15104 - The Journal of Neuroscience, December 2, 2009 - 29(48):15104 15114

Behavioral/Systems/Cognitive

Dopaminergic Drugs Modulate Learning Rates and
Perseveration in Parkinson’s Patients in a Dynamic
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Making appropriate choices often requires the ability to learn the value of available options from experience. Parkinson’s disease is
characterized by a loss of dopamine neurons in the substantia nigra, neurons hypothesized to play a role in reinforcement learning.
Although previous studies have shown that Parkinson’s patients are impaired in tasks involving learning from feedback, they have not
directly tested the widely held hypothesis that dopamine neuron activity specifically encodes the reward prediction error signal used in
reinforcement learning models. To test a key prediction of this hypothesis, we fit choice behavior from a dynamic foraging task with
reinforcement learning models and show that treatment with dopaminergic drugs alters choice behavior in a manner consistent with the
theory. More specifically, we found that dopaminergic drugs selectively modulate learning from positive outcomes. We observed no effect
of dopaminergic drugs on learning from negative outcomes. We also found a novel dopamine-dependent effect on decision making that
is not accounted for by reinforcement learning models: perseveration in choice, independent of reward history, increases with Parkin-

son’s disease and decreases with dopamine therapy.

Introduction
Midbrain dopamine neurons are thought to play a critical role in
reinforcement learning. Electrophysiological recordings from the
ventral tegmental area and substantia nigra in animals suggest
that dopamine neurons encode the reward prediction error
(RPE) signal hypothesized to guide action value learning in con-
temporary reinforcement learning (RL) models (Schultz et al.,
1997; Hollerman and Schultz, 1998; Nakahara et al., 2004; Bayer
and Glimcher, 2005). According to standard RL models, action
values are updated on a trial-by-trial basis using a RPE term, the
difference between the experienced and predicted reward
(Rescorla and Wagner, 1972; Sutton and Barto, 1998). The phasic
activity of midbrain dopamine neurons is widely hypothesized to
carry this error term, possibly after multiplication by a learning
rate term (for review of the dopaminergic RPE hypothesis, see
Niv and Montague, 2009).

Parkinson’s disease is characterized by a dramatic loss of do-
pamine neurons in the substantia nigra (Dauer and Przedborski,
2003). Several studies have found general learning deficits ac-
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companying this loss in Parkinson’s patients (Knowlton et al.,
1996; Swainson et al., 2000; Czernecki et al., 2002; Shohamy et al.,
2004, 2009), and dopaminergic medication has been found to
affect performance in many tasks (Cools et al., 2001, 2006; Frank
etal., 2004, 2007b; Shohamy et al., 2006; Bédi et al., 2009). How-
ever, no study has ever fit standard RL models to choice behavior
in Parkinson’s patients on and off dopaminergic medications to
quantitatively test predictions the dopaminergic RPE hypothesis
makes about learning rates.

Parkinson’s disease is typically treated with levodopa (L-DOPA),
the biosynthetic precursor to dopamine (Hornykiewicz, 1974),
which is thought to increase phasic dopamine release (Keller et
al., 1988; Wightman et al., 1988; Harden and Grace, 1995). If
phasic dopamine activity encodes a RPE signal of some kind, then
L-DOPA should modulate RPE magnitude. According to theory,
this effect should manifest itself as a change in the learning rate
estimated in standard RL models. This prediction stems from the
fact that, in standard models, values placed on actions are up-
dated by the product of the RPE and the learning rate. Thus, if
dopamine carries either this product or simply the RPE signal,
changes in learning rates will capture the effects of dopaminergic
manipulations.

To test this prediction, we studied decision making in Parkin-
son’s patients using a dynamic foraging task in which subjects
could be expected to learn the value of actions using a reinforce-
ment learning mechanism. We also tested whether dopaminergic
drugs including L-DOPA (combined in some patients with dopa-
mine receptor agonists) differentially affect learning from posi-
tive and negative outcomes as some previous studies suggest
(Daw et al., 2002; Frank et al., 2004). We tested Parkinson’s pa-
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jneurosci.org as supplemental material). All
Parkinson’s patients and elderly subjects gave
informed consent in accordance with the pro-
cedures of the Rutgers Institutional Review
Board for the Protection of Human Subjects of
Rutgers University (Newark, NJ). All healthy
young participants gave informed consent in
accordance with the procedures of the Univer-
sity Committee on Activities Involving Human
Subjects of New York University.

Behavioral task training. After reading task
instructions, subjects answered five multiple-
choice questions to ensure that they had a basic
understanding of the task. They then com-
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Figure 1.

completed 800 trials in 10 blocks.

tients both on and off dopaminergic medication, in addition to
testing both healthy young and elderly control subjects, and fit
choice behavior with standard RL models to test quantitative
predictions of the dopaminergic RPE hypothesis.

Materials and Methods

Subjects. Seventy-eight paid volunteers participated in the experiment: 26
patients with Parkinson’s disease (12 females; mean age, 65.7 years), 26
matched healthy elderly control subjects (12 females; mean age, 67.3
years), and 26 healthy young subjects (14 females; mean age, 22.8 years).
Parkinson’s patients were diagnosed with idiopathic Parkinson’s disease
and recruited by neurologists. Patients were at the mild to moderate
stages of the disease, with scores on the Hoehn-Yahr scale of motor
function (Hoehn and Yahr, 1967) of 2 or 2.5. We used the motor exam
(section III) of the Unified Parkinson’s Disease Rating Scale (UPDRS)
(Lang and Fahn, 1989) to quantify symptom severity at the time of test-
ing. All patients participated in two sessions, one on and one off dopa-
minergic medication, usually (94%; 49 of 52) in the morning. For the
“on” session, patients were tested an average of 1.6 h after a dose of
dopaminergic medication. For the “off” session, patients refrained from
taking all dopaminergic medications for a minimum of 10 h (mean,
14.4 h). Session order was randomized across patients (11 completed the
off session first). All patients were receiving treatment with L.-DOPA, the
precursor for dopamine, and the majority were also taking a D, receptor
agonist (n = 17). Some patients were also taking serotonergic (n = 9) or
cholinergic (n = 4) medications (for medication information, see sup-
plemental data, available at www.jneurosci.org as supplemental mate-
rial). Care was taken to minimize potential serotonergic and cholinergic
medication effects by having subjects take those drugs at the same time
before both on and off sessions. However, it is possible that the chroni-
cally administered medications taken by our patients, and not by any
elderly subjects, might affect serotonergic, cholinergic, adrenergic, or
noradrenergic transmission and potentially influence choice behavior.
This limitation is common to studies of decision making in Parkinson’s
patients.

