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A Connectionist Model of Septohippocampa Dynamics During
Conditioning: Closing the Loop

Bas Rokers, Eduardo Mercado I11, M. Todd Allen, Catherine E. Myers, and Mark A. Gluck
Rutgers University

Septohippocampal interactions determine how stimuli are encoded during conditioning. This study
extends a previous neurocomputational model of corticohippocampal processing to incorporate hip-
pocamposeptal feedback and examines how the presence or absence of such feedback affects learning in
the model. The effects of septal modulation in conditioning were simulated by dynamically adjusting the
hippocampal learning rate on the basis of how well the hippocampal system encoded stimuli. The model
successfully accounts for changes in behavior and septohippocampal activity observed in studies of the
acquisition, retention, and generalization of conditioned responses and accounts for the effects of septal
disruption on conditioning. The model provides a computational, neurally based synthesis of prior
learning theories that predicts changes in medial septal activity based on the novelty of stimulus events.

The septal region modulates a wide range of neurobehavioral
processes, including voluntary movements, emotion, attention, and
the formation and recollection of memories (for review, see Nu-
man, 2000). Scientists generaly agree that the primary role of
septal modulation in learning is to control when hippocampal
processing leads to the storage of information (Baxter, Gallagher,
& Holland, 1999; Buhusi & Schmajuk, 1996; Hasselmo, 1995).
When either the septum or septohippocampal connections are
damaged, learning is greatly impaired (for review, see Decker,
Bannon, & Curzon, 2000). Such deficits are characteristic of
neurodegenerative disorders such as Alzheimer’s disease that in-
volve septal dysfunction (Menschik & Finkel, 1998). Although
septohippocampal interactions clearly play a critical role in infor-
mation processing, the effect of these interactions on learning is
not well understood. Computational models provide a way of
quantitatively analyzing how the septohippocampal system might
function.

In aprevious article, Myers et al. (1996) generalized an existing
model of corticohippocampal interaction in associative learning to
account for the effects of septohippocampal modulation. In this
model, the hippocampal system (including the hippocampus, sub-
iculum, and entorhinal cortex) adaptively modifies stimulus rep-
resentations to compress redundant information while differenti-
ating predictive information. The model assumes that cortical
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networks use these hippocampal representations to efficiently re-
code their stimulus representations (Gluck & Myers, 1993, 2001).
This model accounts for a wide range of data on associative
learning in normal animals as well as in animals with damaged
septohippocampal systems (Myers & Gluck, 1994, 1996; Myers,
Gluck, & Granger, 1996). Myers et al. (1996) noted that the role of
septal modulation in hippocampal dynamics hypothesized by Has-
selmo and colleagues (Hasselmo, 1995; Hasselmo & Schnell,
1994; Hasselmo, Wyble, & Wallenstein, 1996) could be imple-
mented in the Gluck and Myers (1993) corticohippocampal model
by assuming that changing the learning rate in the hippocampal
system is equivalent to adjusting the amount of time the hippocam-
pus spends storing information. This simple manipulation suffices
to account for the effects of septal disruption on the acquisition of
a classically conditioned response in humans (Gluck, Allen, &
Myers, 2001; Solomon et al., 1993) and other animals (Solomon,
Solomon, van der Schaaf, & Perry, 1983) and for the effects of
scopolamine on latent inhibition, learned irrelevance, and extinc-
tion (Myers, Ermita, Hasselmo, & Gluck, 1998).

