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The authors evaluate a mapping of Rescorla and Wagner’s (1972) behavioral
model of classical conditioning onto the cerebellar substrates for motor reflex
learning and illustrate how the limitations of the Rescorla—\Wagner model are just
as useful as its successes for guiding the development of new psychobiological
theories of learning. They postulate that the inhibitory pathway that returns condi-
tioned response information from the cerebellar interpositus nucleus back to the
inferior olive is the neura basis for the error correction learning proposed by
Rescorla and Wagner (Gluck, Myers, & Thompson, 1994; Thompson, 1986). The
authors' cerebellar model expects that behavioral processes described by the Re-
scorla—\Wagner model will be localized within the cerebellum and related brain stem
structures, whereas behavioral processes beyond the scope of the Rescorla—\Wagner
model will depend on extracerebellar structures such asthe hippocampus and related
cortical regions. Simulations presented here support both implications. Severa
novel implications of the authors' cerebellar error-correcting model are described
including a recent empirical study by Kim, Krupa, and Thompson (1998), who
verified that suppressing the putative error correction pathway should interfere with
the Kamin (1969) blocking effect, a behavioral manifestation of error correction
learning. The authors also discuss the model’s implications for understanding the
limits of cerebellar contributions to associative learning and how this informs
our understanding of hippocampal function in conditioning. This leads to a more
integrative view of the neural substrates of conditioning in which the authors’ real-
time circuit-level model of the cerebellum can be viewed as a generalization of
the long-term memory module of Gluck and Myers' (1993) trial-level theory of
cerebellar—hippocampal interaction in motor conditioning.  © 2001 Academic Press
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Because of the high degree of experimental control possible, classical conditioning has
proven to be an especially valuable paradigm for the analysis of the brain substrates of
associative learning. One of the best characterized learning preparations is classical eye-
blink conditioning (Fig. 1A), which has been studied in both humans (Woodruff-Pak,
1999) and animals, especialy rabbits (for reviews, see Anderson & Steinmetz, 1994,
Gormezano, Kehoe, & Marshall, 1983). This learning is based on a naturally occurring
motor reflex response: eyelid closure in response to a corneal air puff or periorbital shock
(the unconditioned stimulus [US]), as shown in Fig. 1B. If the US is repeatedly preceded
by a neutral stimulus such as a tone or a light (the conditioned stimulus [CS]), then the
CSitself comes to evoke an anticipatory, well-timed, protective eyeblink (the conditioned
response [CRY]). This simple learning paradigm can be expanded to include multiple CSs
or USs, tempora manipulations, and contextual influences (Gormezano et al., 1983).

Work by Richard Thompson and colleagues over the past two decades has pointed to
the cerebellum as the site for the essential memory traces for motor conditioning in
vertebrates (for reviews, see Kim et al., 1998; Steinmetz & Thompson, 1991). Building
on this empirical progress, we have shown in a series of theoretical modeling articles
over the past 10 years how psychological theories of animal learning can lead to a deeper
understanding of the functional role of specific components of these cerebellar circuits
(Donegan, Gluck, & Thompson, 1989; Gluck, Myers, & Thompson, 1994; Gluck, Reifs-
nider, & Thompson, 1990).

An essentia cornerstone of our psychobiological theories is the behavioral model of
conditioning proposed in 1972 by Robert Rescorla and Alan Wagner (Rescorla & Wagner,
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FIG. 1. Rabbit eyeblink conditioning apparatus and behavioral responses recorded across training. (A)
Rabbit eyeblink apparatus with a rabbit in the standard restraint box in the conditioning chamber. The tone CS
is administered via a speaker (not shown). The cornea air puff US is administered via the air hose (shown).
Thebehavioral eyeblink responseismonitored by an infrared detector aimed at the animal’s eye. (B) Devel opment
of the conditioned eyeblink response. On day 1, only reflexive URs are exhibited following the air puff US
presentation. There is no initial eyeblink response to the CS tone. On day 3, small CRs that precede the US
are exhibited. On day 5, large CRs are exhibited that peak at about the time of US presentation. Not only does
therabbit learn that thetone predictstheair puff, it al so learnsthe precisetemporal relationship between thestimuli.



316 GLUCK ET AL.

1972; Wagner & Rescorla, 1972). The Rescorla—Wagner model isamathematical formula-
tion of conditioning that assumes that the change in association between a neutral condi-
tioned stimulus and a response-evoking unconditioned stimulusis a function of the differ-
ence between the US and an animal’s expectation of the US given all CSs present on the
trial. Because the discrepancy, or “error,” between the animals expectations and what
actually occurs drives learning in this theory, the theory is referred to as an “error-
correcting” learning procedure.

Nearly 25 years after its publication, the Rescorla—Wagner model till stands as the
most influential and powerful model in psychology for describing and predicting animal
learning behavior in conditioning studies (for reviews, see Miller, Barnet, & Grahame,
1995; Walkenbach & Haddad, 1980). Moreover, its influence has extended far beyond
animal conditioning. The model’s basic error correction principle has been rediscovered
within cognitive psychology and cognitive neuroscience in the form of connectionist
network models, which rely on the same principle (Gluck & Bower, 1988). In addition,
the most commonly used connectionist learning procedure, error back-propageation
(Rumelhart, Hinton, & Williams, 1986), along with its simpler predecessor, the least—
means square rule (Widrow & Hoff, 1960), are generalizations of the Rescorla—\Wagner
model.

Sutton and Barto (1981) proposed an adaptive network model of classical conditioning
that used a form of expectation closely related to the Rescorla—\Wagner rule. The Sutton
and Barto adaptive model incorporates the predictive nature of classical conditioning.
Whereas the Rescorla—\Wagner rule generated an expectation of the US based on a summa-
tion of al the stimuli present during atrial, the Sutton and Barto model made distinctions
between stimuli based on their time of occurrence relative to the US. The Sutton and
Barto model was able to expand on the Rescorla—Wagner rule by identifying stimuli that
are reliable, nonredundant, and early predictors of the US, not just reliable nonredundant
stimuli that are correlated with the US. This early prediction allowed the Sutton and Barto
adaptive model to make predictions that precede the appearance of the US. The prediction
that precedes the appearance of the US is the exact type of mechanism that has to occur
in the brain so that neural activity changes can occur before, and initiate the conditioned
behavioral response prior to the delivery of, the US. This is the type of mechanism that
we describe in our model of the neural substrates of classical conditioning.

In several articles over the past decade, we have argued that the Rescorla—\Wagner
model can also be exploited to further our understanding of the neural substrates of
classical conditioning (Donegan et al., 1989; Gluck et al., 1990, 1994). In this article, we
illustrate how the limitations of the Rescorla—\Wagner model are just as useful as its
successes for guiding the development of new psychobiological theories of learning.

We describe here asimple computational instantiation of several aspects of the cerebellar
circuitry for conditioning. This model is not intended as afull-scale detail ed neurobiol ogi-
cal model incorporating al that is known about the cerebellum and itsrole in conditioning;
rather, we have used modeling as atool to help us understand the functional role of two
critical circuit pathways within the cerebellum. This reduced model of the cerebellum
implements the essential error correction features of the Rescorla—\Wagner theory and is
sufficient to generate a range of behaviors similar to those mediated by the cerebellum.
The initial qualitative idea behind this mapping of the Rescorla—Wagner learning rule
onto cerebellar circuitry grew out of empirical and theoretical work in the Thompson
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laboratory at Stanford University during the early to mid-1980s with key contributions
from Nelson Donegan, Mark Gluck, Joseph Steinmetz, and Richard Thompson. The
basic qualitative idea was first presented in Donegan et al. (1989), and a preliminary
computational model was described in a brief book chapter (Gluck et al., 1994). This
article provides the first detailed description and analysis of the model aong with a
comparison of the model to other relevant theories and models of the cerebellar and
hippocampal contributions to conditioning.

We also review here a recent empirical study by Kim et al. (1998) that validates and
supports one of our model’s novel predictions. We discuss the model’s implications for
understanding the limits of cerebellar contributions to associative learning and how this
informs our understanding of the contribution of the hippocampa region to stimulus
selection in conditioning. This leads to a more integrative view of the neural substrates
of conditioning in which thisreal-time circuit-level model of the cerebellum can be viewed
as a generdization of the long-term memory module of Gluck and Myers' (1993) more
abstract trial-level model of cerebellar—hippocampal interaction in motor reflex condition-
ing. In the next section, we review some of the psychologica theories of learning that
form the framework for our current psychobiologica modeling.

ERROR CORRECTION LEARNING IN CLASSICAL CONDITIONING

Early psychologica theories of learning assumed that the co-occurrence of a CS and
aUSwas, by itself, sufficient to produce associative learning (Hull, 1943; Spence, 1956).
Within neuroscience, similar principles underlie the Hebbian rule of associative learning,
which proposes that associative weights between neurons will be incremented when one
input signal co-occurs with another input signal (Hebb, 1949). The key implication of
this Hebbian rule is that associative changes should be influenced only by the pairwise
relationship between two signals. Thus, early theories of associative learning in both
psychology and neuroscience presumed that associative changes are independent of the
stimulus context in which signals occur.

During the late 1960s, however, several behavioral experiments in animal learning
challenged this prevailing view that stimulus co-occurrence, known as stimulus “conti-
guity,” was sufficient for learning. The most influential of these studies was Kamin's
(1969) study of blocking in which rats first received pairings of a neutral tone CS with
a painful foot shock US. Eventually, tone CS presentation produced a CR: suppression
of feeding behaviors. The rats were then given trials with the stimulus compound, tone
plus light, paired with the same shock US. If we refer to the tone as CS A and the light
as CS B, then we can characterize the first phase of training as A+ training and the second
phase as AB+ training, as shown in Table 1. A later test showed a continued high
conditioned responding to the tone aone (A test) but virtually no responding to the light
aone (B test). Apparently, prior conditioning of A+ had blocked learning about B. This
contrasted with other animalsin a control condition that had received only AB+ training
trialswithout the earlier tone — shock pairings. These control animals did show appreciable
CRs when tested with either cue alone.