Parkinson’s patients and elderly subjects were screened for the pres-
ence of any neurological disorder in addition to Parkinson’s disease and
any history of psychiatric illness including depression. The Parkinson’s
and elderly subject groups did not differ significantly in age, years of
education, verbal intelligence quotient, or several other neuropsycholog-
ical measures (for details, see supplemental Table 1, available at www.

Experimental task design. A, Subjects selected one of two crab traps marked by red and green buoys and earned 10
cents for each crab caught. Example unrewarded and rewarded trials are shown. Earnings for the past 40 trials were displayed on
the screen. B, Example block sequence. Relative reward rates (6:1, 3:1, 1:3, 1:6) changed in blocks of 70 —90 trials separated by
unsignaled transitions. The identity of the rich (higher reward probability) option alternated between consecutive blocks. Subjects

red and green buoys (Fig. 1 A). When a reward
had been scheduled for their chosen option,
the chosen trap was raised from the ocean to
reveal a crab inside. Otherwise, the chosen trap
was revealed to be empty. The probability ratio
specifying the relative values of the two traps in
any block was either 6:1 or 1:6, with actual
probabilities summing to 0.3 within each
block. Subjects were asked to verbally identify the rich (higher reward
probability) option after each training block. They were given feedback as
to whether or not they were correct. Subjects were not paid according to
performance in the training blocks, and all subjects earned $5 for com-
pleting the instructions and training.

Behavioral task experiment. Subjects then completed 800 trials in
the dynamic task environment as they tried to maximize earnings
(Fig. 1B). The precise mathematical structure of the task replicated
the critical features of the concurrent variable-interval tasks used by
Herrnstein (1961) to formulate the matching law, which describes
how animals make choices among options that differ in expected
value. Monkeys performing this type of task allocate their choices
according to reward probabilities and dynamically track changing
probabilities (Platt and Glimcher, 1999; Sugrue et al., 2004; Corrado
et al., 2005; Lau and Glimcher, 2005). Measuring choice under these
conditions thus reveals the subject’s expectations about the relative
value of possible actions. Subjects completed 10 blocks of 70-90 trials
with four possible reward probability ratios (6:1, 3:1, 1:3, 1:6). Blocks
were separated by unsignaled transitions in which the identity of the
higher reward probability option reversed, but with the reward prob-
ability otherwise unpredictable. Once a reward was scheduled for a
trap, it remained available until the associated trap was chosen. This
meant that the longer a trap remained unchosen, the greater the
probability thata reward would be earned by choosing it. We used this
reward schedule because monkeys performing a similar task have
been shown to make choices consistent with reinforcement learning
(Lau and Glimcher, 2005). The display indicated the number of crabs
caught over the past 40 trials (or since the start of the experiment for
the first 40 trials). Subjects were paid according to performance, earn-
ing 10 cents for each crab caught. At the end of the session, the total
catch was revealed and subjects were paid accordingly. Subjects had
unlimited time to make each choice but typically completed 800 trials
in <30 min. Finally, subjects answered six multiple-choice questions
about the experiment (for preexperiment and postexperiment ques-
tionnaires, see supplemental data, available at www.jneurosci.org as
supplemental material). We computed multiple measures of task per-
formance and fit choice data with multiple models. We used both
paired and unpaired two-tailed ¢ tests to compare behavioral mea-
sures. We used Wald tests to compare model parameter estimates
across subject groups.
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Matching law analysis. We fit steady-state choice behavior using the
logarithmic form of the generalized matching law (Baum, 1974):

G R
10g2<62> = alogz<i> + log, c. (1)

Here, Cy and C are the number of choices to the red and green options,
respectively, and R and R; are the number of rewards received from choices
to the red and green options, respectively. In each block, we allowed 20 trials
for choice behavior to stabilize and then included 50 trials in this analysis,
fitting a line by least-squares regression. By the generalized matching law
(Baum, 1974), the slope of this line (a) is the reward sensitivity, a measure of
the sensitivity of choice allocation to reward frequency.

Single o reinforcement learning model. We fit choice data from all sub-
ject groups with a standard RL model (Sutton and Barto, 1998). The
model uses the sequence of choices and outcomes to estimate the ex-
pected value of each option for every trial. The expected values are set to
zero at the beginning of the experiment, and after each trial, the value of
the chosen option [for example, Vi(¢) for the red option at trial ¢] was
updated according to the following rule:

Vit + 1) = Vit + ad(t) (2)

8(t) = Ry(t) — Vx(»). (3)

Here, 8(t) is the RPE, the difference between the experienced and ex-
pected reward. Ry(#) represents the outcome received from the red op-
tion on trial f with a value of 1 for a reward and 0 otherwise. The learning
rate a determines how rapidly the estimate of expected value is updated.
If the learning rate is high, recent outcomes have a relatively greater
influence on the expected value than less recent outcomes. Given ex-
pected values for both options, the probability of choosing the red option
Py(t) is computed using the following softmax rule:

1
1+ exp(—[B(Va(t) = Va(0) + e(Celt = 1) = Colt = 1))
(4)

Here, (3 is a noise parameter and Cy(t — 1) and Cg(t — 1) represent the
choice of the red or green option on the previous trial £ — 1 with a value of 1
for the chosen option and 0 otherwise [Ci(f) = 1 — Cg(#)]. The choice
perseveration parameter ¢ captures tendencies to perseverate or alternate
(when positive or negative, respectively) that are independent of reward
history (Lau and Glimcher, 2005; Schénberg et al., 2007). This parameter is
similar to b, in the linear regression model below. The constants « (learning
rate), B (noise parameter), and ¢ (choice perseveration parameter) were
estimated by maximum likelihood (Burnham and Anderson, 2002).

