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Brief Communication

Sleep enhances category learning
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The ability to categorize objects and events in the world around us is a fundamental and critical aspect of human
learning. We trained healthy adults on a probabilistic category-learning task in two different training modes. The aim of
this study was to see whether either form of probabilistic category learning (feedback or observational) undergoes
subsequent enhancement during sleep. Our results suggest that after training, a good night of sleep can lead to improved

performance the following day on such tasks.

[Supplemental material is available online at http:// www.learnmem.org.]

From infancy, humans categorize objects and events they encoun-
ter. In our daily lives, this category learning enables us to extract
rules and patterns from our varied experiences, and to formulate
new responses and inferences to familiar objects and events,
thereby facilitating decision-making and problem-solving pro-
cesses (Gluck et al. 2008).

While there is now considerable understanding of the early
stages of category learning, relatively little is known about how
such learning evolves over time. A growing literature shows that
post-training sleep plays an important role in long-term memory
consolidation and enhancement (Stickgold 2005; Diekelmann
et al. 2009). The most compelling evidence thus far comes from
simple perceptual and motor procedural learning, such as finger-
tapping sequences and visual discrimination tasks (Karni et al.
1994; Gais et al. 2000; Stickgold et al. 2000; Walker et al. 2002;
Huber et al. 2004). Much less is understood about the role of sleep
in the learning of explicit episodic memory tasks, and even less for
more complex memory tasks, such as probabilistic category
learning (Smith and Smith 2003; Wagner et al. 2004; Ellenbogen
et al. 2007).

There are two basic patterns by which categorizations can be
learned: We can simply observe stimuli and their outcomes
(observational learning), or we can be shown stimuli and then
asked to predict outcomes, only then receiving feedback on the
accuracy of our response (feedback learning). The Weather Pre-
diction Task (WPT) was initially described by Knowlton et al.
(1994) and has been extensively studied as a paradigm for such
category learning (Knowlton et al. 1994; Gluck et al. 2002; Meeter
et al. 2008).

Studies have shown that the WPT activates different memory
systems depending on how the task is learned and on the extent of
training. Neuroimaging studies have shown that subjects who
simply observe stimuli and their outcomes activate learning and
memory systems that are supported by the medial temporal lobe
(MTL) and prefrontal cortex (observational learning, Fig. 1, top).
On the other hand, subjects who must predict outcomes for each
stimulus and only then receive feedback on their accuracy
(feedback learning, Fig. 1, bottom), initially activate the MTL,
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but as training continues shift this activation to the striatum,
which is known to be involved with habit and skill-learning
behaviors (Poldrack et al. 2001).

Evidence from studies with patient populations supports this
conclusion. Patients in whom basal ganglia are affected, such as
those with Parkinson disease, Huntington disease, and Tourette
syndrome, are impaired in feedback-based probabilistic category
learning, whereas patients with amnesia following MTL or di-
encephalic damage show intact feedback learning early, but not
later in training (Knowlton et al. 1996a,b; Keri et al. 2005). But,
when the same task was learned in observational mode, Parkinson
patients showed no learning impairment, suggesting activation of
brain areas that are spared in Parkinson disease, such as the MTL
(Shohamy et al. 2004a).

Whether either form of learning undergoes subsequent sleep-
dependent enhancement remains unknown. Thus, the aim of this
study was to see whether either form of probabilistic category
learning (feedback or observational) undergoes subsequent en-
hancement during sleep.

Healthy college students 18-25 yr of age were recruited and
randomly assigned to undergo training on the WPT in either
observational or feedback mode after they provided IRB-approved
informed consent. To ensure sleep-wake homogeneity, subjects
were required to sleep, on average, 7 h per night and to maintain
their normal sleep schedule for 2 d prior to the experiment as well
as between test sessions if it included a night of sleep. In addition,
participants abstained from caffeine and alcohol throughout the
experiment and had to refrain from napping on protocol days.
Subjects were excluded if they (1) had a history of alcohol,
narcotic, or other drug abuse; (2) had a history of psychiatric or
neurologic disorders; (3) had a diagnosed sleep disorder; (4) used
medications known to have an effect on sleep and daytime
vigilance (e.g., psychoactive drugs or medications, sedatives, or
hypnotics); or (5) consumed over 600 mg per day of caffeine.