Kamin's (1969) blocking study, along with other similar studies published around the
same period, demonstrated that the ability of a CS to become associated with a US depends
on whether or not the CSimpartsreliable and nonredundant information about the expected
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TABLE 1
The Blocking Experiment
Group Phase 1 Phase 2 Test
Experiment Tone - Shock Tone + Light —» Shock Light
(A+) (AB+) (B test)
Control No stimuli Tone + Light —» Shock Light
(AB+) (B test)

Source. Kamin (1969).

occurrence of the US (Rescorla, 1968; Wagner, 1969). In arelated study, Rescorla (1968)
showed that CS-US associations are highly sensitive not just to the co-occurrence (conti-
guity) between the CS and the US but also to their contingency, that is, whether or not
the US ismore likely to occur given that the CS is present relative to its likelihood given
no CS. Altogether, these results suggest that learning in classical conditioning is highly
sengitive to the informational value of the CS for predicting the US.

The Rescorla—\Wagner Model

Kamin (1969) suggested that one way in which animals could learn to be sensitive to
the informational value of a cue would be to change associative relations only in response
to aUS that is surprising or unexpected given all of the cues present on atrial. Rescorla
and Wagner took this principle of learning from surprise and formalized it asamathematical
model that described a rule or process for predicting changes in CS-US associations
(Rescorla & Wagner, 1972; Wagner & Rescorla, 1972). In the Rescorla—\Wagner model,
the associative changes accruing on a trial between a CS and a US are proportiona to
the degree to which the US is unexpected given the associative strengths associated with
all of the CS cuesthat are present on that trial. To formulate the relationship, et V,, denote
the strength of association between stimulus A and the US. If A is followed by the US,
then the change in associative strength between A and the US, AV,, can be described by

Eq. (1):
AVA = aABT (/\ - ZkeSVk)v (1)

where a, reflects the intensity or salience of A, B, reflects the rate of learning on US-
present trials, A is the maximum possible level of associative strength conditionable with
that US, and 2,V is the sum of the associative strengths of all the CSs occurring on
that trial.

Consider now what happens if A occurs but is not followed by the US. On these
“extinction” trials, the association between A and the US decreases according to an
analogous formulation,

AVA = aAﬂL (0 - 2keSVk)l (2)

where B, is the learning rate on trials when the US is absent. In general, B3, is assumed
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to be larger than B,, reflecting the fact that the presence of a US is more salient than its
absence, but thisisnot critical for most predictions of themodel (Rescorla& Wagner, 1972).

Equations (1) and (2) of the Rescorla—\Wagner model account for Kamin's blocking
effect as follows. In phase 1, CS A is conditioned to the US, and V, approaches A. At
the start of phase 2, the initial associative strength, Vg, of the CS B is assumed to be
zero. The associative strength of the stimulus compound AB, therefore, is 2V = Va +
Vg = A. Intuitively, thisimplies that because the US is already perfectly predicted by A,
the incremental learning accruing to the novel light stimulus, AVg, is predicted to be
zero. Thus, prior learning to A is expected to “block” later learning to B—just as was
observed by Kamin (1969).

THE CEREBELLUM AND CLASSICAL CONDITIONING

There have been many attempts over the years to explain cerebellar function in motor
learning, especially conditioning of the eyeblink response. The anatomy of the cerebellar
cortex is remarkably uniform, with two separate input systems: the climbing fibers and
the mossy fiberg/parallel fibers that provide inputs from a variety of sensory modalities.

Figure 2 serves to summarize the overall empirical results to date from Thompson and
colleagues. It is a much simplified version of a more comprehensive qualitative theory
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FIG. 2. Schematic of the cerebellar and brain stem circuitry thought to underlie eyeblink conditioning. The
right pathway represents the CS input pathways via the mossy fiber and parallel fiber system. The left pathway
represents the US input pathways via the climbing fiber system. The CS and US pathways converge on Purkinje
cells and the interpositus nucleus. The middle pathway represents the CR output pathway and feedback loops
onto the CS and US systems.
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of the role of the cerebellum in classical conditioning (see Thompson, 1986; Kim &
Thompson, 1997). As indicated in Fig. 2, there are two major projection systems to the
cerebellum. The mossy fibers project from the pontine nuclei and other sources to the deep
cerebellar nuclel and cerebellar cortex and convey, in the case of eyeblink conditioning,
information about a tone or light CS. Information about the air puff or eye shock US in
eyeblink conditioning projects to the inferior olive, which in turn projects to the deep
cerebellar nuclei and cerebellar cortex via climbing fibers. The cerebellar cortex projects
out through the deep cerebellar nuclei, specifically the interpositus nucleus in the case of
eyeblink conditioning. The motor output target of the interpositus nucleus is the red
nucleus, which in turn projects to motor nuclel in the brain stem (not shown in Fig. 2).

Anatomica tracing studies have demonstrated the connections between the inputs from
the inferior olive and pontine nuclel to the Purkinje cells and interpositus nucleus (e.g.,
Brodal, 1981; Steinmetz & Sengelaub, 1992; Tracey, Thompson, Krupa, & Thompson,
1998). In addition, output from the interpositus to the red nucleus has been shown along
with both the feedback connections onto the inferior olive and pontine nuclei (e.g.,
Steinmetz & Sengelaub, 1992).

To determine the exact function of the CS and US inputs into the cerebellum, studies
have been conducted that use electrical stimulation to simulate CS and US inputs, creating
an eyeblink paradigm with no external sensory stimuli. Direct electrical stimulation of
the lateral pontine nuclei can be substituted for a tone CS (Steinmetz, Rosen, Chapman,
Lavond, & Thompson, 1986), and stimulations of the dorsal accessory olive can be
substituted for an air puff US (Mauk, Steinmetz, & Thompson, 1986). It is even possible
to have no external stimuli and condition rabbits with only paired presentations of pontine
and olivary stimulation and still get conditioned eyeblink responding that is identical to
that obtained via tone—air puff training (Steinmetz, Lavond, & Thompson, 1989).

Lesion studies have sought to delineate the distinct roles of the cerebellar cortex and
interpositus nucleus in acquisition and performance of conditioned eyeblinks. Lesions of
the interpositus nucleus completely and permanently abolish previously learned condi-
tioned responding (Steinmetz & Sengelaub, 1992) and block acquisition in naive animals
(McCormick & Thompson, 1982), with no significant effects on performance of the reflex
itself (Ivkovich, Lockard, & Thompson, 1993). Lesions of the cerebellar cortex disrupt
conditioning, but small-amplitude, poorly timed conditioned responses do slowly develop
acrosstraining (Lavond et a., 1987; Woodruff-Pak, Lavond, Logan, Steinmetz, & Thomp-
son, 1993). Anterior lesions of cerebellar cortex have also been found to disrupt previous
precisely timed conditioned responses (Logan, 1991; Perret, Ruiz, & Mauk, 1993). Overal,
it appears that the interpositus nucleus is responsible for the formation and execution of
the conditioned response, whereas the cerebellar cortex is responsible for the correct
timing of the conditioned response and controls the amplitude of the conditioned response.

In addition to the permanent lesions, key structures and pathways in the cerebellum have
been reversibly inactivated using drugs and cooling. In well-trained animals, inactivation of
the interpositus and overlying cortex of lobule HVI, of the red nucleus, or of the superior
cerebellar peduncle (which conveys all output from the interpositus nucleus to descending
and ascending systems) completely abolishes the expression of the CR. Inactivation of
all these structures has no effect on the UR. When inactivation of the red nucleus or
superior cerebellar peduncle occurs during training, the animals exhibit no CRs, but
when subsequently tested without inactivation, they exhibit asymptotic CRs. This finding



CEREBELLAR SUBSTRATES 321

indicates that the animals learn the conditioned response but that its behavioral expression
is blocked by the inactivation. Inactivation of the interpositus nucleus during training also
resultsin no CRs; however, when tested without inactivation, animals still exhibit no CRs
and subsequently learn as though they are naive (Clark & Lavond, 1993; Clark, Zhang, &
Lavond, 1992; Krupa & Thompson, 1995, 1997; Krupa, Thompson, & Thompson, 1993;
Ramirez, Nordholm, & Thompson, 1997). This finding indicates that inactivation of the
interpositus blocks not only expression but al so acquisition of the CR. Electrophysiological
recordingsin theinterpositus during inactivation of the red nucleusin trained animals show
normal learning-related changes exhibiting the properties of the conditioned responses that
are not being expressed, whereas inactivation of the interpositus nucleus abolishes both
the behavioral CR and the learning-related unit activity in the red nucleus (Chapman,
Steinmetz, Sears, & Thompson, 1990; Clark & Lavond, 1993). Consequently, the memory
trace must be formed in the cerebellum.

Taken together, all of these lines of evidence provide strong support for the cerebellar
model shown in Fig. 2. Simply put, the cerebellar cortex and interpositus receive CS tone
information from the lateral pontine nuclei and receive US air puff information from the
dorsal accessory olive. Convergence of the CS and US information in the cerebellum
drives learning. The CR-related activity is transmitted to the brain stem motor nuclei
along with positive feedback to the pontine nuclei and negative feedback to the inferior
olive. This idea of a positive feedback loop from the cerebellum had been proposed as
early as Blomfield and Marr (1970), who described how positive feedback could allow
for tempora persistence of discharges in motor cortex. Houk, Singh, Fisher, and Barto
(1990) implemented a cerebellar—red nucleus feedback system into a network model of
the limb pre-motor network. The modules of their network are called adjustable pattern
generators (APGs). This term refers to the ability of the module to generate an elemental
burst of activity with adjustable intensity and duration. In general, in their model, Purkinje
cells must become responsive to the sensory input that triggers the movement but must
become unresponsive during the execution of the movement. This is accomplished by
having Purkinje cells switch to a programming state in which Purkinje cell responsivity
to the input is inhibited, allowing for positive feedback through the limb pre-motor
network. Positive feedback through the limb pre-motor network switches the limb pre-
motor network from an inactive to an active state and initiates the movement.