Dual « reinforcement learning model. We also fit a second learning
model closely related to the standard RL model, which has been proposed
previously (Daw et al., 2002; Frank et al., 2007a) and for which there is
growing evidence from Parkinson’s studies (Frank et al., 2004, 2007b;
Cools et al., 2006; Bodi et al., 2009). This model is identical with the one
specified above except that it uses separate learning rates for positive and
negative outcomes. In this model, the value of the chosen option (for
example, the red option) was updated according to the following rule:

Py(t) =

If 8(t) = 0,
If 8(t) <0,

Vr(t + 1) = Vi(t) + Qposicined(t)
Vilt 1) = Va(§) + Geguned(0). (5)

Parameter estimation for reinforcement learning models. For single and dual
aRL models, we fit choice data across Parkinson’s and elderly subject groups
(excluding young subjects) with a single shared noise parameter and separate
learning rate and choice perseveration parameters for each subject group.
We estimated all parameters simultaneously by maximum likelihood (Burn-
ham and Anderson, 2002). To determine whether learning rates and choice
perseveration parameters are affected by age, we also fit the single a RL
model separately for each subject in the Parkinson’s and elderly subject
groups with a single shared noise parameter across all subjects. We used a
shared noise parameter because the learning rate and noise parameter esti-
mates are not fully independent, and Schénberg et al. (2007) have shown that
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leaving both parameters fully unconstrained can lead to interpretability
problems. One solution is to fix one of the parameters to examine specific
hypotheses regarding the other parameter, which remains unconstrained.
The noise parameter can be fixed, for example, to test for dopaminergic
influences on the learning rate. Alternatively, the learning rate can be fixed to
test for dopaminergic influences on subject randomness (stochasticity).
Since we wanted to test whether dopaminergic manipulations influence be-
havior in a way that can be captured by changes in the learning rate, we fita
single noise parameter across Parkinson’s and elderly subject groups.

Hypothesis testing. We used these RL models to compare our Parkin-
son’s and elderly subject groups as well as to compare the more and less
severely affected of our Parkinson’s patients. Knowlton et al. (1996)
found that the one-half of their Parkinson’s patients with the most severe
symptoms had worse performance on a probabilistic classification task
than all patients combined. We therefore split our Parkinson’s patients
into two groups of equal sizes according to symptom severity measured
in the off medication session by the UPDRS motor exam to determine
whether disease progression affects choice behavior.

The dopaminergic RPE hypothesis predicts that learning rates should be
higher in Parkinson’s patients on than off dopaminergic medication and
lower in patients off medication than elderly control subjects. It also predicts
that learning rates should be lower in the more than in the less severely
affected Parkinson’s subgroup. The hypothesis makes no specific predictions
for how choice perseveration parameters might be modulated by dopamine
levels nor does it explicitly predict how learning rates for positive and nega-
tive outcomes might differ across subject groups. For all comparisons for
which we have specific predictions, we report uncorrected p values for these
ex ante hypotheses. For analyses about which we had no ex ante hypotheses,
we also report p values Bonferroni-corrected for multiple comparisons.

L-DOPA is thought to increase phasic dopamine release (Keller et al.,
1988; Wightman et al., 1988; Harden and Grace, 1995). Value estimates
in the standard RL model (Eq. 2) are updated by the product a8(t), which
we refer to as the error correction term. If phasic dopamine activity
encodes a RPE signal, then treatment with L-DOPA should affect value
learning by amplifying the error correction term, and this manipulation
will be reflected in choice behavior by a change in the learning rate.
Despite the fact that the dopaminergic RPE hypothesis is silent about the
role of tonic dopamine activity in behavior, it is important to note that
both phasic and tonic dopamine signaling may well be affected by the
dopamine depletion associated with Parkinson’s disease and by the do-
paminergic drugs taken to treat the disorder. There is now growing evi-
dence that phasic and tonic dopamine activity may play distinct roles in
reinforcement learning (Niv et al., 2007), and as those phasic/tonic models
evolve it may become possible to test additional hypotheses with these data.

A final note concerns the interpretation of our hypothesis tests with
regard to the dopaminergic RPE hypothesis. Value estimates are updated
by the product a8(¢). This implies that a difference in observed learning
rates between subject groups might reflect the role of dopamine in en-
coding a, 6(1), or the product ad(t). In electrophysiological studies, pha-
sic dopaminergic firing rates are observed to vary under conditions in
which « is believed to be constant (Schultz et al., 1997; Bayer and Glim-
cher, 2005), implying that the phasic activity of dopamine neurons does
not encode aalone. These data make it unlikely that .L-DOPA, by increas-
ing the dopamine release associated with action potentials, could
uniquely influence « without affecting 8(¢). It is possible that other do-
paminergic manipulations, including dopamine receptor agonists taken
by many of our subjects, could uniquely affect . Regardless, even the
electrophysiological data give no guidance for determining whether
L-DOPA should influence 8(t) or ad(t). Model fits would reveal a change
in learning rate in either case. For this reason, changes in « estimated
from behavior by RL models should be interpreted as evidence that either
8(t) or ad(¢) is influenced by L.-DOPA administration.

Linear regression model. In an effort to test the robustness of any conclu-
sions drawn from the fits of our RL models, we also used a linear regression
approach to fit our choice data [as in Lau and Glimcher (2005)]. To perform
this robustness check, we assumed that influences of past rewards and
choices were linearly combined to determine choice on each trial, with
choice probability computed using the softmax rule, as in the RL model. We
used logistic regression to estimate weights for rewards received and choices
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Figure 2.  Observed and predicted choice for example subjects. A, Healthy young subject HC2011. B, Healthy elderly subject
H(2620. C, D, Parkinson’s patient PD2710 tested both on and off dopaminergic medication. Data were it with a learning model
with three parameters (learning rate «, noise parameter (3, and choice perseveration parameter c). Choice data (black) and model
predictions (gray) were smoothed with an 11-trial moving average. The vertical lines indicate unsignaled transitions between
blocks. The horizontal lines indicate strict matching behavior (Herrnstein, 1961). Individual parameter estimates are indicated. The
block sequence for young example subject HC2011 is displayed in Figure 18.

made on previous trials, so the noise parameter of the softmax rule is effec-
tively incorporated into reward weights by the regression. The goal of the
regression was to estimate the probabilities Pp(#) and Pg(#) of choosing

Results
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creases in the log odds of choice as a function of
previous rewards (a;) or choices (b;). The log
odds of the subject making a given choice on a
specific trial is obtained by linearly combining
previous choices and outcomes (rewards),
weighted by the coefficients extracted by the re-
gression. The logistic regression is linear in log
odds but nonlinear in choice probability. Choice
probability is recovered from the log odds by ex-
ponentiating both sides of Equation 6 and solving
for Pp(t). This formulation has been used to
study choice and striatal function in monkeys
(Lau and Glimcher, 2005, 2008). If all b; are set to
zero, this is similar to the linear reward model
that has been used in several previous studies
of choice in monkeys (Sugrue et al., 2004;
Corrado et al., 2005; Kennerley et al., 2006).

If the RL models discussed above perfectly
described behavior, then the weights a; would
decline exponentially with the decay rate spec-
ified by the learning rate term in the RL models.
The linear regression model thus relaxes the
constraint, imposed by the RL models pre-
sented above, that weights must decline expo-
nentially. The inclusion of multiple b; terms
relaxes the constraint in the specific RL models
we used that, independent of rewards, only the
previous choice may influence future choice.
The set of b; allows long-term trends in choice
to be identified. Comparing these less con-
strained linear regression analyses to the stan-
dard RL models thus allows us to examine the
robustness of the conclusions drawn with the
more structured RL model-based approach.

