PSYCHOLOGICAL SCIENCE

Research Report

STIMULUS GENERALIZATION AND REPRESENTATION IN
ADAPTIVE NETWORK MODELS OF CATEGORY LEARNING

Mark A. Gluck

Stanford University and Rutgers University

Abstract—An exponential-decay rela-
tionship between the probability of gen-
eralization and psychological distance
has received considerable support from
studies of stimulus generalization (Shep-
ard, 1958) and categorization (Nosafsky,
1984). It is shown here how an approxi-
mate exponential generalization gradi-
ent emerges from stimulus representa-
tion assumptions isomorphic to a special
case of Shepard's (1987) theory of stim-
ulus generalization in a ‘“‘configural-
cue”’ network model of human learning
that represents stimulus patterns in
terms of elementary features and pair-
wise conjunctions of features (Gluck &
Bower, 1988b; Gluck, Bower, & Hee,
1988). The network model can be viewed
as a combination of Shepard’s theory
and an associative learning rule derived
Jrom Rescorla and Wagner's (1972) the-
ory of classical conditioning.

A well-established principle of stimu-
lus generalization is the approximate ex-
ponential-decay relationship between
the probability of generalization and psy-
chological distance (Shepard, 1958,
1987). This principle has received addi-
tional support from Medin and Schaf-
fer’s (1978) exemplar-context theory of
classification. In their theory, a test pat-
tern acts as a retrieval cue to access in-
formation associated with similar stored
exemplars. The similarity between two
exemplars is computed according to a
rule that assumes similarity decays ex-
ponentially with increasing distance in
an appropriate psychological space
(Nosofsky, 1984). This model has had
considerable success in accounting for
many human classification and recogni-
tion behaviors (Estes, 1986; Smith &
Medin, 1981).
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An alternative class of models, based
on adaptive ‘‘connectionist” networks,
is also able to account for many of these
behaviors {Gluck, Corter, & Bower,
1990; Gluck & Bower, 1988a, 1988b;
Gluck, Bower, & Hee, 1989, 1990). The
network model, shown in Figure 1,
adapts its weights (associations) accord-
ing to Rescorla and Wagner’s (1972)
model of classical conditioning. The pre-
sentation of a stimulus pattern is repre-
sented by activation of nodes on the in-
put layer that correspond to the pattern’s
elementary features and pair-wise con-
junctions of features. The inclusion of
conjunctive cues allows the model to

solve complex discriminations that re-

quire sensitivity to conjunctions of fea-
tures; such discriminations are called
“nonlinearly separable.” This model is
formally equivalent to Wagner and Res-
corla’s (1972) “‘configural-cue’’ proposal
for extending their conditioning model;
studies of animal learning have found
considerable predictive and explanatory
power for this model (Kehoe &
Gormezano, 1980; Rescorla, 1972, 1973).
It is also a special case of ‘‘higher-order”
networks (also called ‘‘polynomial” or
“functional link’” networks) that have
been used by adaptive network theorists
as an alternative to multilayer networks
(Pao, 1989).

Like the exemplar-context model,
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Fig. 1. A configural-cue network model of human learning that represents stimulus
patterns in terms of their elementary features and pair-wise conjunctions of features.
In this example, input nodes code for the presence or absence of three component-
cues (A, B, C) and all possible pair-wise configural combinations of these cues (AB,
AC, BQC). The network’s classification prediction is a function of the resulting acti-
vation on the output nodes. Associative weights between feature and category nodes
are updated according to the error-correcting principle of the Rescorla~Wagner (1972)
model of classical conditioning, equivalent in this application to Widrow and Hoff's
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(1960) LMS rule of adaptive network theory. .
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Fig. 2. For patterns that vary along five dimensions, these curves are the implied
generalization gradients for three alternative stimulus representations: (1) component
and pair-wise {doublet) cues, (2) component, doublet, and triplet-cues, and (3) com-

ponent-cues only.