Hasselmo and Schnell (1994) suggested that although septohip-
pocampal modulation determines what information is stored and
recalled in the hippocampus, neurons in the hippocampal system
help determine the dynamics of septal modulation. They proposed
that signals sent from hippocampal neurons to the septal region
indicate how well stimulus representations are encoded. Thus, the
hippocampus sel f-regul ates stimulus encoding through septal feed-
back. Extensive anatomical and electrophysiological data demon-
strate the existence of septohippocamposeptal 1oops (see Figure 1;
reviewed by Denham & Borisyuk, 2000; Dragoi, Carpi, Recce,
Csicsvari, & Buzsaki, 1999; Jakab & Leranth, 1995; Leranth &
Vertes, 2000; Sheehan & Numan, 2000). Past computational mod-
els of septohippocampal processing have often incorporated such
loops (Buhusi & Schmajuk, 1996; Denham & Borisyuk, 2000;
Hasselmo & Schnell, 1994; Hasselmo & Wyble, 1997; Hasselmo
et a., 1996). Nevertheless, the dynamics of self-regulation in the
septohippocampal system during learning of new information have
not been well specified, and the manner in which changes in
septohippocampal dynamics (e.g., induced chemically or through
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Figure 1. Schematic of information pathways in the septohippocampal
system. Sensory information is sent from the association cortex, through
the entorhinal cortex, to the hippocampus. Hippocampal neurons project to
the septum, entorhinal cortex, and brainstem. Signals from both the asso-
ciation cortex and the brainstem affect cerebellar processing. Septal neu-
rons project to the hippocampus and hypothalamus. Thus, the hippocampus
could modulate activity in the medial septum (MS) directly (Gaykema, van
der Kuil, Hersh, & Luiten, 1991; Toth, Borhegyi, & Freund, 1993; Toth &
Freund, 1992) or indirectly via the lateral septum (LS) and brainstem
(Leranth & Frotscher, 1989; Swanson & Cowan, 1979). Similarly, septal
neurons could modul ate the hippocampus both directly via M S projections
(Nauta & Feirtag, 1986) and indirectly through LS projections to the
hypothalamus (Jakab & Leranth, 1995; Leranth, Deller, & Buzsaki, 1992).
Adapted from Hasselmo (2000), Schmajuk (1997), and Sheehan and Nu-
man (2000). DG = dentate gyrus; CA = cornu ammonis.

physical damage) affect
understood.

In this article, we extend the Myers et a. (1996) computational
model of septohippocampal processing in associative conditioning
to include the effects of recurrent septohippocamposeptal modu-
lation. The resulting model provides a framework for reexamining
septohippocampal dynamics during conditioning as observed in
past behavioral and neurophysiological studies. The model char-
acterizes septohippocampal function in awide range of condition-
ing tasks and makes novel predictions about septal activity during
extinction, discrimination reversal learning, and blocking. We
present new experimental data from studies of blocking that are
consistent with the predictions of our model.

information processing is poorly

A Connectionist Model of Septohippocampal Processing

We first review the Gluck and Myers (1993) model of how
stimulus representations are encoded by the hippocampal system
during associative conditioning and how this theory has been

instantiated in a connectionist network model. We then review
how septal modulation is implemented within this model.

The Corticohippocampal Model

In Gluck and Myers's (1993) theory of hippocampal processing,
stimulus representations correspond to activity patterns across a set
of hippocampal neurons that encode inputs. A key assumption of
thistheory isthat highly differentiable stimulus representations are
easier to associate with different behavioral responses than are
highly similar representations. Differentiation of stimulus repre-
sentations can thus facilitate the association of stimuli with re-
sponses. Gluck and Myers (1993) proposed that the hippocampal
system modifies stimulus representations to facilitate associative
learning. In particular, they suggested that when stimuli are redun-
dant, then the hippocampa system will recode the representations
of these stimuli such that they are more similar. Conversely, when
stimuli are predictive of different outcomes, then the hippocampal
system will transform the representations of these stimuli into
more dissimilar representations.