Houk et al. (1990) theorized that once the Purkinje cells switch to a particular firing
state, they become refractory to further input until near the termination of the movement.
A key assumption of this model is that the Purkinje cells are trained by the climbing fiber
input to recognize the patterns of parallel fiber activity that indicates that the desired end
point is about to be reached. This signal would activate Purkinje cells that were previously
not responsive and alow them to fire, thereby terminating positive feedback through the
pre-motor network.

This positive feedback loop was posited by Houk (1989) to be responsible for eyeblink
conditioning. Specifically, Houk suggested that the excitatory activity in the interpositus
nucleus is due not to direct sensory responses to the CS but rather to positive feedback
in the recurrent network among the red nucleus, lateral reticular nucleus, and cerebellar
interpositus nucleus. A weak CS input to the red nucleus needs to be fed back through
this recurrent network to be amplified to the point where it is strong enough to drive a



322 GLUCK ET AL.

CR. The amplitude and duration of the CR are controlled by the inhibition of the activity
within this loop by the Purkinje cells.

This APG model of the cerebellar brain stem role in classical conditioning suggests
that the CS-US association is formed mainly outside of the cerebellum (in the red nucleus,
lateral reticular nucleus, or even motor cortex). The role of the cerebellum is to determine
the topography (i.e., amplitude and timing) of the CR.

Although recording studies of Purkinje cell firing patterns (Berthier & Moore, 1986)
and firing patterns in the red nucleus (Desmond & Moore, 1991) support the APG model,
thereis some evidence from the temporary inactivation studies that does not. Thereversible
inactivation studies noted earlier report normal development of CR-related activity in the
interpositus nucleus during red nucleus inactivation (Clark & Lavond, 1993; Clark et al.,
1992; Krupa & Thompson, 1995, 1997; Krupa et a., 1993; Ramirez et a., 1997). If CR-
related activity develops normally in the cerebellum while the red nucleus is inactivated,
then red nucleus—interpositus recurrencies cannot be responsible of the development of
the CR.

However, one feature of the APG mode that fits in nicely with the Thompson (1986)
cerebellar model is that Purkinje cells are trained by the climbing fiber input to recognize
the patterns of parallel fiber activity that indicates that the desired end point is about to
be reached. Houk et al. (1990) did not specify what this pattern of activity from parallel
fibers is. The Thompson (1986) model would suggest that this pattern of activity of
paralel fiber is the efferent copy of the CR that is projected via the pontine nucleus back
to the cerebellar cortex. McCormick, Lavond, and Thompson (1983) recorded in the LPN
subsets of neurons that either show CS onset-related activity or CS onset-related activity
along with CR-related activity. This CR-related activity late during the CS period would
serve as the signal to the Purkinje cells that the desired movement (i.e., eyelid closure)
is about to be reached.

Functional Sgnificance of Inhibitory Feedback for Error Correction Learning

In our work on the essential neural circuit for classical conditioning of discrete behavioral
responses (see Fig. 2), we have discovered a circuit-level mechanism that can account
for the error-correcting property of the Rescorla—\Wagner rule. It is an emergent property
of the organization of the neural circuit itself rather that a specialized synaptic process.

We assume that the amount of associative strength added on a given CS-US trial is
proportional to the amount of climbing fiber activation of the cerebellum on that trial.
Thus, we have conceptualized the reinforcement strength on agiven trial as the proportion
of effective climbing fibers activated by the US. Empirical evidence to date is strongly
consistent with this hypothesis. In electrophysiological recordings from Purkinje cells
made prior to training, presentation of the US consistently evokes climbing fiber activity,
which in turn evokes complex spikes from Purkinje cells. In well-trained animals, the US
typically does not evoke complex spikes (Foy & Thompson, 1986; Krupa, Weiss, &
Thompson, 1991). Therefore, a marked decrease in climbing fiber activation of Purkinje
cellsis evident as a result of learning.

Recent anatomical and physiological evidence also indicates the existence of an inhibi-
tory pathway from the interpositus directly to the inferior olive (Hesslow & lvarsson,
1996; Nelson & Mugnoini, 1987; Steinmetz & Sengelaub, 1992), implying that CR output
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could weaken the ahility of the US to activate climbing fibers. There also is an indirect
pathway from the interpositus to the red nucleus to the inferior olive that could serve a
similar function (Weiss, McCurdy, Houk, & Gibson, 1985). Then, asthe CR isincreasingly
learned, activation of the US pathway by the external US is increasingly attenuated (see
also Donegan et a., 1989; Donegan & Wagner, 1987). This change in US inputs could
implement the supposition inherent in the Rescorla—Wagner rule that the amount of
associative strength added on each trial decreases as the CR increases.

More direct evidence for this hypothesis has been obtained by recording neuronal
activity in an area of the inferior olive known as the dorsal accessory olive (DAO) that
is activated by the corneal air puff US (Sears & Steinmetz, 1990). US-alone presentations
consistently evoke a phasic increase in response of the DAO neurons. As the behavioral
CR begins to develop, this US-evoked response in DAO neurons becomes markedly
attenuated. In awell-trained animal, US onset-evoked activity may be completely absent
in the DAO on trids in which the animal gives a CR. However, US-alone presentations
still evoke the same onset response that the US evoked prior to training. This finding
indicates that the CR does indeed inhibit inferior olive activity when exhibited during a
paired trial.

A COMPUTATIONAL MODEL OF CEREBELLAR ERROR
CORRECTION LEARNING

We have instantiated these ideas within a computational model that incorporates the
key pathways of the circuit schematic in Fig. 2. As shown in Figs. 3A and 3B, we have
organized the cerebellar connectivity shown in Fig. 2 so that al sensory inputs enter at
the bottom of the circuit and progress upward to the CR outputs at the top of the figure.
In devel oping thismodel, we have adopted amajor simplification: representing the Purkinje
and interpositus nucleus as a two-layer module with inputs that represent the CS, US,
and recurrent CR information as shownin Fig. 3A. The connectionist model of conditioning
based on these simplifications is shown in Fig. 3B. The input—layer nodes represent
granule cells that receive al possible CSs and become active when that CS is present.
Thisinformation, corresponding to parallel fiber projections from granule cells, projectsto
aninternal layer representing Purkinje cellsand an output node representing theinterpositus
nucleus. The output from this node is the behavioral CR. The internal-level input weights
to the internal layer are random and fixed, whereas the weights to the output node are
adaptive. The activity of the output node also has excitatory recurrent connections to the
CSinputs along with inhibitory recurrent connections to the US inputs. Within our circuit
model, we have implemented this negative feedback loop with a nonmodifiable synapse
of value —1 between the output node (interpositus) and the inferior olive. The functional
role of this inhibitory feedback is to compute the error signal measured by the inferior
olive's activity. The inferior olive's activity is governed by the following equation:

10 = (US — CR),

where |0 is the activity of the inferior olive, USis the US input, and CR is the output
of the output node (interpositus). Thus, the inferior olive's output is projected to the
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(A). Simplified (B). Connectionist Model
Cerebellar Circuits of Conditioning
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FIG.3. Simplificationsthat have been madeto adapt the cerebel lar anatomy into the connectionist architecture
for the development of the current computational model of the cerebellum. (A) Cerebellar circuit diagram that
has been simplified from the cerebellar circuitry shown in Fig. 2. The circuit has been organized so that sensory
inputs enter at the bottom of the figure and inputs flow upward to the CR outputs at the top of the figure.
Furthermore, the cerebellar cortex has been simplified into a layer that represents the granule cells, a node that
represents the Purkinje cells, and a node that represents the interpositus nucleus. (B) Connectionist model of
conditioning that has been designed based on the simplified cerebellar circuit in panel A. The input layer
represents the granule cells. The internal layer represents the Purkinje cells. The output node represents the
interpositus nucleus.

internal layer and output node as an “error signal” that is analogous to the term
(A — X;CSw) in Eq. (1) of the Rescorla—Wagner equation.

Implicit in the above discussion is the assumption that activity in the inferior olive can
represent both errors of omission and errors of commission. Errors of commission occur,
for example, on extinction trialsand during conditioned inhibition training when aresponse
is made but no US occurs. Without a baseline level of activity in the inferior olive, the
inhibitory effect of aresponse on an inactive inferior olive (e.g., an extinction trial) would
have no effect. Without the ability to represent negative errors of commission, the system
has no way of representing a trial on which associative weights should decrease.

We can accommodate the need for representing negative errors by assuming that the
inferior olive has apositive baseline level of firing when no error has occurred. Depressing
the inferior olive below this baseline represents negative error. In this way, the inferior
olive term would reflect not the absolute activity level of the inferior olive but rather its
activity level relative to baseline activity. There is some empirical evidence to support
this assumption; the spontaneous discharge rate of inferior olivary neurons is about 2 to
4 spikes per second in the awake-behaving animal (Ito, 1984). As noted earlier, a naive
animal shows US-evoked activity in the dorsal accessory olive. However, as learning
occurs, this US-evoked activity in the dorsal accessory olive decreases to near zero on
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paired CS-US trias as the animal learns to predict the US from the CS and reliably
exhibit a CR.

Our simplified circuit model of the cerebellum predicts that when awell-trained animal
gives a CR to the CS on CS-alone trials, the spontaneous response rate of dorsal accessory
olivary neurons should decrease to below baseline levels during the CS period. This
prediction followsfrom the neurobiol ogical model on the assumption that increased activity
of the interpositus nucleus results in increased direct inhibition of olivary neurons.