this network model can be shown to em-
body- an exponential-similarity (general-
ization) gradient. This equivalence can
be exhibited by computing how the num-
ber of overlapping active-input. nodes
(similarity) changes as a function of the
number of overlapping component cues
(distance). If a stimulus pattern is asso-
ciated with some outcome, the configu-
ral-cue model will generalize this associ-
ation to other stimulus patterns in pro-
portion to the number of common input
nodes they both activate. Figure 2 illus-
trates this relationship for stimulus pat-
terns composed of five features. These
patterns each activate 15 input nodes—35
component-cue nodes and 10 configural
nodes. If two such patterns share only
one feature (ABCDE, AWXYZ), they
have 1 active node in common (A) and 14
nodes nonoverlapping. If they share two
features (ABCDE, ABXY?Z), they have 3
active nodes in common (A, B, AB) and
11 nodes nonoverlapping. If they share
three features (ABCDE, ABCYZ), they
have 6 active nodes in common (A, B, C,
AB, AC, BC) and 9 nodes nonoverlap-
ping . . . and so forth. The addition of
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triplet-cues further magnifies the upward
concavity of the generalization gradient.
Activating only: the component cues re-
sults in a linear gradient.

SHEPARD’S THEORY OF
STIMULUS GENERALIZATION

Shepard (1987) describes a rational
motivation for the exponential-decay
generalization gradient that, he suggests,
may account for its ubiquity in animal
and human behavior. We show now that
the emergence of this generalization gra-
dient in the configural-cue model arises
from assumptions isomorphic to a spe-
cial case of Shepard’s theory.

In a canonical-stimulus generalization
experiment an individual is given a single
reinforced trial with a training stimulus
and is subsequently tested with a novel
test stimulus. Shepard (1987) argues that
the individual's behavior in this situation
reflects an implicit estimate of the prob-
ability that the test stimulus, §,, will
have the same reinforcing consequences
as the training stimulus, S,. If the stimuli
are represented within an appropriate

-

psychological space (Shepard, 1958),
sets of objects having common conse-
quences are presumed to be similar to
each other and to occupy well-behaved
(e.g., compact and convex) regions of
space called ‘‘consequential regions.”
Following a single training trial, the indi-
vidual is presumed to have no knowledge
of the size or location of the relevant
consequential region, only that it con-
tains S, the training item. To estimate
the probability that the test item, Sy, lies
in the same consequential region as S, |
the individual must consider all conse-
quential regions that contain S,, and
evaluate the probability that each con-
tains S;. Shepard’s principal result is
that this analysis yields a close approxi-
mation to an exponential-decay gradient,
regardless of the shapes of the regions or
the distribution of the sizes of the re-
gions.

Consequential Regions
and Configural-Cues

Shepard’s approach can also be ap-
plied to understanding how the configu-
ral-cue model solves categorization
problems. Although Shepard’s theory of
stimulus- generalization was originally
developed for continuous dimensions
(such as tone frequency), it is equally ap-
plicable to stimuli composed of separa-
ble, discrete-valued stimuli (Shepard,
1989; see also Russell, 1986, 1988, for |
related statistical derivations of similar-
ity among stimuli with discrete features).
For example, consider the 8 possible
patterns that can be composed from 3
separable, binary-valued feature dimen-
sions. Figure 3A is a geometric represen-
tation of the psychological space con-
taining these stimuli. If pattern [0,0,0] in
the lower left corner is the memory item,
So. then the three panels of Figure 3B
show the faces, edges, and corners, re-
spectively, which include S;. These 7 re-
gions correspond exactly to the 7 input
nodes that will be activated in the con-
figural-cue model by the presentation of
Sy (assuming the encoding of compo-
nent, doublet, and triplet cues). Thus,
the representation of stimuli in the con-
figural-cue model is isomorphic to the
“‘activation” of all possible consequen-
tial regions.
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STIMULUS GENERALIZATION
AND CLASSIFICATION:
AN EXAMPLE

Data suitable to illustrate the impli-
cations of this nonlinear stimulus gen-
eralization gradient for classification
learning are provided by Medin and
Schwanenflugel (1981). They contrasted
performance of groups of subjects learn-
ing pairs of classification tasks, one of
which was linearly separable and one of
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Fig. 3. (A) A geometric representation of the psychological state space for the 8
stimulus patterns that can be composed from 3 separable binary-valued feature di-
|, mensions. For illustrative purposes, we have identified the 3 geometric axes with the
featural dimensions of color (dimension 1), size (dimension 2), and shape (dimension
3). (B) According to Shepard (1987), the faces, edges, and corners shown in these
three panels are the consequential regions that will be *‘activated” by the association
of stimulus pattern, [0,0,0], in the lower left corner with a consequential event.

which was not. The stimuli in their ex-
periments were constructed so that the
influences of exemplar similarity (when
computed with an exponential-decay
function) would favor the nonlinearly
separable (NLS) over the linearly sepa-
rable (LS) classification.

