrast image of PCL trials vs.
implicit (unmodeled) baseline.

For each subject, the two contrast images for each session
were averaged, giving 8 such images for each session (for the one
subject who only had one scan from the second session, this scan

alone was used). A random effects statistical analysis was carried
out on the contrast images separately for each session. Group
images were thresholded using cluster detection statistics, with a

height threshold of z > 2.3 and a cluster probability of P < 0.01,
corrected for multiple comparisons (using Gaussian Random
Field Theory).

Reliability analyses

Custom MATLAB code was written to compute ICC on a

voxel-by-voxel fashion for the 8 contrast images at the two time-
points. ICC was computed as:

ICC¼ MSEbetwsubs#MSEwithinsubsð Þ
= MSEbetwsubsþMSEwithinsubsð Þ

Where MSEbetwsubs and MSEwithinsubs are the mean square
errors for between-subjects and within-subjects variance respec-

tively (where these values are taken from a repeated measures
ANOVA with 8 subjects and two session variables, i.e. sessions 1
and 2). ICC represents the ratio of between-subject variance to total
variance and is the appropriate metric for assessing within-subject

reliability, rather than Pearson’s R, because the observations are not
independent (Shrout and Fleis, 1979). Therefore, ICC values will
be particularly high when within-subject (i.e. within-subject

between-session) variance is low and between-subject variance is
high. The resulting 3D voxel map of ICC values (>0.5) was then
masked (by multiplication) with a binary image representing the

PCL network activated for either session 1 or session 2: that is, we
created a binary PCL mask using the group maps from session 1
and session 2, voxel thresholded at z > 2.3 with a cluster

probability of P < 0.01, corrected for multiple comparisons. ICC
values are therefore only displayed within brain regions activated
by PCL in session 1 or session 2. A final analysis used a Chi-
square test to assess whether there were significant differences

between the distribution of ICC values within the PCL network

compared to the distribution in brain regions outside that network
(exPCL).

Results

Behavior

There was a main effect of learning, so that, within sessions,
accuracy was significantly greater for block 2 than for block 1,
F(1,6) = 116.4, P < 0.0001 (Fig. 2a) (Note: data missing for one
block for one subject reduce df from 7 to 6, see Methods.)

However, there was no significant difference in accuracy between
sessions, F(1,6) = 1.1, n.s. [session 1: 74.9%, session 2: 76.4%],
and the interaction between block and session was not significant,

F(1,6) = 1.1, n.s. Across subjects, average accuracy for session 1
and session 2 was highly correlated; df = 6, ICC = 0.8514, P =
0.0037, and this was also the case for scan 1 in session 1 vs. scan

1 in session 2 (df = 7, ICC = 0.64, P < 0.05), and scan 2 in
session 1 vs. scan 2 in session 2 (df = 6, ICC = 0.77, P < 0.05)
(Figs. 2b, c). The stability of behavior in scan 1, across sessions,

and scan 2, across sessions, was confirmed by non-significant
sign tests (both P > 0.7).

Group activation maps

For the contrast of PCL trials minus baseline trials, both session
1 and session 2 produced significant activation of frontostriatal

circuitry (caudate, putamen, globus pallidus, thalamus, orbital,
lateral and medial frontal cortex) as well as midbrain, consistent
with our prior results using somewhat different behavioral and

analysis procedures (Aron et al., 2004; Poldrack et al., 2001) (Fig.
3). For a direct comparison of this contrast between sessions, there
was significantly more activation for session 2 than session 1 in
right dorsal anterior PFC (MNI: 28 50 32 [x y z], t = 12.7) and left

dorsal PFC (MNI: #28 34 22 [x y z], t = 7.34). There were no
regions for which activation was significantly greater for session 1
than session 2.

Intra-class correlations for fMRI

ICC values within the network significantly activated by PCL
for session 1 or session 2 were high, often exceeding 0.8 (Fig. 4a).
This is illustrated for key ROIs: across subjects, mean effect size

for the comparison of the classification task with the baseline task

Fig. 2. Behavioral data from first and second scanning sessions. (a) Mean accuracy for the subjects improved significantly across scans within each session ( P <

0.0001), but there was no significant difference in accuracy between sessions. For the 8 subjects, mean accuracy for session 1 was significantly correlated with

mean accuracy at session 2 (ICC = 0.85, P < 0.01), and this pattern was also evident for a between-session comparison of scan 1 (b) and scan 2 (c).
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in midbrain, striatal and frontal ROIs is highly correlated for

session 1 compared to session 2 (Figs. 4b, c). ICC values were
significantly higher for voxels within the PCL network compared
to voxels outside the network [Chi-square (9 df, for 10 intervals per

distribution) = 781, P < 0.0001] (Fig. 5).

Discussion

The results show that fMRI can have high test– retest reliability

over the long-term. In particular, activation within the frontostriatal
network known to underlie classification learning was highly
consistent across the two sessions, as assessed by intra-class

correlations. This has direct implications for assessing longitudinal
change as a function of development, neuropsychiatric disorders or
treatment.