Model comparison. To evaluate model fits,
we computed a pseudo-R? statistic (Camerer
and Ho, 1999) using the following equation:

pseudo-R* = (R — L)/R. (7)

Here, L is the maximum log likelihood for the
estimated model given the data and R is the log
likelihood of the model under random choice.
To compare the RL model and linear regres-
sion approaches, we penalized model fits for
complexity using the Bayesian information cri-
terion (BIC) (Schwarz, 1978). We computed
BIC using the following equation:

BIC = —2log L + klog n. (8)

Here, L is the maximum log likelihood for the
estimated model given the data, k is the num-
ber of free parameters in the model, and # is the
number of trials. The model with the lower BIC
is preferred.

the red and green options, respectively. Since there are only two options
and assuming symmetric weights for the two options, the model for 10
previous trials reduces to the following:

Py 10,
log(PGEg) aRalt = i) = Rolt = i)
’ ibf“k“* i) = Colt = ). (6)

Here, a and b coefficients represent changes in the log odds of choosing the
red or green options with g, the weight for a reward received i trials ago and
b; the weight for a choice made i trials ago. Negative weights indicate de-

Behavioral results

Choice data are shown for example subjects from each subject
group including on and off medication sessions for one Parkin-
son’s patient (Fig. 2). We found that subjects from all four groups
chose the richer option more frequently in the training session
(Fig. 3A). Subjects correctly identified the richer option in all five
training blocks in most (88%; 84 of 96) sessions. In the dynamic
task environment, choice behavior after transitions to different
reward probability ratios quickly stabilized at the group level,
suggesting that subjects in all four groups adjusted choice behav-
ior according to option reward rates (Fig. 3B).
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Parkinson’s patients earned similar
amounts on (mean = SEM, $19.50 = 0.34
excluding one subject who did not com-
plete all 800 trials) and off ($19.45 = 0.26)
dopaminergic medication (paired ¢ test,
t2ay = 0.31,p = 0.76). Young control sub-
jects earned more ($20.54 = 0.23) than
Parkinson’s patients either on (unpaired ¢
test, t49) = 2.55, p = 0.014) or off medi-
cation (f(sg) = 3.17, p = 0.003). Elderly
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two options, which provides a measure of
reward sensitivity (Fig. 4) (for fits, see
supplemental Table 2, available at www.
jneurosci.org as supplemental material).
Linear fits accounted for 42—65% of the
variance within each subject group. Choice
was lawfully related to reward rates, suggest-
ing that subjects in all four subject groups
made their choices based on the relative val-
ues of the two options.

Reward sensitivity in the young group
was comparable with measures from young
adult monkeys performing a similar task
(Lau and Glimcher, 2005) (see supplemental data, available at
www.jneurosci.org as supplemental material). Reward sensitivity
for elderly subjects was intermediate but not significantly differ-
ent from Parkinson’s patients either on (unpaired ¢ test, £(,7,) =
1.11,p = 0.27) or off medication (¢.,,3y = 1.36, p = 0.17). Reward
sensitivity was higher in Parkinson’s patients on than off medication
(t(476) = 2.34, p = 0.02), and this increase in choice allocation to the
richer option while on dopaminergic medication is consistent with
dopamine playing a role in reinforcement learning.

Figure3.

Reinforcement learning models

We analyzed individual trial-by-trial choice data using a standard
RL model with a learning rate o and a noise parameter 3. The
average individual pseudo—R2 was 0.18 (SD = 0.12; n = 104),
significantly better than a model predicting random choice for
most sessions (88%, 92 of 104; likelihood ratio test, p < 0.05),
suggesting that a standard RL model can account for choice be-
havior in our task. Because choice behavior might also depend on
previous choices independent of previous rewards, we also in-
cluded a choice perseveration parameter ¢ that captures short-
term tendencies to alternate or perseverate (when the value of ¢ is
negative or positive, respectively) that are independent of reward
history (Lau and Glimcher, 2005; Schénberg et al., 2007). The
average individual pseudo-R? for the RL model with this addi-
tional parameter was 0.27 (SD = 0.16; n = 104), significantly

Trials relative to transition

Trials relative to transition

Behavioral results. 4, Average choice behavior in the training session for young and elderly control subjects (bothn =
26) and Parkinson’s patients on and off medication (both n = 22). Subjects instructed to identify the rich (higher reward proba-
bility) option chose the rich option more than expected by chance (indicated by a horizontal line). Data are unsmoothed. B, Average
choice behavior in the experimental session for all four subject groups (n = 26). Subjects experienced multiple unsignaled
transitions between blocks and all groups reacted quickly to transitions. The probability of choosing the option that is richer after
the unsignaled transition is plotted with choices aligned on the trial on which a transition occurred (indicated by a vertical line). This
convention is used in subsequent panels. Data are unsmoothed. (~F, Average choice behavior in all four subject groups for
high-probability (6:1) and low-probability (3:1) ratio blocks. All groups allocated choices according to option reward rates, choosing the rich
option more in the high-probability than low-probability ratio blocks. Data are smoothed using an 11-trial moving average. After allowing
20 trials from the beginning of each block for choice behavior to stabilize, choices are averaged separately for high-probability and low-
probability ratio blocks for the next 50 trials and plotted at the right of each panel. Error bars reflect = SEM across subjects.

better than a model predicting random choice for all but one
session (99%, 103 of 104; likelihood ratio test, p < 0.05) and not
significantly different between the two Parkinson’s groups
(paired t test, t,5) = 0.63, p = 0.54) or between elderly subjects
and either Parkinson’s group (unpaired ¢ test, both f54, < 0.91,
p > 0.3). We plot individual fits for this model for example sub-
jects in Figure 2 (pseudo-R?, 0.30—0.40).

To characterize choice behavior across subject groups, we fit
choice data with a single shared noise parameter across Parkin-
son’s and elderly groups (8 = 1.73 = 0.03; SEs are indicated for
all parameter estimates) and separate learning rate and choice
parameters for each group. The group parameter estimates are
plotted in Figure 5 relative to parameter estimates for elderly
subjects (a = 0.60 = 0.02; ¢ = 0.39 % 0.02; n = 26). Learning
rates for Parkinson’s patients off medication were similar to
learning rates in elderly control subjects (Wald test, p = 0.44).