We begin with their Experiment 4,
which used stimuli constructed from 3
binary-valued dimensions. Because
these stimuli can be represented as the
corners of a cube (Figure 3A), the exem-

plars of the two categories can be iden-
tified by differentially coloring the
cubes’ corners (Figure 4). This geomet-
ric representation makes the linear sep-
arability of the LS classification appar-
ent; we can visualize a plane slicing the
cube that partitions Category A (black
corners) from Category B (white cor-
ners) in Figure 4A. No such plane exists
for the nonseparable, NLS, task (Figure
4B).

To see why the nonlinear similarity
rule of the exemplar-context model pre-
dicts that this LS task will be more dif-
ficult than the NLS task, we compare the
within-category exemplar distances to
the between-category exemplar dis-
tances for the two classifications. To cal-
culate the average between-category dis-
tance for each task, we sum the Ham-
ming (city block) distances from each
black dot to each white dot in Figure 4,
and take the average distance. Hamming
distance is the minimal number of edges
encountered en route from one corner
(exemplar) of a cube to another corner
(exemplar). This city-block metric is
generally accepted as appropriate for
psychological distances among discrete-
valued separable stimuli (Nosofsky,
1984; Shepard, 1987). Calculation of the
average within-category distances pro-
ceeds similarly. The LS and NLS classi-
fication tasks were-constructed so that
both tasks had identical-average within-
category distances (of 2), and identical
between-category distances (of 5/3).
Models that independently sum similari-
ties along different dimensions (such as
independent-cue, prototype models) pre-
dict that there should be no difference in
difficulty of learning between the two
tasks.

An important difference between
these tasks is in the distribution of their
between and within-category distances.
The histogram in Figure 4A shows that
the linearly separable task has many
““close’” (distance = 1) and some “‘far”
(distance = 3) relations, whereas the
nonseparable task (Figure 4B) has a
broader distribution of “‘close,” ‘‘medi-
um,”” and “‘far’” between-category dis-
tances. These disparate distributions
have important implications for theories
that exaggerate stimulus generalization
between exemplar relations involving
close distances: highly similar pairs of
exemplars within a category should facil-
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classification theories. Table 1 schema-

GV LINEARLY SEPARABLE TASK

Comparison Type

Hamming Distance
1 2

Average

between category

573

within category

Comparison Type Hamming Distance
1 2 3

®) NON-LINEARLY SEPARABLE TASK

Average

between category

5/3

within category

Fig. 4. A geometric representation of Medin and Schwanenflugel’s (1981) Experiment
4. The histograms on the left show the distribution of between-category and within-
category exemplar Hamming distances for each task. The cubes on the right show a
geometric representation of each task; the black corners represent exemplars of cat-
egory A and the white corners represent exemplars of category B. Panels A and B
represent the linearly separable (LS) and nonlinearly separable (NLS) tasks, respec-

tively.

itate classification learning, whereas
highly similar exemplars belonging to
different categories should retard learn-
ing.. The greater proportion of these
close between-category distances in the
LS classification increases the confusion
between A and B patterns; thus, the ex-
emplar-context theory predicts that the
LS classification should be more difficult
to learn than the NLS classification. A

similar analysis of within-category dis- Category A Category B
tances indicates the presence of fewer ) - - -
close distances in the linearly separable E . Dm;ggiwn B ) Dmlxggzxen
compared to the nonlinearly separable Xemplar xemplar
task; again implying that the linearly sep- Al 0111 B1 1000
arable task should be more difficult. A2 1110 B2 0001