Smulation of Acquisition of Conditioned Response

The simplest form of eyeblink classical conditioning is delay conditioning. In delay
conditioning, a CS is repeatedly paired with a US, with some specified delay between
CS and US onset (the interstimulus interval [ISI]), so that the CS and US coterminate.
With the exception of trace conditioning (defined later), all simulations reported are based
on delay conditioning.

The model isadiscrete time model. This means that at each cycle the model can modify
its synapses only once, as opposed to rea-time biological systems that continuously
modify synapses. In these simulations, we divided the trial into 10 discrete cycles or time
intervals. At this stage in theory development, we make no direct mapping between the
duration of a cycle and an actual time interval. A simulation of simple delay conditioning
(see Fig. 4) shows the results of training the model on a delay paradigm in which the CS
is on (input activation = 1) for cycles 4 through 8 inclusive, whereas the US is on only
for cycle 8 (i.e., an I1SI of 4 time cycles).

The model is able to simulate a variety of features of normal delay conditioning. It
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FIG. 4. Simulation results from our cerebellar model that correctly mimic CR characteristics for eyeblink
conditioning with well-timed CR topographies across a variety of 1SIs (4—18 time cycles). In each case, the
peak CR response occurs at about the time of US onset, as is seen in behaviora literature. In addition, note
that in the case of the responses to the ISI of 18 time cycles, twice as many trials were required for proper
timing as compared to the shorter ISls. This simulation agrees with the behavioral literature showing that the
longer the I1Sl, the Slower the learning.
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shows CR development into a well-timed response in which the CR peak occurs at about
the time of US onset. The timing of the CR peak is correct over a range of 1Sl lengths
from 4 to 18 time cycles, as shown in Fig. 4. In animals (Gormezano et a., 1983), the
different ISl lengths result in different learning rates in that the fastest acquisition occurs
for about 250 to 400 ms ISl and is slower for each successively longer 1SI. This finding
is demonstrated in our modeling simulations because it takes twice as many trials to
achieve well-timed CRs with an 18-time-cycle ISl as with a 4-time-cycle ISl. In the
model, this happens because the only change in net input from cycle to cycle is the
changing CR feedback. The network must learn a set of weights such that the CR remains
low for the first part of the ISI and grows rapidly thereafter. With short 1Sl training, it is
appropriate to exhibit CRs much sooner after CS onset; therefore, this task is learned
more quickly. The increased complexity of the long IS task not only increases learning
time but also results in a broader CR, consistent with experimental data (Gormezano et
al., 1983). We theorize that the well-timed CR is due to recurrent feedback of the CR
(e.g., to the pontine nucle). If this feedback loop to the CS input pathway is disabled,
then the cerebellar model is unable to properly time the CR to peak at about the US onset.

Smulating Complex Learning and the Role of Informational Variable

The preceding simulations have illustrated how the cerebellar circuit model generates
a wide range of behaviors appropriate to the acquisition of the conditioned eyeblink
responsein rabbits. Themodel can also account for numerous|earning phenomenabelieved
to involve more subtle aspects of stimulus selection. We discuss severa representative
examples below including conditioned inhibition, positive and negative patterning, and
blocking.

Conditioned inhibition is a phenomenon where paired presentations of a CS A and the
US are intermixed with nonreinforced compound presentations of A and a second cue,
CS B (A+, AB— training). The Rescorla—Wagner rule predicts that strong associative
strength accrues to A, whereas strong negative associative strength accrues to B and limits
the associative strength that can accrue to A. In the second phase, learning is compared
between B and a novel cue, C. Therefore, in the second phase of training, responding to
B is slower because B has a negative associative strength as compared to the novel
cue, C, which has no associative strength. The conditioned inhibition effect has been
demonstrated in rabbit eyeblink conditioning (Mahoney, Kwaterski, & Moore, 1975;
Marchant & Moore, 1974; Solomon, 1977). As shown in Fig. 5A, the model quickly
learns to generate a strong CR to A+ trias but not to AB— trials in phase 1. In phase 2,
conditioned inhibition is exhibited by the fact that learning to B+ is slower than learning
to the novel cue C, as demonstrated by an increased number of trials necessary to reach
a criterion of 80% CRs (see Fig. 5B).

Another issue for theories of conditioned inhibition is whether or not the presentation
of theinhibiting cue alone (B in the above discussion) resultsin extinction of the inhibitory
properties of this cue. Remember that in tests of extinction of conditioned inhibition,
presentations of A+ are intermixed with presentations of AB in phase 1. Extinction trials
consisting of B aone are presented in phase 2. Test trials of A+ and AB— are presented
in phase 3. If extinction has not occurred, then B should continue to be just as inhibitory
to responding to A despite the intervening B-alone extinction trials. The simulation results
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FIG. 5. Simulation results from our cerebellar model for conditioned inhibition. (A) Learning curves for
phase 1 of conditioned inhibition. In phase 1, there is strong responding on A+ trials (blue line) and some
initial responding on AB— trias (red line) that is inhibited later in training. (B) Slower learning in phase 2 on
B+ trials as compared to C+ trials as represented as trials to reach a criterion of more than 80% CRs.

from our cerebellar model do not show an extinction of conditioned inhibition following
unreinforced presentation of the inhibitor. This makes intuitive sense. If a cue predicts
the absence of a US and there is no US following the cue, then we would naturally expect
that the cue would retain its inhibitory value. The simulation results from our cerebellar
error-correcting model show the strong response to A and equally weak responses to AB
both before extinction trials (Fig. 6A) and following 2000 B—-alone extinction trials
(Fig. 6B).

Interestingly, the issue of what happens during cue-alone presentation of a previously
conditioned inhibitor isone of the most problematic aspects of the Rescorla—\Wagner model.
The Rescorla—\Wagner model erroneously predicts extinction of conditioned inhibition in
these circumstances, and experimental studies have shown that in animals the conditioned
inhibitor does not extinguish with cue-alone presentation (Zimmer-Hart & Rescorla, 1974).
As shown in Fig. 6C, conditioned inhibition is shown in the Rescorla—\Wagner model by
little responding to B immediately following AB trials. Following 2000 trials of B aone,
the Rescorla—Wagner rule predicts that the conditioned inhibition effect is extinguished,
as demonstrated by equivalent responding to A+ and AB— trials as shown in Fig. 6D.
Thus, although our model can be seen as a mapping of the Rescorla—\Wagner model onto
circuit-level mechanisms, there clearly is a subtle difference between our cerebellar model
and the original Rescorla—Wagner model theory; the cerebellar model shows the behavior-
aly appropriate lack of extinction of conditioned inhibition.

The difference in results between the Rescorla—\Wagner rule and our cerebellar model
reflects differences in what values are actually subtracted for the error correction calcula
tion. In the Rescorla—Wagner rule, the error comparison during phase 2 B-alone extinction
trials is between A and V;. At the start of B-alone extinction training, A is zero and the
Vg hasanegative value. Thisdiscrepancy driveslearning to that the value of Vg approaches
zero. When AB— test trials are now presented, Vg equals zero and V, still has a positive
value. Therefore, both A+ and AB— trials now elicit CRs following the B-alone extinction
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trials, whereas previously AB— trialsresulted in little responding. In our cerebellar model,
the error comparison made by the inferior oliveis not between A and Vg but rather between
the values of the US and CR. During B-alone extinction trials, thereisno US and no CR,
and both values are zero; therefore, there is no error to drive any learning during the B-
alone extinction trials. Because of this lack of learning, the extinction training has no
effect on subsequent AB test trials, and conditioned inhibition is exhibited just as before
the B-alone extinction trials.

Another conditioning task for which the cerebellar network model can account is
blocking. As described earlier, blocking is the phenomenon where a neutral CS A is first
repeatedly paired with the US (A+ training) so that the animal comes to expect the US
given A (see Table 1). In the second phase of training, animals receive trials with stimulus
compound of previously trained A and a novel CS B, paired with the same US (AB+).
A later test to the individual CSs shows a continued high level of responding to A but
little responding to B. Apparently, the prior conditioning to A blocks the learning to B.
By contrast, control animals that receive training to a neutral CS C in phase 1 followed
by AB+ trials show appreciably more responding when tested with B. Marchant and Moore
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FIG.6. Simulation resultsfrom our cerebellar model that correctly predict alack of extinction of conditioned
inhibition following 2000 B— trials (A, B). These results are compared to the incorrect Rescorla—\Wagner
prediction of elimination of conditioned inhibition following this manipulation (C, D). (A) Results from our
cerebellar model in which there is strong responding on A+ trials and virtually no responding to AB— trials
at the end of conditioned inhibition training. (B) Responding following 2000 B— extinction trials in which the
inhibitory effect of B has not been extinguished. (C) Results expected by the Rescorla—Wagner rule in which
there is strong responding to A+ trials and virtually no responding to AB— trials at the end of conditioned
inhibition training. (D) Incorrect extinction of conditioned inhibition following B-alone trials as predicted by
the Rescorla—\Wagner rule.



CEREBELLAR SUBSTRATES 329

(1973), Solomon (1977), and Kehoe (1981) demonstrated this blocking phenomenon in
rabbit eyeblink conditioning, whereas Martin and Levey (1991) demonstrated blocking
with human eyeblink conditioning. As expected, the cerebellar model shows robust
blocking in these training conditions. Figure 7 shows the slower learning to B+ training
following A+ and AB+ training as compared to the control group, which was previously
trained on C+ and AB+.