This theory was instantiated as a connectionist model (see
Figure 2), accounting for the role of hippocampal processing in
classical conditioning of an eyeblink response. In eyeblink condi-
tioning, a blink-evoking corneal airpuff (the unconditioned stim-
ulus or US) is repeatedly paired with presentation of a sensory
stimulus (the conditioned stimulus or CS). After repeated pairings,
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Figure 2. The corticohippocampa model (Gluck & Myers, 1993). The
cerebellar cortical network on the left (a multilayer perceptron) learns to
map from itsinputsto an internal representation provided by the hippocam-
pal region network on the right (a predictive autoencoder) and from those
representations to an output that determines the probability of a condi-
tioned response (CR). The strength of this response aso serves as a
measure of how well the hippocampal network predicts the unconditioned
stimulus (US). The hippocampal region network learns to predict the US
and reconstruct stimulus inputs while forming new stimulus representa-
tions in its interna layer that differentiate predictive information and
compress redundant information. Arrows represent inputs and outputs,
circles represent nodes (computational units), and bars indicate transmittal
of desired states used to train networks. CS = conditioned stimulus.
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the subject acquires an association between the CS and the US,
such that presentation of the CS aone can €licit an anticipatory
eyeblink response (Berger & Thompson, 1978). This preparation
has been used to study learning in several species, such as humans
(Solomon et al., 1993), rabbits (R. F. Thompson, 1986, 1990), and
rats (Schmajuk, Lam, & Christiansen, 1994).

Whereas cerebellar processing is necessary for the acquisi-
tion of a conditioned eyeblink response (reviewed by R.
Thompson et al., 1997), hippocampal processing is not (Daum,
Channon, & Canavan, 1989; Gabrieli et al., 1995; Port &
Patterson, 1984; Schmajuk et al., 1994; Schmaltz & Theios,
1972; Weiskrantz & Warrington, 1979; Woodruff-Pak, 1993).
Eyeblink conditioning is affected by hippocampal region dam-
age, however, when relatively complex temporal and correla-
tional relationships exist between conditioned and uncondi-
tioned stimuli (Moyer, Deyo, & Disterhoft, 1990; Solomon &
Moore, 1975). Physiological, pharmacological, and behavioral
data suggest that during classical conditioning, both neutral
conditioned stimuli and noxious unconditioned stimuli are en-
coded in the hippocampal system before being transferred to
long-term memory (for review, see Sears & Steinmetz, 1990).
Conditioned and unconditioned stimuli normally evoke activity
in the hippocampus (Berger & Thompson, 1977, 1978). Gluck
and Myers (1993) interpreted these results as evidence that the
cerebellar cortex uses hippocampal representations to recode its
own stimulus representations. When hippocampal representa-
tions are not available, the cerebellum is less able to form
certain types of stimulus-response associations.

Gluck and Myers (1993) modeled the hippocampal system as a
predictive autoencoder (Baldi & Hornik, 1989; Hinton, 1989) and
the cerebellar cortex as a multilayer perceptron (Rumelhart, Hin-
ton, & Williams, 1986) (see Figure 2). The autoencoder network
learns to reconstruct input representations (corresponding to sen-
sory stimuli) and to predict the occurrence of a second input
(corresponding to a US), through a narrow internal node layer. The
internal layer of this network contains fewer nodes than either the
input or output layers, such that the autoencoder is forced to
compress redundant properties of stimulus representations, while
preserving and differentiating properties that predict the presence
or absence of a US.

The cerebellar cortical network learns to map from inputs (cor-
responding to sensory stimuli) to a pattern of activations in an
internal layer of nodes, which is then mapped to an output node
representing the behavioral response. This network cannot form
new representations in itsinternal layer. It can, however, adopt the
representations formed in the internal layer of the hippocampal
network (or linear transformations of these representations) and
map them onto behavioral responses (for simulation details, see
Gluck & Myers, 1993). When the hippocampal network is not
present, the patterns of activation in the interna layer of the
cerebellar network become fixed.

The Gluck and Myers (1993) corticohippocampal model pro-
vides asimple and unified interpretation of thetria-level effects of
hippocampal lesions on classical conditioning, contextual learning
(Myers & Gluck, 1994), probabilistic category learning (Gluck,
Oliver, & Myers, 1996), and discrimination learning (Myers &
Gluck, 1996).