Fig. 3. Learning in both sessions is associated with robust activation of

midbrain and frontostriatal regions. For each session, a random effects

analysis is run with contrast images (PCL trials minus baseline trials) for 8

subjects. The activations shown are significant after correction for multiple

comparisons at the cluster level P < 0.01, voxel level threshold is z > 2.3. In

both sessions, there is significant activation of midbrain, striatal, orbital,

lateral and medial frontal cortex, as well extra-striate visual areas.

Fig. 4. High test– retest reliability of fMRI signals within frontostriatal

areas. (a) ICC values exceeding 0.5 are shown on a voxel-by-voxel basis

within regions which were significantly activated for PCL vs. baseline for

session 1 OR session 2 (inclusively). Voxels within midbrain, striatal,

orbital, dorsolateral and medial frontal cortex show high ICC. (b)

Illustrative signal plots within key regions of interest (ROIs) of this

network. The ROIs were based on prior neuropsychological and neuro-

imaging research which has implicated midbrain, striatal and frontal foci

(Aron et al., 2004; Knowlton et al., 1996; Moody et al., 2004; Poldrack et

al., 2001; Seger and Cincotta, 2005; Shohamy et al., 2004). Mean signal

within a sphere of 4 mm radius was extracted for each subject and each

session. The center of the sphere is demarcated by MNI coordinates [x y z].

(c) Panel showing each of the 9 ROIs on axial slices.
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Subjects were studied on two occasions, on the same scanner,
separated by just over 1 year. Preprocessing and analysis of

imaging data were identical between sessions, and subject head
movement was always minimal. The only differences between
sessions pertained to the color and shape of the features to be

classified in the PCL task and the order of trials. Learning in both
sessions robustly activated the frontostriatal network, as we have
seen in prior studies using somewhat different behavioral and

analysis procedures (Aron et al., 2004; Poldrack et al., 2001). A
direct comparison between sessions showed increased activation at
two frontal foci for session 2 vs. 1, but not for session 1 vs. 2.
These foci could represent regions of plasticity related to task

strategy, rather than learning of the material, as the foci were not
consistent with the network activated by learning and learning
performance across sessions was highly correlated among subjects

(and mean performance between sessions equivalent). Therefore,
there were no significant differences in activation within the
learning network between sessions, and the increase of activation

at frontal foci outside this network for session 2 probably
represents neural plasticity related to task strategy rather than a
change in classification learning itself.

We further examined ICC values within the network associated
with PCL. ICC values were very high, as reflected in the
scatterplots of mean signal, at key frontal, midbrain and striatal
foci, confirming the reliability of test–retest activation at these

foci. Furthermore, it was unlikely that this result arose merely
because subjects who activated highly in session 1 also activated
highly in session 2 (e.g., due to global changes in SNR) as ICC

values within the PCL network were significantly higher than for
ICC values outside the PCL network. Therefore, the high test–
retest reliability for functional activation was fairly specific to the

network known to underlie PCL performance from neuroimaging
and neuropsychology (Aron et al., 2004; Beninger et al., 2003;
Keri et al., 2002; Knowlton et al., 1996; Knowlton et al., 1994;
Moody et al., 2004; Poldrack et al., 2001; Shohamy et al., 2004).

One way to apply this method in a longitudinal study of
neurodegenerative disease or treatment is to extract mean signal
from ROIs within this network and to assess statistically whether

differences between test and retest activation interact with group
(e.g., patients vs. controls, or drug vs. placebo). Two important
caveats in any patient group, however, would be that the patients

did show significant learning of the task and that they had roughly
similar variance in their fMRI data compared to controls.

A limitation of the study is that we have only established test–

retest reliability of fMRI signals for one task. An open question is
whether this study could be repeated for a range of cognitive
paradigms such as those requiring motor learning or executive

control, which are well known to activate frontostriatal and other
networks in the brain, and may also serve as reliable biomarkers.
Our results here, combined with a consideration of the studies that

have examined test– retest reliability of fMRI signals across shorter
time-spans, as well as the literature on practice effects in fMRI,
strongly suggest that candidate cognitive tasks should first be
shown to have minimal behavioral practice effects across time,

before fMRI reliability is evaluated. Furthermore, our results
strongly motivate an approach to assessing test– retest reliability
based on computing signal change and comparing this across

subjects using ICC, as opposed to the use of thresholded maps. In
this study, we computed signal change within the PCL network
significantly activated by session 1 or session 2. Future studies on

the same scanner, studying subjects of the same mean age and
employing the same task and analysis method, could use the PCL
network activated here as an a priori region of interest.

This study fills a methodological lacuna by showing high

behavioral and functional MRI test– retest reliability for the PCL
task within a frontostriatal system at a 1-year interval. As clear
predictions can be made regarding longitudinal change in fMRI

signals for this task in the frontostriatal system in patients with
Huntington’s disease, Parkinson’s disease, obsessive-compulsive
disorder and schizophrenia (e.g., Beninger et al., 2003; Keri et al.,

2002; Knowlton et al., 1994, 1996; Moody et al., 2004; Rauch et
al., 1997; Shohamy et al., 2004), we have supplied a method that is
readily applicable to assessing neurodegeneration and neuro-

protection in these groups in comparison with appropriate age-
matched control subjects.
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