Two predictions about the neural mechanisms of blocking can be made from the
cerebellar model. First, in well-trained animals, the US consistently evokes complex spikes
in Purkinje cellson US-alonetrials. However, on CS-US trials where the animal generates
aCR, the US did not evoke complex spikes. The model predicts that this lack of Purkinje
complex spiking is due, we think, to CR feedback from the interpositus, inhibiting dorsal
accessory olive activity by way of the inhibitory neurotransmitter gamma-aminobutyric
acid (GABA). If the feedback path from the interpositus to the DAO is inactivated, then
the US should evoke Purkinje cell complex spikes even if the CR is generated. To test
this prediction, Kim et al. (1998) implanted cannulas in the DAO to infuse the GABA
antagonist picrotoxin in animals well trained to respond to a tone CS. Picrotoxin has the
effect of blocking the inhibitory action of GABA on neurons. After picrotoxin infusion,
these same Purkinje neurons consistently exhibited complex spikesto US onset on paired
trials where the animal performed CRs. It would seem that inactivation of the feedback
inhibitory projection from interpositus to the DAO in well-trained animals now permits
the US to fully activate the DAO-climbing fiber system (the reinforcing or teaching input)
just as in naive animals.

Second, it follows from the network model and the result just described that inactivation
of the GABA-ergic projection to the DAO during the compound phase of training in the
blocking paradigm should prevent blocking. Kim et al. (1998) tested this prediction with
implanted cannulas in the DAO that infused the GABA antagonist picrotoxin in animals
well trained to respond to a tone CS. Rabbits in a blocking group were given initial
training to the tone (T) and were then injected with the vehicle solution of artificia
cerebrospinal fluid (ACSF) and trained to the compound of tone and light (TL). These
rabbits were markedly impaired in subsequent acquisition to the light (L), compared to
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FIG. 7. Simulation results for the blocking phenomena as the differencein trials to criterion on B+ training
following either A+|AB+ or C+|AB+ training. The blocking effect is demonstrated in that previous training
to A+|AB+ significantly slows subsequent learning to B+ as compared to previous training to C+ |AB+.



330 GLUCK ET AL.

CR Topographies for Positive Patterning

Time ->

A 1 1
B I 1 — 1
us I

FIG. 8. Simulation results for the positive patterning phenomena, as shown by CR topography on all three
trial types. Thereisastrong response on the AB+ trials, whereas the responding on A+ and B+ trialsisinhibited.

the control group not given initial training to the tone (T) and trained only to the compound
tone—light (TL).

By contrast, rabbits first trained to the tone (T) that then received the GABA antagonist
picrotoxin during compound training to the tone and light compound (TL) showed no
blocking at all; they subsequently learned to the light just as did the control group not
given initial training to the tone (T). Therefore, inactivation of GABA inhibition in the
inferior olive “blocks’ blocking, as predicted by the cerebellar network model.

Another type of learning task that has been explained to a limited degree by the
Rescorla—Wagner rule and the cerebellar network model includes configural learning tasks
such as positive and negative patterning. A configural task is one in which a response to
a compound cue is different from the response to the individual components. It was
proposed by Rudy and Sutherland (1995) that an intact hippocampal region is necessary
to learn this type of configural task.

Positive patterning is a phenomenon in which A and B presented individualy are not
paired with the US, but the compound AB is paired with the US. Therefore, the animal
learnsto respond to the compound but to not respond to theindividual cues. The Rescorla—
Wagner model predicts that the associative strengths of the individual cues A and B are
not strong enough to elicit a CR, whereas the summed associative strengths of the com-
pound AB are strong enough to reliably elicit a CR. The Rescorla—\Wagner model predicts
that if the associative strength of AB = 1, then A aone plus B aone should equal 1 (e.g.,
A = 0.5 and B = 0.5), but this is higher than the response to A or B seen in animals
given positive patterning. Note that this is true only if one assumes no configural nodes
in the Rescorla—Wagner model. Our cerebellar model embeds the Rescorla—Wagner rule,
with the difference being a hidden layer that can form configural associations.

Bellingham, Gillette-Bellingham, and Kehoe (1985) and Kehoe and Schreurs (1986)
demonstrated the positive patterning effect by training rabbits with presentations of atone
and light paired with the US along with an equal number of the nonreinforced presentations
of the tone and light individually. The model is able to simulate this result. As shown by
CR topographies in Fig. 8, responding is strong to the compound cue AB, whereas
responding to the individual cues A and B is inhibited.

Negative patterning is the opposite phenomenon to positive patterning. In negative



CEREBELLAR SUBSTRATES 331

patterning, CS A and CSB are each individually paired with the US, whereasthe compound
presentations of AB are not reinforced. The animal, therefore, must learn to respond
when either CS appears alone but not to respond when the compound is presented. The
Rescorla—Wagner rule can account for negative patterning only if additional assumptions
are made (Gluck & Bower, 1988). The additional assumptions are the hidden layer, asin
our cerebellar model.

Bellingham et al. (1985) demonstrated the negative patterning phenomenon by training
rabbits that either a tone and light alone predicted the US air puff, whereas the compound
tone—light presentation did not. Differentiation between the individual and compound
presentations in the negative patterning paradigm was much slower to develop than in
positive patterning. Early during training, there was more responding to the compound
cue than to the individual cues. Eventually, however, rabbits learned to respond to the
cues instead of the compound.

Although the model easily simulates positive patterning, the model has some trouble
with negative patterning. Examples of CR topography from a simulation that correctly
solved the negative patterning task (labeled “Solver” in Fig. 9A) and a smulation that
did not correctly solve the negative patterning task (labeled “Non-Solver” in Fig. 9B).
This bimodal result may be indicative of the complex nature of the task and the problems
that have been reported in obtaining the negative patterning result in animals. Negative
patterning has been considered a form of a “configural” task that requires sensitivity to
CS-CS relationships that many have argued depends not just on the cerebellum but also
on the hippocampus (Sutherland & Rudy, 1989). As such, it is not surprising that a model
of only the cerebellar contribution to learning would have difficulty in reproducing a
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FIG. 9. Simulation results for the negative patterning phenomena. (A) Conditioned response topography
for the three tria types (A+, B+, AB—) for a simulation that correctly solved the task labeled a “ Solver.” This
simulation result correctly solved the task by responding to A+ and B+ trials while inhibiting responding toe
AB+ trias. (B) Conditioned response topography for the three trial types (A+, B+, AB—) for asimulation that
one that failed to solve the task labeled a “Non-Solver.” This simulation result failed to solve the task due to
responding indiscriminately to al three tria types.
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behavior seen most clearly in animals with intact hippocampal functioning. In the next
section, we explore this idea further.

IMPLICATIONS FOR MODELS OF HIPPOCAMPAL FUNCTION IN
CONDITIONING

Motor learning such as eyeblink conditioning can engage higher brain structures such as
the hippocampus. In delay eyeblink conditioning, animals with nonselective hippocampal
region lesions (Schmaltz & Theios, 1972) and selective hippocampal |esions (Shohamy et
al., 2000) can learn and retain CRsrelatively normally. However, nonsel ective hippocampal
region lesions markedly impair more complex forms of conditioning such as trace condi-
tioning (Moyer, Deyo, & Disterhoft, 1990; Solomon, Vander Schaaf, Thompson, & Weisz,
1986), discrimination reversal learning (Berger & Orr, 1983), latent inhibition (Solomon &
Moore, 1975), and learned irrelevance (Allen, Chelius, & Gluck, 1998). Furthermore,
hippocampal lesions made immediately after training abolish the trace eyeblink CR,
whereas lesions made a month after training do not impair CR retention (Kim, Clark, &
Thompson, 1995). This anterograde amnesia and time-limited retrograde amnesia are the
hallmarks of media —temporal |obe/hippocampal -dependent declarative memory processes
in humans (Squire, 1992; Squire & Zola-Morgan, 1991), suggesting that trace eyeblink
conditioning may be a useful elementary animal model of human declarative memory
(Clark & Squire, 1998).

Apparently, there are learning pathways in the hippocampus and cerebellum that ordi-
narily operate in parallel. Some behaviors are critically dependent on the hippocampus
and are impaired when the hippocampus is damaged. For other behaviors, cerebellar
mediation may suffice. Because the current cerebellar model exists in the absence of a
model of hippocampal function, we expect to see the same range of behaviors from this
cerebellar model as in animals that have undergone hippocampal removal.

Correspondence with Cerebellar Circuit Model

Consistent with the data on animals with hippocampal lesions (Moyer et al., 1990),
our cerebellar model is unable to learn with trace conditioning (i.e., conditioning in which
the CS terminates prior to US onset and a memory “trace” of the CS must be maintained
while no stimuli are present) or with very long ISls in a delay conditioning paradigm.
Themodel has considerable difficulty inlearning tasksthat require sensitivity to configura-
tions. The model suggests that learning these tasks is due to the higher order filtering of
the input lines to the internal layer and output node, but not nearly enough to account for
the complete differentiation between stimulus components and compounds observed in
asymptotic negative patterning. Thisis consistent with data showing that lesioning of the
hippocampus and associated structures can impair configural learning (Rudy & Sutherland,
1995; Sutherland & Rudy, 1989).

Hippocampal -l esioned animal s show impai rments, compared to intact animals, in several
learning paradigms in which preexposure to one or more CSs affects the ability of the
animals to form associations in later conditioning. Consistent with the behavioral data
(Port & Patterson, 1984), the cerebellar model fails to exhibit sensory preconditioning
(McFarland, Kostas, & Drew, 1978) and latent inhibition (Solomon & Moore, 1975).
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For sensorimotor |earning tasks, such as eyeblink conditioning, our model and the Kim
et a. (1998) data argue that the contribution of US modulation to stimulus selection in
blocking arises from intrinsic circuits of the cerebellum via an error-correcting inhibitory
feedback pathway that is functionally analogous to the process proposed by Rescorla and
Wagner (1972). This leaves open, however, the possibility that additional CS modulation
influences on stimulus selection and blocking may be mediated by other brain structures
such as the hippocampus. Although blocking in other preparations, such as emotional
(fear) conditioning, may involveimportant contributions from both CS and US modulation,
Kim et al.’s (1998) data argue strongly that cerebellar-mediated US modulation is sufficient
to mediate blocking in rabbit eyeblink conditioning.