It was convenient to use the three- A3 1001 B3 0110

dimensional classifications of Medin and
Schwanenflugel (1981, Experiment 4) to

convey through Figure 4 an intuitive un- Category A Category B
derstanding of the structure of the LS - - - N
and NLS tasks, and the rationale under- Dimension Dimension
lying their design. However, Medin and Exemplar 1234 Exemplar 1234
Schwanenflugel reported more reliable Al 1100 Bl 0000
and complete results with a four- A2 0011 B2 0101
dimensional task that embodied the same A3 ) 1111 B3 1010

controls for linear separability and in-
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terexemplar similarities, and the data ob-

tained from this four-dimensional stimu- |-

- lus structure (their Experiment 3) will be
compared to the predictions of different

tizes the two groups of 6 stimulus pat-
terns that college students learned to
classify as members of category A or cat-
egory B. The two values of each of the 4
binary-valued stimulus dimensions are
denoted 1 and 0. To recognize the linear
separability of the top (LS) classifica-
tion, note that the number of 1s in dimen-
sions 1, 3, and 4 is 2 for any category A
stimulus, but is less than 2 for any cate-
gory B stimulus.

Medin and Schwanenflugel (1981)
compared the average learning curves of
subjects trained on these classifications,
Figure S5A shows that the results were as
predicted by the context model: subjects
found the linearly separable LS task to
be harder to learn than the nonlinearly
separable NLS task.

Because the configural-cue network
implicitly embodies the same sensitivity
to interexemplar similarities as the con-
text model, we expect that it also should
predict that the LS task will be more dif-
ficult than the NLS task. To test this pre-
diction, we trained a configural-cue net-
work (with component and doublet-cues)
on the stimulus structure in Table 1. As
shown in Figure 5B, this model correctly
predicts that subjects will find the LS
task more difficult than the NLS task.
Although the model has 1 free parame-
ter; a learning rate, the ordinal prediction
that the LS task will-be more difficult
than the NLS task is parameter-free. The

(1978) Experiment 3

Table 1; Stimulus Design from Medin and Schwanenflugel

Linearly Separable (L.S) Classification

Nonlinearly Separable (NLS) Classification
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simulation shown in Figure 5B used a
learning rate of .013, chosen to minimize
the squared deviation between the pre-
dicted and observed learning curves
(RMSE =".037). The inclusion of addi-
tional higher-order terms (e.g., triplets)
does not change the relative difficulty of
the two tasks and results in no quantita-
tive advantage in fitting the learning
curve. Although the exemplar-context
model makes the same ordinal prediction
regarding the relative difficulty of the
two tasks, it is not a learning model and,
hence, cannot be used in its current form
to generate learning curves that could be
compared with those of the network
model. :

Comparing Alternative
Network Models

Several alternative network models
can also be tested against this same data
set. Clearly the original component-cue
network model of Gluck and Bower
(1988a) is not a viable model for these
data; that model can never fully learn the
nonlinearly separable NLS task. Estes,
Campbell, Hotsopoulos, and Hurwitz
(1989) proposed a different method for
expanding the network’s stimulus coding
to enable it to solve nonlinearly separa-
ble classifications. Their ‘‘feature-
pattern’’ model extends the component-
cue representation by adding additional
nodes. representing the presence or. ab-
sence of -entire patterns. While capable
of “solving many complex discrimina-
tions, this model embodies the same lin-
ear generalization gradient as the com-
ponent-cue model. In the feature-pattern
model, the number of common input
nodes activated by a training pattern and
a test pattern in a stimulus generalization
task equals the number of overlapping
component cues only. It is not surpris-
ing, therefore, that the feature-pattern
model incorrectly predicts that subjects
should find Medin and Schwanenflugel’s
(1981) LS task easier to learn than the
NLS task.

Another strategy for extending net-
work models to nonlinearly separable
classifications is to include an additional
layer of “‘hidden units”” between the in-
put and output layer. Due to the large
number of parameters and structural as-
sumptions required to specify a multi-
layer network, it is not feasible to eval-
uate this class of models exhaustively.
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Fig. 5. The relative difficulty of the two classification tasks from Medin and Schwa-
nenflugel (1981), Experiment 3. Output activations are mapped to a probability of a
correct classification using a ratio response rule in which the rare occurrences of
negative output activations are converted to 0. LS: linearly separable classification;
NLS: nonlinearly separable classification. (A) The data on percentage errors, show-
ing that the LS task is more difficult (slower to learn) than the NLS task; adapted from
Medin and Schwanenflugel (1981). (B) The correct prediction of the *‘pair-wise”
configural-cue model showing that the LS category is more difficult (slower to learn).
(C) The incorrect prediction of a muitilayer network with 2 hidden units. The same
ordering of relative difficulty was also found with multilayer networks with 4, 8, and
16 hidden units, independent of the initial values of the weights or the learning-rate
parameters.
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Most current applications of multilayer
networks, however, adopt stimulus rep-
resentation assumptions similar to the
component-cue model within a network