The WPT consists of four cards with geometric patterns,
which serve as stimulus elements. On each trial, subjects see
one, two, or three of these cards in varying combinations, and
use this aggregate stimulus to predict one of two possible weather
outcome categories: sunshine or rain. The weather outcome is de-
termined by a probabilistic rule, with each card having a fixed prob-
ability of predicting sunshine and rain, which each occur equally
often. The final outcome is based on a combined probability

Learning & Memory



Downloaded from learnmem.cshlp.org on November 25, 2009 - Published by Cold Spring Harbor Laboratory Press

Sleep enhances category learning

Observation Mode

Y
=0
= (A

v

[ 1)

09# LA :::
Qac oo (XX
+4¢ [ 1) AVA

Feedback Mode

N
=F
= AN

(YA
00 | (vavVw 00 | (vAVY
ol See Yy AN
% (ee | AVa O oo VA

Figure 1. Sample screens of WPT stimulus and response screens. (Top)
Observation mode. On each trial, subjects see a set of cards along with the
correct weather outcome displayed above. They then press the corre-
sponding key (“sun” or “clouds”) to move to the next trial. (Bottom)
Feedback mode. On each trial, subjects see a set of cards and are asked to
predict the correct weather outcome by pressing either the “sun” or
“clouds” key. After pressing a key the actual outcome is displayed above
the cards, along with the information on whether their prediction had
been correct or incorrect.

associated with the overall stimulus. Because of the probabilistic
nature of the task, information from a single trial is not a reliable
indicator of how well the task was learned. Instead, information
accrued over many trials is used for analysis.

During the task, subjects are seated in front of a computer and
are instructed to pay close attention during the following trials
since they will later be asked to remember what kind of weather
the cards predict. They are not given explicit information about
the probabilistic nature of the stimulus-outcome relationship.
Training involves 200 trials consisting of 14 patterns of card
combinations with a fixed order for all subjects. The keyboard
keys for “sun” and “clouds” are marked. (For a more detailed
description of observational and feedback-based training, please
see Supplemental material.) After the training phase in either
observational or feedback mode, instructions appear on the screen
indicating that a new phase is beginning. At the beginning of the
test phase, subjects are told that the same cards and combinations
will be displayed on the screen and that their job is to predict the
weather by pressing either the “sun” or the “clouds” key. After the
subject responds to each card combination, the program moves to
the next trial without giving feedback. Testing consists of 100
trials, also with a fixed order for all subjects. When subjects return
12 h later, they undergo a second test phase. This test phase
consists of the same 100 trials with the identical trial sequence as
in the first test session. Again, no feedback is given.

Performance on the WPT was scored as the percent of optimal
responses achieved during a test session. An optimal response is
the response that is more frequently associated with a given card
pattern. Raw performance on the WPT was subsequently con-
verted to “adjusted performance,” which adjusts for the 50% of
correct responses that are expected by chance, and represent the
best estimate of the actual percent of trials correctly answered
because of training. (Adjusted score = [raw score — 0.5]/0.5.)
Improvement from Test 1 to Test 2, then, is adjusted score [2] —
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adjusted score [1], which is mathematically equivalent to 2 X
(raw score [2] — raw score [1]).

Subjects assigned to observational training were then further
divided into a Wake and a Sleep group. The Wake group (n = 20)
received 200 training trials at 9 am, immediately followed by 100
test trials with no feedback, and then were retested that evening at
9 pm; while subjects in the Sleep group (n = 15) were initially
trained and tested at 9 pm, before being retested after a night of
normal sleep, at 9 am the following morning.

No significant performance differences were found between
the Wake and Sleep groups in the immediate post-training test
session (Wake 77.0 = 2.9% [SEM], Sleep = 74.8 = 3.4%; P = 0.61).
But 12 h later, the Sleep group showed significantly more
improvement than the Wake group (13.0 = 1.9% vs. 3.5 £
1.3%, P = 0.0002; Fig. 2A).