We checked whether model parameters were affected by dis-
ease progression by splitting the Parkinson’s patients according
to disease severity, into more and less affected subgroups of equal
sizes. Learning rates were lower in the more than in the less af-
fected Parkinson’s subgroup off medication (Wald test, p <
0.0001; both n = 13; noise parameter fixed at B = 1.73). This
difference cannot be accounted for by increased motor symp-
toms impairing task performance since reaction times, measured
from stimulus onset to response completion, were similar off
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Figure 4.  Steady-state choice behavior obeys the matching law. A-D, Log choice ratios
(ratio of red to green choices) are plotted as a function of log reward ratios for 50 trials of each
block after allowing 20 trials for choice behavior to stabilize (the same period used in Fig. 3(—F).
Data are plotted for all subjects in a group and the example subjects (in red) from Figure 2 A-D.
All four groups obey the matching law (all n = 26), allocating choices as a function of reward
ratios. Blocks in which one option was never rewarded in the 50-trial period are excluded. The
lines represent least-squares fits of the generalized matching law with the slope, corresponding to
reward sensitivity, noted on each plot for subject group (blue) and example subject (red). Fit param-
eters are listed in supplemental Table 2 (available at www.jneurosci.org as supplemental material).

medication in the more affected (mean = SEM of median reac-
tion times, 364 = 56 ms; n = 13) and the less affected Parkinson’s
patients (368 = 41 ms, n = 13; paired ¢ test, t,4, = 0.063, p =
0.95). Learning rates were also lower in the more affected Parkin-
son’s patients off medication than in elderly control subjects
(Wald test, p = 0.006) (Fig. 5A). Surprisingly, the less affected
Parkinson’s subgroup had higher learning rates off medication
than the elderly control subjects ( p < 0.0001).

Most importantly, as predicted by the dopaminergic RPE hy-
pothesis, learning rates were higher in Parkinson’s patients on
than off dopaminergic medication. This difference was signifi-
cant at p = 0.0003 (Wald test) (Fig. 5A). We also found an addi-
tional dopamine-dependent effect on decision making.
Parkinson’s patients off dopaminergic medication perseverated
more, independent of reward history, than elderly control sub-
jects (Wald test, p < 0.0001; corrected p < 0.0001), and dopami-
nergic medication reduced this tendency ( p < 0.0001; corrected
p < 0.0001) (Fig. 5B), making them more like control subjects.
The same differences in learning rate and perseveration between
Parkinson’s patients on and off medication were maintained in
the more affected Parkinson’s subgroup (both p < 0.0001) (Fig. 5).

Because block lengths varied within a limited range (70—-90
trials), subjects might have learned to predict block transitions
and to adjust their choice behavior accordingly. For example,
learning rates might be higher immediately after block transitions
than in later block phases and our analysis might have obscured
this fact. However, we found that parameter estimates were similar
in early and late block phases, and there was no indication that sub-
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Figure5.  Reward and choice effects for Parkinson’s and elderly subject groups. A, B, Choice

data for Parkinson’s and elderly groups (all n = 26) were fit with a single shared noise param-
eter and group parameter estimates are plotted relative to elderly parameter estimates. The
insets show fits for the more affected one-half of the Parkinson’s patients with moderate symp-
toms (n = 13). All differences between Parkinson’s patients on and off dopaminergic medica-
tion are highly significant (all p << 0.001, indicated by stars). Parkinson’s patients have higher
learning rates on than off dopaminergic medication. Parkinson’s patients perseverated in their
choices more, independent of reward history, off than on dopaminergic medication. These
differences were maintained in the more affected one-half of the patients with moderate symp-
toms. Error bars indicate 95% confidence intervals.
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Figure 6.  Learning rates for positive and negative outcomes. A, B, Choice data for Parkin-
son’s and elderly subject groups were fit with a shared noise parameter and group parameter
estimates are plotted relative to elderly parameter estimates. Parkinson’s patients have higher
learning rates for positive outcomes on than off dopaminergic medication ( p = 0.003, indi-
cated by astar). Parkinson’s patients had similar learning rates for negative outcomes on and off
dopaminergic medication ( p = 0.44). Error bars indicate 95% confidence intervals.

jects were able to predict block transitions (see supplemental data,
available at www.jneurosci.org as supplemental material).

Previous studies have suggested that dopamine neurons
might be differentially involved in learning from positive and
negative outcomes (Daw et al., 2002; Frank et al., 2004, 2007b;
Bayer and Glimcher, 2005; Cools et al., 2006, 2009; Frank and
O’Reilly, 2006; Bayer et al., 2007; Bodi et al., 2009). To test for this
possibility, we fit separate learning rates for positive and negative
outcomes, as in a recent study of reinforcement learning in
healthy young subjects (Frank et al., 2007a), again with a single
shared noise parameter (8 = 1.12 = 0.03) and separate learning
rate and choice perseveration parameters for each Parkinson’s
and elderly subject group. This model fit the data significantly
better than the single learning rate model after accounting for
number of parameters (likelihood ratio test, p < 0.0001). Group
choice parameters were similar to those estimated using the sin-
gle learning rate model (Wald test, all p > 0.19) and differences
between group choice parameters remained significant at p <
0.0001. Group parameter estimates are plotted in Figure 6 relative
to parameter estimates for elderly subjects (ot o5iive = 1.20 %
0.05; Qpegative = 0.47 = 0.02). We found that learning rates for
positive outcomes were significantly higher in Parkinson’s pa-
tients on than off dopaminergic medication (Wald test, p =
0.003; corrected p = 0.016), but dopaminergic medication did
not affect learning rates for negative outcomes ( p = 0.44; cor-
rected p = 1.0). This finding supports a role for dopamine neu-
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in the ventral tegmental area) declines
with normal aging (Stark and Pakkenberg,
2004), we examined whether learning rate
or choice perseveration parameters corre-
lated with age. Excluding young subjects
from this analysis, we fit choice data across
Parkinson’s and elderly subject groups with
a single noise parameter (8 = 2.61 = 0.16)
and separate learning rate and choice pa-
rameters for all individuals (Fig. 7). We
found no significant correlation between
learning rate and age for Parkinson’s or
elderly groups (all < 0.18; p > 0.3) (Fig. 7A). We did not find a
correlation between choice perseveration and age in either Par-
kinson’s group (both r < 0.16; p > 0.3), but we did find a positive
correlation between choice perseveration and age in the elderly
subjects (r = 0.40; p = 0.043) (Fig. 7B).