Correspondence with Cerebellar—Hippocampal Model of Gluck and Myers

The Gluck and Myers (1993) hippocampal model proposed how the hippocampus might
modulate the cerebellum during eyeblink conditioning. The hippocampal regionismodeled
as a network that learns to reproduce its inputs at the output layer, as shown in Fig. 10.
Because the middle node layer is narrower than the input and output layers, it is necessary
to form astimulusrepresentation in the middlelayer that compresses redundant information
while preserving predictive information. The stimulus representations formed in the hippo-
campal region network are transmitted as atraining signal to along-term memory module.
In the case of eyeblink conditioning, it is assumed that the long-term memory component
is the cerebellum. This module is functionally similar to our cerebellar model. These
stimulus representations are mapped by the cerebellum to an output that is interpreted as
the behavioral response.

The Gluck—Myers cortico-hippocampal model iscapable of learning phenomenathat are
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FIG. 10. Gluck and Myers (1993) model of hippocampa modulation of cerebellar learning in eyeblink
conditioning. (A) Intact model consisting of both the hippocampal region network and the cerebellar network.
The representations formed by the hippocampa module are sent to the internal layer (Purkinje cells) of the
cerebellar module. (B) In the lesioned model, the hippocampal region network has been removed, leaving the
cerebellar network and its stimulus inputs.
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FIG.11. Equivalency among (A) thesimplified cerebellar circuit (Thompson, 1986), (B) thecurrent cerebellar
model, and (C) the Gluck and Myers (1993) hippocampal-lesioned (cerebellum alone) trial-level model.

not possible in our current error-correcting cerebellar model. The bias toward redundancy
compression can account for learning phenomena such as latent inhibition, learned irrele-
vance, sensory preconditioning, and compound preconditioning. The biastoward predictive
differentiation can account for learning phenomena such as discrimination reversal learn-
ing, easy—hard transfer, and stimulus generalization. With the hippocampal region module
removed and the hippocampus effectively lesioned, the remaining long-term memory
component can be thought of asan isolated cerebellar model with no hippocampal modula-
tion, as shown in Fig. 11C.

Overal, the current error correction cerebellar model and the Gluck—Myers cortico-
hippocampal model can be viewed as continuations of our ongoing work to investigate
the roles of various brain structures, specifically the cerebellum and hippocampus, in
classical eyeblink conditioning as schematized in Fig. 11.

GENERAL DISCUSSION

We have presented acomputational model of the cerebellar circuitry believed to mediate
eyeblink conditioning and other discrete sensorimotor learning tasks. Our primary focus
has been to review the evidence for a negative feedback circuit that implements an error
correction learning procedure, much like the Rescorla—\Wagner model of conditioning. In
addition to accounting for a range of conditioning behaviors previously localized to the
cerebellum, this cerebellar model correctly predicts behavioral deficits associated with
lesions of the hippocampal formation (e.g., trace conditioning, latent inhibition).

The current real-time model has come about from a series of previous trial-level
instantiations of the idea of error correction in the cerebellum (Bartha, Thompson, &
Gluck, 1991; Donegan €t al., 1989; Gluck et al., 1990, 1994). This real-time precision is
due to the recurrent connection between the interpositus output and the pontine nuclei.
Through this pathway, the cerebellum is able to learn not only the CS-US association
but also the CR-US association and, thus, inhibit the CR until the time of the US onset.

This article has focused on the ability of the error-correcting cerebellar circuitry to
simulate basic eyeblink conditioning characteristics along with more complex learning
phenomena that have previously been explained by the Rescorla—Wagner rule. The Re-
scorla—Wagner model and the concept of error correction not only are applicable to smple
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forms of learning such as classical conditioning but also have been applied to more
cognitive tasks in humans along with being a foundation for connectionist models of
human learning (Gluck & Bower, 1988).

The Rescorla—Wagner model and basic error correction cannot account for all learning
phenomena such as latent inhibition. These limitations can be viewed as suggesting that
these behavioral paradigms require brain structures and learning mechanisms other than
error correction alone. In particular, the hippocampus has been implicated as playing a
modulatory and necessary role in some learning phenomena that are not accounted for
by the Rescorla—\Wagner rule.

Previous work with a computational model of the hippocampus (Gluck & Myers, 1993)
has shown that the addition of stimulus selection abilities of the hippocampus along with
the error correction of the cerebellum can account for a wider range of conditioning
phenomena than can the Rescorla—Wagner model alone. These findings indicate that the
limitations of the Rescorla—Wagner model are not due to a failure of the theory; rather,
there exist multiple types of learning mechanisms that are activated by different types
of tasks.

Additional support for the idea that neura circuits are capable of instantiating error
correction learning comes from the paradigm of fear conditioning and the work of Mike
Fanselow and colleagues at the University of California, Los Angeles (Fanselow, 1998).
In fear conditioning, a neutral CS is paired with an electric shock. The CS acquires the
ability to elicit several fear-related behaviors including an endogenous opioid-mediated
analgesia (Fanselow, 1984). Fear conditioning requires that the US be painful to be
effective, and therefore, the analgesic state elicited by the CS would reduce the reinforcing
strength of the shock. In the case of blocking, initial training with a tone and shock would
bring about this analgesic state in response to the tone. When a tone and light are
subsequently paired with the shock, the shock would be ineffective in producing a fear
response to the light because the shock is no longer painful by virtue of the analgesic
effect of the previously conditioned tone. In this way, the analgesic effect would provide
negative feedback on the acquisition of fear conditioning. This feedback loop can be
interpreted as calculating the Rescorla—\Wagner rule by way of the tone’s analgesic effect
reducing the strength of the shock until there is no response to the shock and, therefore,
no reinforcement for learning to respond to the light.

Fanselow (1998) mapped this fear conditioning analgesic effect onto the amygdala and
its related structures. The tone CS information reaches the amygdala by way of the
thalamus, whereas the shock US information reaches the amygdala by way of the dorsal
horn. The amygdalais the site of CS-US-related synaptic plasticity and provides negative
feedback to the dorsal horn US projection system by way of the endogenous opioid release
from the ventral periagueductal gray that creates the analgesic state that blocks the painful
nature of the shock. This amygdala circuit for fear conditioning is directly comparable
to our cerebellar model of eyeblink conditioning. In both cases, thereis anegative feedback
pathway that blocks the US information from effectively reaching the site of CS-US
convergence in well-trained animals. In both cases, this negative feedback pathway can
be blocked pharmacologicaly. As with the Kim et a. (1998) eyeblink experiment in
which the negative feedback from the cerebellum to the inferior olive is blocked by
injection of picrotoxin that eliminated the blocking effect, an analogous study has been
donein fear conditioning. When the negative feedback opioid pathway for fear conditioning
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is blocked by administration of the opioid antagonist naloxone, the blocking effect is
attenuated (Fanselow & Boalles, 1979).

Overall, evidence from the cerebellum and the amygdala point to the existence of
negative feedback loops in the neural circuitry thought to underlie two different classical
conditioning paradigms that are capable of calculating the Rescorla—Wagner rule. It is
likely that the Rescorla—\Wagner rule not only isapplicableto our work with the cerebellum
and eyeblink conditioning and Fanselow’s work with the amygdala and fear conditioning
but may also be involved in other forms of associative learning for which the underlying
neura circuitry is not fully understood.

Future Directions

It will be critical in future studies to seek to understand how the hippocampus is able
to modulate the cerebellar circuits in a real-time fashion so that the aggregate behavior
of both systems behaves like the connectionist network described here. Another important
line of research for future development will be to extend the model to more accurately
reflect cerebellar circuitry and to account for the individual neuronal contributions of the
cerebellar cortex and interpositus such asthe granule, stellate, and Golgiss cellsin cerebel-
lar cortex and to determine the role of excitatory and inhibitory neurons within the
interpositus that are the basis for the feedback pathways to the inferior olive and pontine
nuclei. Further work also needs to be done to test the relative roles of the hippocampus
and cerebellum in learning phenomena such as blocking in avariety of learning paradigms
other than eyeblink conditioning.

APPENDI X

The cerebellar model consists of four input nodes fully connected to 20 hidden nodes;
all of the input and hidden nodes are connected to a single output node. The activation
of this output node is the behavioral response or CR. On each training cycle, three input
nodes represent the presence (1) or absence (0) of three CSs. A, B, and C. The fourth
input node is a feedback projection from the output node; its activation is the behavioral
response CR from the previous training cycle. The CR is initialized to 0 at the start of
the simulation run. All input—output (10) and hidden—output weights are initialized to
0.0; input—hidden weights are initialized from the uniform distribution (—0.3, +0.3).

Each trial is divided into cycles, each representing about 50 ms. Each trial contains 30
cycles unless otherwise noted below. All CSs are O at the beginning of atrial. At least 1
CS arrives at some prescheduled cycle in the trial and lasts for a predetermined number
of cycles. If the US is present, then it lasts for exactly 1 cycle and coterminates with the
CS. If no CSs are present during a cycle, then the network’s only nonzero input is the
CR feedback. The network isgiven 1000 initialization trials, with all CSsand US set to 0.0.