| whose hidden -units are fully connected
to both input and output layers. We
adopted these same assumptions to eval-
uate a ‘‘base-line’’ multilayer network
that we trained on the LS and NLS tasks
of Table I using the ‘*backpropagation”
training procedure (Parker, 1986; Rumel-
hart, Hinton, & Williams, 1986; Werbos,
1974). As shown in Figure 5C, this model
incorrectly predicts that subjects should
find the LS task easier than the NLS
task.

GENERAL DISCUSSION

Shepard’s (1987) theory of stimulus

generalization applies only to the highly
idealized experiment in which a single
learning trial is followed immediately by
a generalization test. The configural-cue
| network model can be viewed as an ex-
tension of Shepard’s theory to discrimi-
nation and classification learning using
the principles of associative learning
from Rescorla and Wagner's (1972)
model of classical conditioning. The suc-
cesses of the configural-cue model in ac-
counting for both animal and human
learning can- therefore be construed as
independent and converging evidence
for Shepard’s theory. ‘

This connection between theories of
associative learning and theories of stim-

_ulus generalization suggests several new
theoretical directions that might extend
the range of phenomena deduceable:
from either theory alone. We briefly note
three such possibilities here. First, Shep-
ard (1987) has also shown that the impli-
cations of his theory are largely unaf
fected by the distribution of the sizes of
the consequential regions. We conjec-
ture that this result might be related to
our observation that the predictions of
the configural-cue model are largely un-
affected by the addition of configural-
cues more complex than pair-wise com-
binations or by most variations in the in-
dividual learning rates assigned to the
configural-cues.

A second possible new direction is
motivated by a serious limitation of the
configural-cue model. In its current form
it is applicable only to stimuli composed
of separable ‘discrete-valued features.
Shepard’s theory provides a broader
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theoretical framework within which we
might identify stimulus representations
described by continuous and integral fea-
ture dimensions.

Finally, a third possible research di-
rection is suggested by the success of the
configural-cue- model compared to the
base-line multilayer networks. In spite of
their complexity, multilayer networks
have the attractive property that they
can dynamically reconfigure a small set
of hidden units, thereby avoiding the
configural-cue model’s. problematic as-
sumption that input nodes exist; a priori,
for all conjunctive-cue combinstions.
The evidently critical role of Shepard’s
stimulus generalization principles in the
configural-cue model’s ability to account
for learning behaviors may point us to-
ward the development of a categoriza-
tion model that embodies these same
generalization principles within a multi-
layer network.

Acknowledgments—For their thoughtful
comments and advice on this work I am
indebted to Gordon Bower, W.K. Estes,
Michael Hee, Doug Medin, Robert Nosof-
sky, David Rumelhart, and Roger Shep-
ard. This research was supported by ONR

from the Sloan Foundation.

REFERENCES

Estes, W.K. {1986). Array models:for category
learning. Cogmxwe Psychology; 18, 500-549.
Estes, W.K., Campbeil; J.A., Hatsopoulos, N., &
Hurwitz, J.B. {1989). Base’rateeffects in-cat-

egory- learning: A comparison of parallel.net-

work and ‘memory . storage-retrieval- models:
Journal of Experimental Psychology: Learn-
ing, Memory, & Cognition, 15, 556~571.

Gluck, M.A., & Bower, G.H. (1988a). From condi-

tioning to category learning: An adaptive net-
work model. Journal of Experimental Psychol-
ogy: General, 117, 225244,

Gluck, M.A., & Bower, G.H. (1988b). Evaluating an
adaptive network model of human learning.
Journal of Memipry and Language, 27, 166-195.

Gluck, M.A., Bower, G.H., & Hee, MR, (1989). A
configural-cue network mode! of animal and
human associative learning. In Proceedings of
the Eleventh Annual Conference of the Cogni-
tive Science Society, Ann Arbor, Michigan,
August 16-19, 1989 (pp. 323-332). Hillsdale,
NI: Erlbaum.