We considered whether other variables might also be corre-
lated with perseveration in elderly subjects. Choice perseveration
was significantly correlated with scores on the two memory tests
(both » > 0.51; p < 0.007), but not with each of the other six
demographic and neuropsychological variables (all r < 0.22; p >
0.29). We note that age and scores on the two memory tests were
highly correlated (both r > 0.72; p < 0.0001 for both memory
scores) and that multiple regression across demographic and neuro-
psychological variables revealed no significant correlations at p <
0.05, even without correcting for multiple comparisons. Our results
thus indicate that, although perseveration might result from
normal aging, perseveration might also be related to memory
decline. Our sample size is simply too small to determine to
what extent each contributes differentially to perseveration.

Figure7.

Linear regression model of reward influence on choice

Not all recent studies of value-based decision making have used a
standard RL model. Several studies in monkeys have used an alter-
nate approach that does not assume that the influence of rewards
received on previous trials decays in an exponential manner (Sugrue
et al,, 2004; Corrado et al., 2005; Lau and Glimcher, 2005, 2008;
Kennerley et al., 2006), an assumption effectively embedded in stan-
dard RL models by the learning rate «.. To examine the robustness of
our RL model-based findings, we fit trial-by-trial choice dynamics
using a more general linear regression model (Fig. 8). Our results
using this approach were broadly consistent with the results ob-
tained using the more constrained RL models.

To perform this analysis, we assumed only that past rewards and
choices were weighted and linearly combined, with no restriction on
the structure of weights, to determine what choice a subject would
make. Best fitting weights for past rewards and choices obtained in
this way quantify changes in the probability of a subject choosing a
particular option exerted by past events. A positive reward weight for
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Effect of age on individual parameter estimates. 4, B, Parameter estimates for individual subjects are plotted against
subject age. Choice data for individual Parkinson’s patients and elderly subjects were fit with a shared noise parameter. There was
no significant relationship between individual learning rates and age in elderly or Parkinson’s subject groups (all p > 0.3). Choice
perseveration increased with age for elderly subjects ( p = 0.043; the line represents the least-squares fit) but not for either
Parkinson’s group (both p > 0.3). Young subjects were excluded from these analyses, but we used the noise parameter obtained
for Parkinson’s and elderly groups to fit their data and plot the results for comparison purposes.

the most recent trial indicates that a reward received from the red
trap (Fig. 8) had the effect of increasing the probability of choosing
the red trap on the next trial. A negative choice weight on the most
recent trial indicates that a choice to the red trap had the effect of
decreasing the probability of choosing the red trap on the next trial,
independent of past rewards. A linear regression computed in this
manner effectively identifies the weights that, when summed, best
describe the influence of previous rewards and choices on future
choice. If these influences sum to zero, either option is equally likely
to be chosen.

Model weights in log odds for rewards received and choices
made for 10 previous trials were estimated by logistic regression
for each of the four subject groups (Fig. 9). (A similar estimation
was not made for the two Parkinson’s subgroups because of the
small size of those groups relative to the number of parameters
being estimated.) Reward effects for all four groups (Fig. 9A,B)
decayed in an approximately exponential manner, consistent
with subjects using a reinforcement learning mechanism to learn
action values. A negative weight for the most recent choice for the
young subjects indicates a tendency to alternate independent of
reward history (Fig. 9C). Reward and choice weights for young
adult subjects are comparable with those for young adult mon-
keys performing a similar task (Lau and Glimcher, 2005).

Critically, reward weights decayed more quickly in Parkin-
son’s patients on than off dopaminergic medication (Fig. 9B) as
expected from the RL model-based analysis. As an additional
check of robustness, we fit an exponential function to the reward
weights and compared that time constant in Parkinson’s patients
on and off medication. This time constant was smaller for Par-
kinson’s patients on than off medication (Parkinson’s on, 0.96 =
0.22; Parkinson’s off, 1.67 * 0.26; Wald test, p = 0.037). This
result is again consistent with the higher learning rates we found
in Parkinson’s patients on than off medication. If subjects learn
values according to standard RL models, this iterative computa-
tion can be equivalently described as an exponentially weighted
average of previous rewards with the rate of decay determined by
the learning rate o (Bayer and Glimcher, 2005). Thus, the fact that
reward weights decay exponentially, although they are not con-
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tion thus demonstrates that a significant
part of the dopaminergic medication effect
on learning must be attributable to a change
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compared, incorporating choice effects, and an option is selected using a decision rule.

A Reward effects

Two-stage description of choice. At the first stage, past rewards and choices are used to value the two options. An
example sequence of five trials is shown with the most recent trial being a rewarded choice to the red option. We fit choice data
with a linear model and, as an example, display reward and choice effects for young subject H(2011 from Figure 2 A. The relative
weight of rewards received on past trials typically decays with time. Choice effects capture tendencies to alternate or perseverate
that are independent of reward history. The negative weight for the most recent choice corresponds to a reward-independent
tendency to alternate. A positive weight reflects a tendency to perseverate. At the second stage, the value of the options is

B Reward effects

Imax C.i.

positive weight for the most recent choice
captures the tendency, observed in the RL
model-based analysis, to repeat the choice
just made (Fig. 9D). This tendency to per-
severate was higher in Parkinson’s pa-
tients off dopaminergic medication than
elderly control subjects, but was reduced
by dopaminergic medication, as indicated
by our RL model analysis, with all differ-
ences between subject groups significant
at p < 0.0001. We fit models with 10 re-
ward weights and up to 20 choice weights
and used BIC (Schwarz, 1978) to compare
fits penalizing for model complexity. The
most preferred model for all four subject
groups had at least five choice weights,
demonstrating that choice weights for
previous trials capture additional variance
in choice data. This is an observation
made previously for monkeys performing
a similar task (Lau and Glimcher, 2005).
Reward effects estimated by the linear
regression and RL model approaches are
plotted for example subjects (Fig. 10 A—
D). To verify the appropriateness of the
RL model over the more general linear re-
T ! gression model, we penalized model fits
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t-10  for complexity using BIC. We compared
individual fits for the three-parameter RL
model (@, 3, ¢) to an 11-parameter linear
regression model (10 reward weights, 1
choice weight) and found the (more con-
strained) RL model preferred for the ma-
jority (82%; 85 of 104) of sessions (Fig.
10E). To verify that this finding was not
attributable to the choice of reward weight
number, we fit linear regression models
with 1-20 weights and found the learning

) =max C.i. Y zmax C.i.
< g c g
26 1 206 1
=g =g
= - =0 __7_:\/\_}/\/\,‘
t1 ' t-10 t1 ' t-10
Past trials ) Past trials )
Figure9. Rewardand choice effects estimated by a linear regression model. A, Reward effects for young subjects. B, Reward effects for