On each cycle, each hidden node j computes its activation, A, according to

A" = Eiliwijy (Al)

wherei rangesover thefour inputs (A, B, C, and CR), |; isthe activation of the corresponding
input node, and wj; is the weight from CS to node j. Activation is clipped at 0.0 and 1.0.
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The output node calculates its activation according to the same rule except that i ranges
over the input and hidden nodes.
Next, network weights are updated. The output error is computed as

Error = 10 = (US — CR), (A2)

where USis 1if the USis present and O otherwise, and CR is the activation of the output
node. Both the input—output and hidden—output nodes update weights as

Aw; = B(Error)A;, (A3)

where learning rate 8 = 0.04 if the US is present and 0.004 otherwise.
In the picrotoxin simulations of Fig. 11B, the CR feedback to 10 is assumed to be
disabled, and so the error computation of Eq. (A2) is replaced by

Error = 10 = US (A4)

All results shown are averaged over 10 simulation runs. Criterion performance (as in
Fig. 5B) is defined as 10 consecutive trials during which the network output is greater
than 0.80 on all US-present cycles and less than 0.20 throughout presentation of all CSs
not associated with the US.

Acquisition. Asshownin Fig. 4, onset of CS A occurs at cycle 4, and US onset occurs
4, 8, 13, or 18 cycles later. Both A and US coterminate 1 cycle later. Figure 4 shows
output node activation for each cycle during atrial after 1000 trials (1Sl = 4), after 5000
trials (ISIs = 8, 13), and after 10,000 trias (ISl = 18).

Conditioned inhibition. For the first 5000 trials, the network is given A-US and
AB—no US training. Within each 30-cycle trial, A onset occurs a cycle 4, US onset occurs
at cycle 8, and both A and US coterminate at cycle 9; A and B onset then occurs at cycle
19 with offset at cycle 24 and no US. Figure 5A shows the output node activation at
cycle 8 (A+) and cycle 23 (AB—). Following this training (Fig. 5B), there are 500 trials
alternating training to B and anew CS: C. C onset occurs at trial 4, whereas B onset occurs
at trial 19; in both cases, US onset occurs 4 trials later and then CS and US coterminate.

Figure 6A shows the model responding after the first phase of A+, AB— training; the
network responds strongly to A alone and weakly to AB. Following 2000 trials of B—
alone (B onset at cycle 19, offset at cycle 24, no US), the network continues to respond
strongly to A and weakly to AB (Fig. 6B).

Positive and negative patterning. For positive patterning, trials consist of 40 cycles.
Ais presented from cycles 4 through 8, B from cycles 19 through 23, and AB from cycles
34 through 38; the US is on cycle 38. For negative patterning, the procedure is the same
as for positive patterning except that the US is presented on cycles 8 and 23.

Blocking. Phase 1 consists of 4000 20-cycle trials with A onset occurring at cycle 4,
US onset at cycle 8, and offset of both A and US at cycle 9. Phase 2 consists of 500 trials
that are similar except that B is presented simultaneously with A. Finally, phase 3 consists
of 500 trials in which B is presented alone and coterminates with the US. Phase 3
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performance is compared to a control condition that received C-US training in phase 1
but similar phase 2 and phase 3 treatment.

REFERENCES

Allen, M. T., Chelius, L., & Gluck, M. A. (1998). Selective entorhinal ibotenic lesions disrupt the learned
irrelevance pre-exposure effect in the classically conditioned rabbit eyeblink response paradigm conditioning.
Society for Neuroscience Abstracts, 24.

Anderson, B. J, & Steinmetz, J. E. (1994). Cerebellar and brainstem circuits involved in classical eyeblink
conditioning. Reviews in Neuroscience, 5(3), 1-23.

Bartha, G. T., Thompson, R. F,, & Gluck, M. A. (1991). Sensorimotor learning and the cerebellum. In M.
Arbib & J. Ewert (Eds.), Visual structures and integrated functions. Berlin: Springer-Verlag.

Bellingham, W. P, Gillette-Bellingham, K., & Kehoe, E. J. (1985). Summation and configuration in patterning
schedules with the rat and rabbit. Animal Learning and Behavior, 13, 152—164.

Berger, T., & Orr, W. (1983). Hippocampectomy selectively disrupts discrimination reversal learning of the
rabbit nictitating membrane response. Behavioral Brain Research, 8, 49-68.

Berthier, N. E., & Moore, J. W. (1986). Cerebellar Purkinje cell activity related to the classically conditioned
nictitating membrane response. Experimental Brain Research, 63, 341-350.

Berthier, N. E., Singh, S. P, Barto, A. G., & Houk, J. C. (1993). Distributed representations of limb motor
programs in arrays of adjustable pattern generators, Journal of Cognitive Neuroscience, 5, 56—78.

Blomfield & Marr. (1970). How the cerebellum may be used. Nature, 227, 1224—-1228.

Brodal, A. (1981). Neurological anatomy, New York: Oxford Univ. Press.

Chapman, P. F.,, Steinmetz, J. E., Sears, L. L., & Thompson, R. F. (1990). Effects of lidocaine injection in the
interpositus nucleus and red nucleus on conditioned behavioral and neuronal responses. Brain Research,
537, 140-156.

Clark, R. E., & Squire, L. R. (1998). Classical conditioning and brain systems: The role of awareness. Science,
280, 77-81.

Clark, R. E., & Lavond, D. G. (1993). Reversible lesions of the red nucleus during acquisition and retention
of aclassicaly conditioned behavior in rabbit. Behavioral Neuroscience, 107, 264—270.

Clark,R.E., Zhang, A. A., & Lavond, D. G. (1992). Reversiblelesionsof the cerebellar interpositus nucleus during
acquisition and retention of a classically conditioned behavior. Behavioral Neuroscience, 106, 879-888.

Desmond, J. E., & Moore, J. W. (1991). Altering the synchrony of stimulus trace processes. Tests of a neural-
network model. Biological Cybernetics, 65, 161-169.

Donegan, N. H., Gluck, M. A., & Thompson, R. F. (1989). Integrating behavioral and biological models of
conditioning. Psychology of Learning and Mativation, 3, 109—156.

Donegan, N. H., & Wagner, A. R. (1987). Conditioned diminution and facilitation of the UR: A sometimes
opponent-process interpretation. In |. Gormezano & W. F. Prokasy (Eds.), Classical conditioning (3rd ed.).
Hillsdale, NJ: Erlbaum.

Fanselow, M. S. (1984). Shock-induced analgesia on the formalin test: Effects of shock severity, naloxone,
hypophysectomy, and associétive variables. Behavioral Neuroscience, 98, 79-95.

Fanselow, M. S. (1998). Pavlovian conditioning, negative feedback, and blocking: Mechanisms that regulate
association formation. Neuron, 20, 625—627.

Fanselow, M. S., & Bolles, R. C. (1979). Naloxone and shock-€licited freezing in the rat. Journal of Comparative
and Physiological Psychology, 93, 36—44.

Foy, M. R., & Thompson, R. F. (1986). Single unit analysis of Purkinje cell discharge in classically conditioned
and untrained rabbits. Neuroscience Abstracts, 12, 518.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model.
Journal of Experimental Psychology: General, 117, 227—-247.

Gluck, M., & Myers, C. (1993). Hippocampal mediation of stimulus representation: A computational theory.”
Hippocampus, 3, 491-516.



CEREBELLAR SUBSTRATES 339

Gluck, M., Myers, C., & Thompson, R. F. (1994). A computational model of the cerebellum and motor-reflex
conditioning. In Zornetzer, Davis, Lau, & McKenna (Eds.), An introduction to neural and electronic
networks (pp. 91-98). New York: Academic Press.

Gluck, M. A, Reifsnider, E. S., & Thompson, R. F. (1990). Adaptive signal processing and the cerebellum: Models
of classical conditioning and VOR adaptation. In M. A. Gluck & D. E. Rumelhart (Eds.), Neuroscience and
connectionist theory (pp. 131-185). Hillsdale, NJ: Erlbaum.

Gormezano, |., Kehoe, E. J., & Marshall, B. S. (1983). Twenty years of classical conditioning research with
the rabbit. Progress in Psychobiology and Physiological Psychology, 10, 197-275.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.

Hesslow, G., & lvarsson, M. (1996). Inhibition of theinferior olive during conditioned responsesin the decerebrate
ferret. Experimental Brain Research, 110, 36—46.

Houk, J. C. (1989). Cooperative control of limb movements by the motor cortex, brainstem, and cerebellum.
In R. M. J. Cotterill (Ed.), Models of brain function. Cambridge, UK: Cambridge Univ. Press.

Houk, J. C., Keifer, J., & Barto, A. G. (1993). Distributed motor commands in the limb premotor network.
Trends in Neuroscience, 16, 27-33.

Houk J. C., Singh, S. P, Fisher, C., & Barto, A. G. (1990). In W. T. Miller, R. S. Sutton, & P. J. Werbos (Eds.),
Network for neural control (pp. 301-348). Cambridge, MA: MIT Press.

Hull, C. (1943). Principles of behavior. New York: Appleton—Century—Crofts.

Ito, M. (1984). The cerebellum and neural control. New York: Raven.

Ivkovich, D., Lockard, J. M., & Thompson, R. F. (1993). Interpositus lesion abolition of the eyeblink CR is
not due to effects on performance. Behavioral Neuroscience, 107, 530-532.

Kamin, L. (1969). Predictability, surprise, attention, and conditioning. In B. Campbell & R. Church (Eds.),
Punishment and aversive behavior (pp. 279-296). New York: Appleton—Century—Crofts.

Kehoe, E. (1981). Stimulus selection and combination in classical conditioning with the rabbit. In . Gormezano,
W. Prokasy, & R. Thompson (Eds.), Classical conditioning (Vol. 1). Hillsdale, NJ: Erlbaum.

Kehoe, E. J,, & Schreurs, B. G. (1986). Compound—component differentiation as a function of CS-US interval
and CS duration in the rabbit’s conditioned nictitating membrane response. Animal Learning & Behavior,
14, 144-154.

Kim, J. J,, Clark, R. E., & Thompson, R. F. (1995). Hippocampectomy impairs the memory of recently, but
not remotely, acquired trace eyeblink conditioned responses. Behavioral Neuroscience, 109, 195-203.