Septohippocampal Modulation

The components of the hippocampal system discussed so far
center on the hippocampal region and how it affects cerebellar
cortical processing. The hippocampus has other connections, how-
ever, including modulatory inputs from surrounding limbic struc-
tures. One such structure, the medial septum, strongly modulates
hippocampal activity (Buzsaki & Eidelberg, 1983; Hasselmo,
1995; Nauta & Feirtag, 1986; Nolte, 1993). Medial septal neurons
project to the hippocampus viathe fornix. Neuromodulatory chem-
icals released from these projections (in particular, acetylcholine
and gamma-aminobutyric acid [GABA]) strongly affect patterns of
neural activity in the hippocampal system (Berry, Seager, Asaka,
& Griffin, 2001; Hasselmo & Schnell, 1994).

Medial septal lesions greatly retard acquisition of eyeblink
conditioning (Berry & Thompson, 1979; Ermita, Allen, Gluck, &
Zaborszky, 1999). Similarly, pharmacological disruption of the
medial septum (e.g., through injection of the muscarinic cholin-
ergic antagonist scopolamine) impairs conditioning in rabbits
(Asaka, Seager, Griffin, & Berry, 2000; Solomon et al., 1983) and
humans (Solomon et a., 1993). Thus, disrupting hippocampal
function by manipulating septal modulation can impair condition-
ing to a greater extent than removing the hippocampus (Solomon
et a., 1983). Conversely, septal modulation can enhance pyrami-
dal cell excitability in the hippocampus by suppressing adaptation
(Barkai & Hasselmo, 1994; Madison, Lancaster, & Nicoll, 1987)
and enhancing synaptic plasticity (Hasselmo & Barkai, 1995;
Huerta & Lisman, 1993).

Myers et al. (1996) argued that the effect of septal disruption by
scopolamine was to slow down hippocampal encoding of stimulus
representations. They instantiated thisideain the corticohippocam-
pal model by decreasing the learning rate of the autoencoder
network. With this manipulation, the model accounts for the ef-
fects of scopolamine on classical conditioning in awide variety of
preparations (Myers et al., 1998). The model aso accounts for the
finding of a U-shaped dose—response curve for cholinergic ago-
nists in normal subjects (Myers et a., 1996).

Modeling Hippocamposeptal Feedback Effects

Septal activity may be regulated by how successfully the hip-
pocampal system encodes stimulus representations (Hasselmo &
Schnell, 1994). In the following sections, we describe how hip-
pocampal encoding might drive medial septal activity and how the
existing corticohippocampal model can be modified to incorporate
this aspect of hippocampal processing.

Novelty Detection

Performance in classical conditioning tasks is dependent on
stimulus novelty. For example, conditioning of a response is
quicker when a novel stimulus is used, compared with when an
dready familiar stimulus is used, an effect known as latent inhi-
bition (Lubow, 1973). Activity in the media septum is also de-
pendent on novelty. Neurons in the medial septum respond
strongly when novel, but not familiar, stimuli are presented
(Berger & Thompson, 1977). Such changes may be mediated in
part by the hippocampal system, which is thought to play an
important role in novelty detection (e.g., see Borisyuk, Denham,
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Hoppensteadt, Kazanovich, & Vinogradova, 2001; Givens, Wil-
liams, & Gill, 2000; Honey, Watt, & Good, 1998). Together, these
findings suggest that the effects of novelty (or familiarity) on
conditioning are mediated by septohippocampal processing.

In the Gluck and Myers (1993) model, familiar stimuli are
generally encoded more successfully in the hippocampal network
than are novel stimuli. By learning to encode and reconstruct
inputs, the hippocampal network becomes very effective at detect-
ing novel inputs based on differences in encoding—reconstruction
errors (Japkowicz, 1999; Japkowicz, Myers, & Gluck, 1995).
Similar recognition-based novelty detection may be performed by
the hippocampal system. For example, Hasselmo and Wyble
(1997) suggested that hippocampal subfield CA3 reconstructs in-
puts from the entorhinal cortex and that hippocampal subfield CA1
then compares the inputs from the entorhinal cortex with the
reconstructed outputs from CA3. When stimuli are well encoded,
the patterns in the entorhina cortex and CA3 will be similar, and
CA1 neurons will inhibit activity in the medial septum. When
stimuli are novel and encoding is poor, CA1 will release the medial
septum from inhibition. Thus, a novel stimulus initially elevates
septal activity, increasing the rate of hippocampal encoding. With
repeated presentation, encoding of stimuli becomes more accurate.
Septal activity gradually diminishes as the accuracy of encoding
increases, reducing the rate of hippocampal encoding (see Figure
3).