Parkinson’s and elderly subject groups. The linear model described in Figure 8 was it to choice data for each group (all n = 26 and >20,000
trials) using rewards and choices for 10 past trials. Coefficients are plotted as a function of trials in the past relative to the current trial. The
decay in reward weights resembles an exponential function. Maximum 95% confidence intervals for all parameter estimates in each plot
areindicated. €, Choice effects for young subjects. D, Choice effects for Parkinson’s and elderly groups. The choice weight for the most recent
trial captures the greater perseveration of Parkinson’s patients off than on dopaminergic medication, as in Figure 58.

strained in any way to do so by the linear regression approach, is
consistent with subjects using a RL model with an error correction
term to estimate option values. Since the learning rate and noise
parameter are not fully independent (Schonberg et al., 2007), it is
possible that, because the noise parameter is shared across groups,
changes in the noise parameter will be reflected by changes in the
learning rate. Importantly, the decay rate of reward weights in the
linear regression analysis provides an estimate of the rate of learning
that is independent of the noise parameter. A difference in the time
constants for this decay in Parkinson’s patients on and off medica-

model always preferred for the majority
(atleast 59%; 61 of 104) of sessions, show-
ing that the RL model containing an error
correction term explains the data better
(in the BIC sense) than the more general
linear regression model. The three-
parameter RL model was also preferred to a
two-parameter RL model that omitted the
choice parameter in the majority (83%; 86
of 104) of sessions (Fig. 10F), supporting inclusion of the choice
perseveration parameter and reiterating the importance of consid-
ering reward-independent choice effects on decision making in
reinforcement-learning tasks.

Discussion

We used a dynamic foraging task and fit choice behavior with RL
models to test the quantitative hypothesis that dopaminergic drugs
affect the error correction term of the RL mechanism in humans. We
found that (1) dopaminergic drugs increased learning rates in Par-
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Figure 10.  Comparison of RL and linear regression models. A-D, In RL models, the value of

an option is computed using an exponentially weighted average with a learning rate c. The
linear model in Figure 8 does not constrain reward weights to decay exponentially. For the
example subjects in Figure 2, linear model weights are plotted alongside the exponential func-
tion with the learning rate estimated by a three-parameter RL model, like that used in Figure 5,
asits time constant. E, F, BIC measures indicated that the three-parameter RL model we used is
preferred (lower BIC) to both an 11-parameter linear regression model with 10 reward weights
and one choice weight and a two-parameter RL model without a choice parameter.

kinson’s patients; (2) learning rates were similar in Parkinson’s pa-
tients off dopamine medication and elderly control subjects; (3)
learning rates were lower in more affected Parkinson’s patients than
either less affected patients or elderly control subjects; (4) dopami-
nergic drugs selectively increased learning rates for positive but not
negative outcomes; and (5) perseveration in choice, independent of
reward history, increased with normal aging and Parkinson’s disease
and decreased with dopamine therapy.

Human reinforcement learning and dopamine

Although dynamic foraging tasks have only recently been
adapted for use in humans (Daw et al., 2006; Serences, 2008), they
are commonly used to study value-based decision making in
monkeys (Platt and Glimcher, 1999; Sugrue et al., 2004; Lau and
Glimcher, 2005, 2008; Samejima et al., 2005). Activity in striatal
neurons, which receive dense dopaminergic inputs, is correlated
with trial-by-trial action values estimated from choice behavior
with both approaches we used: RL models (Samejima et al., 2005)
and linear regression models (Lau and Glimcher, 2008). In our
task, all four subject groups adjusted to unsignaled changes in
reward probabilities and allocated choices according to option
reward rates, allocating more choices to options with higher re-
ward probabilities. Steady-state choice behavior was well de-
scribed by the matching law, and we found greater reward
sensitivity in Parkinson’s patients on than off dopaminergic med-
ication, consistent with previous studies finding that dopaminer-
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gic drugs affect performance in learning tasks (Cools et al., 2001,
2006, 2009; Frank et al., 2004, 2007b; Frank and O’Reilly, 2006;
Pessiglione et al., 2006; Shohamy et al., 2006; Bodi et al., 2009).

To test quantitative predictions of the dopaminergic RPE hy-
pothesis, we fit choice behavior using a standard RL model. We
found higher learning rates in Parkinson’s patients on than off
dopaminergic medication. If the phasic activity of dopamine
neurons encodes RPEs (Schultz et al., 1997; Hollerman and
Schultz, 1998; Nakahara et al., 2004; Bayer and Glimcher, 2005),
then L-DOPA, by increasing phasic dopamine release (Keller et
al., 1988; Wightman et al., 1988; Harden and Grace, 1995),
should affect RPE magnitude. In standard models, action values
are updated by the product of RPE and the learning rate, so our
observation that learning rates increase with dopaminergic med-
ication is predicted by standard RL models. These results suggest
that dopamine neurons are involved in encoding the error cor-
rection term in RL models and are consistent with the widely held
hypothesis that dopamine neurons encode a RPE signal.

Surprisingly, learning rates were similar in Parkinson’s patients
off medication and elderly control subjects. If the RL mechanism
remains relatively intact despite significant loss of dopamine neu-
rons in the substantia nigra during the early phase of the disease,
as these data suggest, then dopamine therapy might have the
effect of “overdosing” this mechanism with regard to learning
behavior (Gotham et al., 1988; Swainson et al., 2000; Cools et al.,
2001). This might be reflected by higher learning rates in medi-
cated Parkinson’s patients than in control subjects. This is exactly
what we observed. This finding may highlight the role of the
ventral tegmental area in learning, an area that is relatively intact
early in Parkinson’s disease (Kish et al., 1988).

To test whether disease progression influences reinforcement
learning, we split our Parkinson’s patients into more and less
affected halves. We found that the more affected subgroup had
lower learning rates than both the less affected subgroup and
elderly control subjects. This suggests that, as the disease
progresses, learning rates decline as dopamine depletion wors-
ens. We also found that learning rates were higher in the less
affected patients than control subjects. This may reflect higher
motivation in patients than control subjects because the patients
knew we were studying the effects of their disorder on decision
making (the Hawthorne effect) (Frank et al., 2004). In a similar
way, the effects of dopaminergic medication we observed might
be explained by nonspecific effects of motivation or arousal that
manifest as specific changes in learning rates.