Kim, J., Krupga, D., & Thompson, R. F. (1998). Inhibitory cerebello-olivary projections and blocking effect in
classical conditioning. Science, 27, 570-573.

Kim, J. J., & Thompson, R. F. (1997). Cerebellar circuits and synaptic mechanismsinvolved in classical eyeblink
conditioning. Trends in Neuroscience, 20, 177-181.

Krupa, D. J,, Thompson, J. K., & Thompson, R. F. (1993). Localization of a memory trace in the mammalian
brain. Science, 260, 989-999.

Krupa, D. J.,, & Thompson, R. F. (1995). Inactivation of the superior cerebellar peduncle blocks expression but
not acquisition of the rabbit's classically conditioned eyeblink response. Proceedings of the National
Academy of Science, 92, 5097-5101.

Krupa, D. J.,, & Thompson, R. F. (1997). Reversible inactivation of the cerebellar interpositus nucleus completely
prevents acquisition of the classically conditioned eyeblink response. Learning and Memory, 3, 545-556.

Krupa, D. J.,, Weiss, C., & Thompson, R. F. (1991). Air puff evoked Purkinje cell complex spike activity is
diminished during conditioned responsesin eyeblink conditioned rabbits. Society for Neuroscience Abstracts,
17, 322.

Logan, C. G. (1991). Cerebellar cortical involvement in excitatory and inhibitory classical conditioning. Doctoral
dissertation, Stanford University.

Mahoney, W. J., Kwaterski, S. E., & Moore, J. W. (1975). Conditioned inhibition of the rabbit nictitating
membrane response as a function of CS-UCS interval. Bulletin of the Psychonomic Society, 5, 77-179.

Marchant, H., & Moore, J. (1973). Blocking of the rabbit’'s conditioned nictitating membrane response in
Kamin's two-stage paradigm. Journal of Experimental Psychology, 101, 155-158.



340 GLUCK ET AL.

Marchant, H., & Moore, J. (1974). Below-zero conditioned inhibition of the rabbit's nictitating membrane
response. Journal of Experimental Psychology, 102, 350—352.

Mauk, M. D., Steinmetz, J. E., & Thompson, R. F. (1986). Classical conditioning using stimulation of the
inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences (USA),
83, 5349-5353.

McCormick, D., Lavond, D., & Thompson, R. F. (1983). Neuronal responses of the rabbit brainstem during
performance of the classically conditioned nictitating membrane (NM)/eyelid response. Brain Research,
271, 73-88

McCormick, D., & Thompson, R. (1982). Locus coeruleus lesions and resistance to extinction of a classicaly
conditioned response: Involvement of the neocortex and hippocampus. Brain Research, 245, 239-249.

McFarland, D. J., Kostas, J., & Drew, W. G. (1978). Dorsal hippocampal lesions: Effects of preconditioning
CS exposure to flavor aversion. Behavioral Biology, 22, 398—404.

Miller, R., Barnet, R., & Grahame, N. (1995). Assessment of the Rescorla—Wagner model. Psychological
Bulletin, 117, 363—-386.

Moyer, J.,, Deyo, R., & Disterhoft, J. F. (1990). Hippocampectomy disrupts trace eye-blink conditioning in
rabbits. Behavioral Neuroscience, 104, 243-252.

Nelson, B., & Mugnoaini, E. (1987). GABAergic innervation of the inferior olivary complex and experimental
evidence for its origin. In P. Strata (Ed.), The olivocerebellar system in motor control. New York:
Springer-Verlag.

Perret, S. P, Ruiz, B. P, & Mauk, M. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing
of conditioned eyelid responses. Journal of Neuroscience, 13, 1708—1718.

Port, R. L., & Patterson, M. M. (1984). Fimbria lesions and sensory preconditioning. Behavioral Neuroscience,
98, 584-589.

Ramirez, O. A., Nordholm, A. F.,, & Thompson, R. F. (1997). The conditioned eyeblink response: A role for
the GABA-B receptor. Pharmacology, Biochemistry, and Behavior, 58, 127-132.

Rescorla, R. (1968). Probability of shock in the presence and absence of CS in fear conditioning. Journal of
Comparative and Physiological Psychology, 66, 1-5.

Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of
reinforcement and non-reinforcement. In A. Black & W. Prokasy (Eds.), Classical conditioning I1: Current
research and theory (pp. 64—99). New York: Appleton—Century—Crofts.

Rudy, J., & Sutherland, R. (1995). Configural association theory and the hippocampal formation: An appraisal
and reconfiguration. Hippocampus, 5, 375—-398.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In
D. Rumelhart & J. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure
of cognition (Vol. 1, pp. 318-362). Cambridge, MA: MIT Press.

Schmaltz, L., & Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocam-
pectomized rabbits (Oryctolagus cuniculus). Journal of Comparative and Physiological Psychology, 79,
328-333.

Sears, L., & Steinmetz, J. (1990). Acquisition of classically conditioned-related activity in the hippocampus is
affected by lesions of the cerebellar interpositus nucleus. Behavioral Neuroscience, 104, 681-692.

Solomon, P. (1977). Role of the hippocampus in blocking and conditioned inhibition of the rabbit’s nictitating
membrane. Journal of Comparative and Physiological Psychology, 91, 407-417.

Solomon, P, & Moore, J. (1975). Latent inhibition and stimulus generalization of the classically conditioned
nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation.
Journal of Comparative and Physiological Psychology, 89, 1192—-1203.

Solomon, P. R., Vander Schaaf, E. R., Thompson, R. F., & Weisz, D. J. (1986). Hippocampus and trace
conditioning of therabbit’s classically conditioned nictitating membrane response. Behavioral Neuroscience,
100, 729-744.

Spence, K. W. (1956). Behavior theory and conditioning. New Haven, CT: Yale Univ. Press.

Squire, L. R. (1992). Declarative and nondeclarative memory: Multiple brain systems supporting learning and
memory. Journal of Cognitive Neuroscience, 4, 232—242.



CEREBELLAR SUBSTRATES 341

Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 233, 1380—1386.

Steinmetz, J. E., Lavond, D. G., & Thompson, R. F. (1989). Classica conditioning in rabbits using pontine
nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus.
Synapse, 3, 225-233.

Steinmetz, J. E., Rosen, D. J., Chapman, P. F,, Lavond, D. G., & Thompson, R. F. (1986). Classical conditioning
of the rabhit eyelid response with a mossy fiber stimulation CS (Part 1). Behavioral Neuroscience, 100,
878-887.

Steinmetz, J. E., & Sengelaub, D. R. (1992). Possible conditioned stimulus pathway for classical eyelid condition-
inginrabbits: Anatomical evidencefor direct projectionsfrom the pontine nuclei to the cerebellar interpositus
nucleus. Behavioral & Neural Biology, 57, 103-115.

Steinmetz, J. E., & Thompson, R. F. (1991). Brain substrates of aversive classical conditioning. In Neurobiology
of learning emotion and affect (pp. 97—120). New York: Raven.

Sutherland, R., & Rudy, J. (1989). Configural association theory: The role of the hippocampal formation in
learning, memory, and amnesia. Psychobiology, 17, 129-144.

Sutton, R. S,, & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction.
Psychological Review, 88, 135—170.

Thompson, R. F. (1986). The neurobiology of learning and memory. Science, 233, 941-947.

Tracey, J., Thompson, J. K., Krupa, D. J., & Thompson, R. F. (1998). Evidence of plasticity in the ponto-
cerebellar CS pathway during classical conditioning of the eyeblink response in the rabbit. Behavioral
Neuroscience, 112, 267—285.

Wagner, A. R. (1969). Stimulus selection and modified continuity theory. In G. Bower & J. Spence (Eds.), The
psychology of learning and motivation (Vol. 3). New York: Academic Press.

Wagner, A. R., & Rescorla, R. (1972). Inhibition in Pavliovian conditioning: Application of atheory. In R. A.
Boakes & M. S. Halliday (Eds.), Inhibition and learning. New York: Academic Press.

Walkenbach, J., & Haddad, N. F. (1980). The Rescorla—\Wagner theory of conditioning: A review of the literature.
Psychological Record, 30, 497-509.

Weiss, C., McCurdy, M. L., Houk, J. C., & Gibson, A. R. (1985). Anatomy and physiology of dorsal column
afferents to forelimb dorsal accessory olive. Society for Neuroscience Abstracts, 11, 182.

Widrow, B., & Hoff, M. (1960). Adaptive switching circuits. Institute of Radio Engineers, Western Electronic
Show and Convention Record, 4, 96—104.

Woodruff-Pak, D. S. (1999). New directionsfor aclassica paradigm: Human eyeblink conditioning. Psychological
Science, 10, 1-3.

Woodruff-Pak, D., Lavond, D., Logan, C. G., Steinmetz, J. E., & Thompson, R. F. (1993). Cerebellar cortical
lesions and reacquisition in classical conditioning of the nictitating membrane response in rabbits. Brain
Research, 608, 67—77.

Zimmer-Hart, C., & Rescorla, R. (1974). Extinction of Pavlovian conditioned inhibition. Journal of Comparative
and Physiological Psychology, 86, 837—845.



	FIG. 1
	ERROR CORRECTION LEARNING IN CLASSICAL CONDITIONING
	TABLE 1

	THE CEREBELLUM AND CLASSICAL CONDITIONING
	FIG. 2

	A COMPUTATIONAL MODEL OF CEREBELLAR ERROR CORRECTION LEARNING
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9

	IMPLICATIONS FOR MODELS OF HIPPOCAMPAL FUNCTION IN CONDITIONING
	FIG. 10
	FIG. 11

	GENERAL DISCUSSION
	APPENDIX
	REFERENCES