To investigate the relationship between overnight improve-
ment and sleep parameters, a second Sleep group (n = 16) was
trained in the observation mode and had their sleep recorded with
overnight polysomnography between test sessions. They were
trained on the WPT at 9 pm in observational mode. After the
immediate testing session, they were wired for standard overnight
polysomnographic (PSG) recording in the Harvard-Thorndike
General Clinical Research Center (GCRC) at Beth Israel Deaconess
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Figure 2. Sleep’s effect on WPT performance. (A-C) Corrected im-
provement = SEM is shown. Significant improvement was seen in the
Sleep groups trained with either 200 trials in observational mode (A) or
with 100 trials in short feedback mode (C), but not with 200 trials in
feedback mode (B). Subjects in the Wake groups failed to show significant
improvement in feedback mode (B,C). (D) Subjects who performed well
at the initial test session had a higher percentage of REM sleep the
following night. (*) P < 0.05; (***) P < 0.0001.
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Medical Center. The standard PSG montage consisted of a four-
channel electroencephalogram (EEG), recording channels C4/A1,
C3/A2, O1/A2, and O2/Al. In addition, the montage included
a bilateral electrooculogram (EOG), and a submental electromyo-
gram (EMG). All PSG data were recorded with the MedCare Embla
Somnologica digital recording system. When subjects awoke the
next morning (after no more than 9 h in bed), electrodes were
removed prior to retesting at 9 am. Sleep stages were scored
according to the criteria of Rechtschaffen and Kales (1968).

This second observational Sleep group showed a strong
correlation between their initial learning performance and the
amount of REM sleep they obtained the following night (r=0.70,
P = 0.008; Fig. 2D). Unexpectedly, however, overnight improve-
ment was not significant (3.2 = 2.0%, P = 0.14), perhaps due to
the unfamiliar conditions of the sleep laboratory.

This correlation between REM sleep and performance is
consistent with past animal and human studies showing that an
increased amount of post-training REM sleep occurs when a suffi-
cient level of learning has occurred during prior training (Guerrien
et al. 1989; Hennevin et al. 1995; Smith 1995). Studies in rats have
demonstrated specific reactivation patterns of hippocampal neu-
ronal activity during REM sleep in the same temporal sequence as
they had during prior wakefulness, suggesting that circuits may be
restructured during REM sleep by selectively strengthening some
recently acquired memories (Guerrien et al. 1989; Hennevin et al.
1995; Smith 1995; Poe et al. 2000; Louie and Wilson 2001).

Human studies using positron emission tomography have
demonstrated that brain areas that were activated when learning
a probabilistic serial reaction time task during the day were
significantly more active during subsequent REM sleep. In addi-
tion, reactivation of the cuneus during REM sleep was dependent
on and modulated by the level of prior learning on the probabi-
listic version of the task, but not on the level of general acquisition
of basic visuomotor skills seen with a random sequence version of
the task (Maquet et al. 2000; Peigneux et al. 2003). While these
findings in humans suggest that successful learning leads to
a reactivation similar to that seen in rodents, it remains possible
that the differences in activation seen during REM sleep reflect
individual trait-like differences and could indicate an individual’s
general learning ability (Buckelmuller et al. 2006). Previous reports
about a correlation between baseline amounts of REM sleep and
learning potentials, however, have been inconsistent. Some stud-
ies have shown a positive association with REM sleep and in-
telligence (Petre-Quadens and De Lee 1970; Pagel et al. 1973);
others have shown the opposite (Busby and Pivik 1983), and
Smith et al. (2004) proposed a model suggesting that the post-
training REM response following task acquisition is partly genet-
ically determined and partly a response to the task itself.

To determine whether learning the same WPT rules (but
using feedback-based learning) also showed sleep-dependent en-
hancement, we trained two groups of subjects on the WPT in
feedback mode and then retested them after either 12 h of wake
(n=11) or 12 h including a night of sleep (n = 10). In feedback
training, subjects were shown each pattern and then had to
predict its associated weather category before being shown the
outcome. While the training mode differed, subjects were pre-
sented with the same 200 stimuli and outcomes in training, and
the same 100 test trials as subjects in the observational mode.