Separating positive and negative reward prediction errors

We also found that the dopamine-dependent effect on learning
was selective for learning from positive RPEs and does not appear
to affect learning from negative RPEs. That dopaminergic drugs
affectlearning from positive RPEs (or outcomes) and asymmetri-
cally affect learning from positive and negative RPEs (or out-
comes) is consistent with a growing body of evidence. Theoretical
(Daw et al., 2002; Dayan and Huys, 2009) and electrophysiolog-
ical (Bayer and Glimcher, 2005; Bayer et al., 2007) studies suggest
that midbrain dopamine neurons may encode positive RPEs by
increases in spiking activity and that a nondopaminergic system
might encode negative RPEs. Pharmacological studies (Frank et
al., 2004, 2007b; Cools et al., 2006, 2009; Frank and O’Reilly,
2006; Badi et al., 2009) suggest that positive and negative out-
comes have differential effects on learned values. Our results are
compatible with all of these previous findings. However, our
finding that dopaminergic drugs did not affect learning from
negative RPEs may be at odds with pharmacological studies find-
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ing evidence for greater learning from negative outcomes off than
on medication (Frank et al., 2004, 2007b; Cools et al., 2006, 2009;
Frank and O’Reilly, 2006; Bodi et al., 2009). The explanation for
this inconsistency may lie in the subtle distinction between RPEs
and outcomes, or in the precise reward patterns our subjects
experienced. Future research will have to resolve this ambiguity.
One interesting implication of the asymmetry we found is a pos-
sible explanation for the increased prevalence of pathological
gambling in Parkinson’s patients taking some dopaminergic
drugs (Molina et al., 2000; Dodd et al., 2005; Voon et al., 2006;
Dagher and Robbins, 2009). When learning rates for positive and
negative outcomes are balanced, the probability of selecting an
action accurately reflects the true value of that action. In contrast,
an RL mechanism that overweights positive relative to negative
outcomes would overvalue some options in gambling tasks be-
cause gains would effectively loom larger than losses.

Bursts, pauses, and tonic activity

Electrophysiological findings suggest that dopamine neurons en-
code positive RPEs by phasic bursts of activity (Bayer and Glimcher,
2005) and L-DOPA, by increasing phasic dopamine release, could
amplify positive RPEs. However, it is unknown what effect dopa-
minergic drugs have on the duration of the pauses in dopamine
neuron activity that have been correlated with negative RPEs
(Bayer et al., 2007), consistent with a computational model of
basal ganglia function (Cohen and Frank, 2009). If negative RPEs
are, in fact, encoded in pauses and these drugs do not significantly
affect pause durations, learning rates for negative outcomes
could be similar in Parkinson’s patients on and off medication, as
we found. Alternatively, dopaminergic drugs might reduce pause
durations, decreasing learning rates for negative outcomes, con-
sistent with results of some studies (Frank et al., 2004, 2007b;
Cools et al., 2006; Frank and O’Reilly, 2006).

It should also be noted that both Parkinson’s disease and do-
paminergic drugs, including D, receptor agonists taken by the
majority (n = 17) of our patients, are likely to affect both phasic
and tonic dopamine activity. Phasic and tonic dopamine signal-
ing may play distinct roles in reinforcement learning (Niv et al.,
2007), and it is possible that tonic dopamine effects also contrib-
ute to the differences we observe between subject groups. It is also
possible that dopaminergic drugs might have effects outside of
the neural pathways implicated in reinforcement learning or
might have nondopaminergic effects that could alter choice be-
havior in the same way as predicted by RL models. Future exper-
iments might address the role of dopamine neuron pauses in
reinforcement learning and the relative contributions of phasic
and tonic dopamine activity and of nondopaminergic activity to
reinforcement learning and decision making.

Dopamine-dependent effects on perseveration

We also found that perseveration in choice, independent of re-
ward history, increased with normal aging and was higher in
Parkinson’s patients off dopaminergic medication than in elderly
subjects. Dopaminergic drugs reversed this effect, reducing per-
severation in Parkinson’s patients. Several studies in Parkinson’s
patients have found deficits in switching attention from one stim-
ulus or task to another (Lees and Smith, 1983; Cooper et al., 1991;
Owen et al., 1993; Cools et al., 2001; Lewis et al., 2005; Slabosz et al.,
2006), consistent with our finding of perseveration in Parkinson’s
patients. Parkinson’s patients may be better able to switch to a new
cue when it is novel (Shohamy et al., 2009). In some tasks, dopami-
nergic medication has been shown to improve set switching (Owen
etal., 1993; Coolsetal., 2001), consistent with our finding of reduced
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perseveration on dopaminergic medication. However, persevera-
tion after reward contingency changes might be accounted for in
some tasks by RL models (Suri and Schultz, 1999). In contrast, the
perseverative effects we observed cannot be accounted for by existing
RL models. This finding emphasizes the importance of considering
dopamine effects on decision making that are independent of re-
ward history. This finding may highlight the role of the substantia
nigra, which is affected by both normal aging (Stark and Pakkenberg,
2004) and Parkinson’s disease (Dauer and Przedborski, 2003), in this
non-RL process.

Assessing the robustness of model findings

To examine the robustness of our findings, we used a more conser-
vative linear regression approach to explain choice behavior and
found results consistent with our learning model analysis. This ap-
proach is often used to study value-based decision making in ani-
mals (Sugrue et al., 2004; Corrado et al., 2005; Lau and Glimcher,
2005; Kennerley et al., 2006). We also confirmed that behavioral
results were comparable for young adult subjects and young adult
monkeys performing a similar task (Lau and Glimcher, 2005) (see
supplemental data, available at www.jneurosci.org as supplemental
material). If subjects learn values according to standard RL models,
reward weights estimated by linear regression, although not con-
strained to do so, will decay exponentially. Reward weights across
our groups bear a striking resemblance to the exponentially weighted
average of reward history in RL models. Reward weights for Parkinson’s
patients decayed significantly more quickly on than off dopaminer-
gic medication, consistent with higher learning rates in patients on
than off dopaminergic medication. Finally, we used model compar-
ison methods to show that the RL model explains the data better
than the more general linear regression approach, although results
using the two different modeling approaches were consistent.

Conclusion

Our results are consistent with the hypothesis that dopamine
neurons encode a RPE signal for reinforcement learning. The
dopaminergic RPE hypothesis predicts that learning rates esti-
mated from choice behavior will differ in Parkinson’s patients on
and off dopaminergic medication and that is what we found.
More specifically, we found that the increase in learning rates we
observed with dopaminergic drugs is selective for learning from
positive outcomes, consistent with the hypothesis that dopamine
neurons might differentially encode positive and negative RPEs.
We found reinforcement learning to remain relatively intact with
aging and Parkinson’s disease, but that reward-independent per-
severation in choice increased with both. Dopaminergic medica-
tion reversed this effect. This novel dopamine-dependent effect is
not predicted by standard RL models and highlights the impor-
tance of considering additional roles for dopamine in decision
making that are independent of reward history.
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