Gluck, M.A., Bower, G.H., & Hee, M.R. (1990).
Animal and human associative learning: A
configural-cue network model. Unpublished
manuscript, Dept. of Psychology, Stanford
University, Stanford, CA.

Gluck, M.A., Corter, I.H., & Bower, G.H. (1990).
Basic levels in the learning of category hierar-
chies: An adaptive nerwork model. Unpub-
lished manuscript, Stanford University, Stan-
ford, CA. )

Kehoe, E.J., & Gormezano, I. (1980). Configuration
and combination laws in conditioning with

) Pao, Y.H. (1989). Adaptive pattern recognition and

Grant #N00014-83K-0238 and by a grant |

compound stimuli. Psychological Bulletin, 87,
351-378.

Medin, D.L., & Schaffer, M.M. (1978). Context the-
ory of classification learning. Psvchological
Review, 85, 207-238.

Medin, D.L., & Schwanenflugel, P.J. (1981). Linear
seperability in classification learning. Journal
of Experimental Psychology: Human Learning
and Memory, 7, 355-368.

Nosofsky, R.M. (1984). Choice, similarity, and the
context theory of classification. Journal of Ex-
perimental Psychology: Learning, Memory
and Cognition, 10, 104-114.

neural networks. Reading, MA: Addison-
Wesiey.

Parker, D. (1986).- A comparison of algorithms for
neuron-like cells. In Proceedings of the Neural
Networks for Computing Conference{pp. 327-
332). Snowbird, UT: .

Rescorla, R.A. (1972). *Configural’ conditioning in
discrete-trial bar pressing. Journal of Compar-
ative and Physiclogical Psychology, 79, 307-
317,

Rescorla, R.A. (1973). Evidence for ‘‘unique
stimulus” account of configural conditioning.
Journal of Comparative and Physiological
Psychology, 85, 331-338.

Rescorla, R.A., & Wagner, A.R. (1972). A theory of
Pavilovian conditioning: Variations in the ef-
fectiveness of reinforcement and non-rein-
forcement. In A.H. Black, & W.F. Prokasy
(Eds.), Classical conditioning II: Current re-
search and theory {(pp. 64-99). New York: Ap-
pleton-Century-Crofts.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J.
(1986). Leammg internal represemanons by
erTor propagation. In D, R thart, & J. Mc-
Clelland (Eds.), Parallel distributed process-
ing: Explorations in the microstructure of cog-
nition {Vol. 1: Foundations) {pp. 318-362).
Cambridge, MA: MIT Press

Russell, 8.1, (1986}. A quartitative analysis of anal-
ogy by similarity. In Proceedings of the Na-
tional Conference on Artificial Intelligence
(pp. 284-~288). Philadeiphia, PA: AAAL

Russell, S.J. (1988). Analogy by similarity, In D.H.
Helman (Ed.), Analogical reasoning: Perspec-
tive of artificial intelligence; cognitive science,
and phil hy {p 25]~269) D¢ ht, Hol-
land K.wwm A ad Py b

Shepard. R.N: (1958). Stimulus and response gener-
alization: Deduction of the generalization gra-
dient from a trace model. Psychological Re-
view, 85, 242-256.

Shepard, R.N. {1987). Towards a universal law of
generalization for psychological science. Sci-
ence, 237, 1317-1323.

Shepard, R.N. (1989). A law of generalization and
connectionist learning. Talk presented at the
Annual Meeting of the Cognitive Science So-
ciety, Ann Arbor, MI, August 17-18.

Smith, E., & Medin, D. (1981). Categories and con-
cepts. Cambridge, MA: Harvard University
Press.

Wagner, A.R.; & Rescorla, R.A. (1972). Inhibition
in Pavlovian -conditioning: Applications of a
theory. In R.A. Boakes, & S. Halliday (Eds.),
Inhibition and learning {pp. 301-336). New
York: Academic Press.

Werbos, P. (1974). Beyond regression: New rools for
prediction and analysis in the behavioral sci-
ences. Doctoral dissertation (Economics),
Harvard University, Cambridge, MA.

Widrow, B., & Hoff, M.E. (1960). Adaptive switch-
ing circuits. Institute of Radio Engineers,
Western Electronic Show and Convention,
Convention Record, 4, 96194,

(RECEIVED 1/23/90; REVISION ACCEPTED
7/26/90)

55