As in the observational mode, Wake and Sleep subjects
showed similar performances in the immediate post-training test
session (Wake = 81.5 * 4.3%, Sleep = 90.5 = 1.1, P = 0.07). In
contrast to the observational training, there was no significant
improvement in either feedback group at retest (Wake = —0.8 =
3.1%, P = 0.81; Sleep = 1.7 * 2.3%, P = 0.47) and no significant
difference between the groups (P = 0.53; Fig. 2B). Interpretation of
these results must be tempered, however, by possible ceiling
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effects in the Sleep group, which had exceptionally high initial
performance (90.5%).

Taken as a group, subjects trained in the feedback mode dem-
onstrated higher initial performance scores than those trained in
the observational mode (feedback = 85.8 = 2.5%, observational =
76.1 £ 2.2%, P = 0.006). This difference cannot be explained by
more optimal responses during the 200-trial training session in the
feedback mode for either the Wake groups (observational = 82.6%,
feedback = 80.9%; P = 0.226) or the Sleep groups (observational =
81.8%, feedback = 77.4%; P = 0.153). Instead, feedback-based
learning appears to lead to higher performance scores during
subsequent testing through activation of different neural systems
than those used in observational training.

To test whether the sleep-dependent improvement seen in
the observational group was dependent on the lower level of
initial training performance or on the training mode by which it
was learned, we trained a third pair of Wake and Sleep groups
using an abbreviated version of the feedback mode (“short
feedback mode”) with only 100 training trials, and retested them
after periods of wake or sleep.

Wake and Sleep groups again demonstrated similar initial post-
training performance levels (Wake = 74.0 = 4.5%, Sleep = 74.4 =
2.7%, P = 0.94) and levels similar to the observational groups
(short feedback = 74.2 * 2.6%, observational = 76.1 = 2.2%, P =
0.59), although at levels lower than the standard feedback groups.

The Sleep group (n = 13) now showed significant improve-
ment (9.9 = 4.1%, P = 0.032), while the Wake group (n = 14) still
did not (3.2 * 2.5%, P = 0.22; Fig. 2C). Improvement in the short
feedback mode did not differ significantly from that in the
observational mode for either the Sleep groups (9.9 + 4.1% vs.
13.0 = 1.9%, P = 0.48) or the Wake groups (3.2 * 2.5% vs. 3.5 =
1.3%, P = 0.90; Fig. 2, ct. A and C). These findings suggest that the
extent of overnight improvement is dependent on the level of
performance achieved during training. Indeed, significant corre-
lations between post-training scores and improvement were
present in the Sleep groups, but not in the Wake groups. In the
Sleep groups, maximal improvement over time was seen in those
subjects with relatively poor post-training performance. While this
correlation was highly significant for the Sleep groups (r= —0.57,
P < 0.0001; Fig. 3B, heavy dashed line), no correlation was seen
for the Wake groups (r = —0.037, P = 0.81; Fig 3A, heavy dashed
line). Individual Sleep groups showed similar correlations (see
Supplemental material). Although the maximum possible im-
provement decreases as initial post-training performance ap-
proaches 100%, scores fell decidedly below these limits (Fig. 3,
light dashed lines), suggesting that the correlation is not a simple
consequence of ceiling effects. A similar pattern, showing greater
sleep-dependent benefits with poorer initial performance, has
been reported for a finger-tapping motor sequence task (Kuriyama
et al. 2004).

Immediately after subjects finished the second test session,
they completed a questionnaire assessing their explicit knowledge
of the relationships between the four cards and the weather
outcome. Subjects were first asked which card(s) most often
predicted “sun” and “rain.” Then, for each of the four cards, they
indicated what percent of the time they believed each card was
followed by sunshine and by clouds. Ratings were subsequently
compared with two theoretical models of how subjects would
explicitly understand the task. In one model, subjects would
assign each individual card with probabilities close to those
actually observed (24%-76% sunshine). But, in the second model,
subjects would dichotomize the four cards into two cards that
always predicted sunshine and two that always predicted rain.

For the combined observational and short feedback condi-
tions, each of which showed sleep-dependent improvement in
performance, subjects in the Wake groups were more than three
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Figure 3. Correlation between post-training performance and 12-h
improvement. (OBS) Observational mode; (FB) feedback; (SFB) short
feedback; (PSG) observational mode in sleep laboratory. Light dashed
lines: ceiling limits; heavy dashed lines: regression fits to all points.
Specifics regarding panels A and B in text.

times as likely to estimate probabilities of 0% and 100% (di-
chotomized) for the circle and diamond cards, which had actual
rates of 42% and 58% sunshine (P = 0.02, XZ =54,df=1). In
addition, individual differences in ratings of circles and diamonds
did not differ significantly from the actual difference for the Sleep
group (22.9% = 8.5; compared with ho = 16, df =25, t=0.81, P =
0.43), while the Wake group showed a significantly inflated
difference (56.9 = 8.7, df = 30, t = 4.72, P < 0.001), and the
difference between the Wake and Sleep group was significant (P =
0.007, df = 55, t = 2.78). Individually, the observational and short
feedback conditions show the same patterns (for complete distri-
bution of estimations for all four cards see Supplemental material).
Both feedback groups, Wake and Sleep, dichotomize the cards and
there is no difference between them.

The same bias toward dichotomizing in the Wake group was
seen implicitly during the final test session. Subjects in the Wake
groups (short feedback and observational) were more likely to
dichotomize their performance on trials with the circles or di-
amonds the evening after training than subjects in the Sleep
group, who were tested following a night of sleep (P = 0.008,
x> = 7.41, df = 1). Wake subjects again showed higher mean
differences in scores for circles and diamonds (percent “sunshine”
responses for circles — diamonds = 74.2% =+ 9.0) than the Sleep
group (41.3% = 12.0; Wake vs. Sleep: df =55, t=2.24, P=0.03) (see
also additional figures in the Supplemental material).

The findings reported here represent the first clear evidence
that active, off-line memory enhancement of a procedural cate-
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gory rule-learning task takes place throughout a night of sleep,
leading to an absolute improvement in performance the next
morning. The strongest evidence was seen when comparing Sleep
and Wake conditions in the observational group (P = 0.0002).
While the direct sleep-wake comparison was not significant in the
short feedback condition, there was a significant 10% improve-
ment after sleep (P =0.03), while the matched Wake group showed
only a nonsignificant 3% improvement (P = 0.22). In addition,
there was a trend toward a correlation between initial performance
and subsequent improvement in the Sleep group (r = —0.50, P =
0.08), but no hint of a correlation in the Wake group (r=0.05, P =
0.85), further supporting the possibility that sleep leads to
improved performance on the WPT in short feedback condition.

Some evidence, mainly from animal studies, has suggested
a circadian influence on synaptic plasticity, particularly in the
hippocampus (Craig and McDonald 2008; Ruby et al. 2008). Thus,
as with any study comparing memory consolidation over a period
of wakefulness vs. sleep, we cannot exclude the possibility of
additional circadian effects on our results. However, the fact that
performance on the WPT shows an absolute improvement across
a night of sleep, as opposed to simply showing less deterioration
than seen across periods of wake, rules out the possibility that
sleep only offers passive protection of newly encoded memory
traces from daytime interference. Rather, sleep must support active
memory consolidation.

The positive correlation between the extent of learning
(measured by performance following the completion of training)
and the amount of REM sleep obtained the following night
suggests that successful learning of the classification of objects
and events in the world around us can lead to an increase in
subsequent REM sleep, and provides further evidence of an active,
sleep-dependent process.

The brain mechanisms that produce these sleep-dependent
improvements of memory remain elusive. Yet, the multifaceted
relationship between the type and quantity of training, on the one
hand, and the amount of overnight improvement, on the other,
introduces a new level of complexity to our understanding of how
sleep enhances memory. The fact that significant sleep-dependent
improvement on the WPT was seen only for subjects who dem-
onstrated an intermediate level of learning during training—
irrespective of how the task was acquired—may provide some
hints. Evidence from previous imaging studies and studies using
patients with amnesia and Parkinson’s disease suggests that
memory systems supported by the MTL and prefrontal cortex
are activated during observational learning and early stages of
feedback learning (using 100 trials), while the striatum is activated
as feedback training continues (Poldrack et al. 2001; Aron et al.
2004; Hopkins et al. 2004; Shohamy et al. 2004a,b).

Thus, one intriguing mechanism that could explain our
findings is that a localized sleep-dependent process strengthens
memories stored in hippocampal-neocortical networks, but not
those stored in the striatum (Marshall and Born 2007).
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