We assume that during conditioning, the septohippocampal sys-
tem continuously assesses whether existing stimulus representa-
tions are sufficiently differentiatied to distinguish stimuli that do or
do not predict the arrival of a noxious stimulus (see also Green &
Woodruff-Pak, 2000). The hippocampal system reacts to poorly
encoded stimuli (e.g., novel stimuli) by increasing septal activity,
thereby increasing the rate of hippocampal encoding (as proposed
by Hasselmo & Wyble, 1997). Stimulus representations continue
to be modified until it is possible for stimuli that signal the arrival
of anoxious stimulus to be distinguished from other, nonpredictive
stimuli. The better the septohippocampal system can recognize
relevant relationships between stimuli (e.g., a predictive associa-
tion between atone and an airpuff), the more septal activity will be
inhibited.

Smulating Septohippocampal Interactions

To examine how hippocamposeptal feedback might affect the
role of hippocampal processing in conditioning, we compared
performance of an expanded corticohippocampal model, in which
learning rate depended on hippocampal encoding error (simulating
active feedback modulation), with performance of the origina
corticohippocampal model, in which learning rate was fixed (sim-
ulating modulatory effects that are independent of hippocampal
activity or stimulus novelty). We subsequently refer to these two
models as the dynamic model and the static model, respectively.

Implementation details of the basic corticohippocampa model
have been described previously (Gluck & Myers, 1993; Myers et
al., 1996); we thus only present details specific to the simulations
described in this article. The hippocampal component of the net-
work (the fully connected, predictive autoencoder depicted in
Figure 2) consisted of 15 input nodes, 8 hidden nodes, and 16
output nodes. The cerebellar network (the fully connected multi-
layer perceptron shown in Figure 2) consisted of 15 input
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Figure3. a Highly smplified schematic of cerebellar, hippocampal, and
septal interactions. The cerebellar cortex learns and stores mappings be-
tween external stimuli (corresponding to thalamocortical inputs) and motor
responses; this learning is mediated by, but not necessarily dependent on,
hippocampal processing. Septal modulation is assumed to control whether
the hippocampal system stores new information or recalls previously stored
information. Feedback from the hippocampal system is hypothesized to
self-regulate this process (Myers et al., 1996). b: Medial septal input is
assumed to control learning rate in the hippocampal network. Learning rate
affects how rapidly stimulus representations are encoded in the hippocam-
pal network, which in turn affects the accuracy of stimulus reconstruction
and prediction of outcomes (measured by means of encoding error). Higher
encoding errors lead to higher learning rates, which lead to larger changes
in stimulus representations. Arrows represent the flow of information;
circles represent modulatory systems.

nodes, 40 hidden nodes, and 1 output node. Both networks re-
ceived inputs corresponding to conditioned stimuli (orthogonal
binary strings of length 5) and contextual stimuli (random binary
strings of length 10). The 16 output nodes in the hippocampal
network correspond to the 15 input nodes plus an additional node
encoding the presence or absence of the US.

Training in the hippocampa network was performed using a
standard error back-propagation algorithm (Rumelhart et al.,
1986), whereas training in the cerebellar network was performed
using a least mean square agorithm (Widrow & Hoff, 1960).
Learning rate for the cerebellar network was fixed at 0.5 for output
nodes and 0.1 for internal layer nodes for all simulations. In the
static model, learning rate for the hippocampal network was fixed
at 0.05. Learning rate in the dynamic model was calculated by
multiplying the standard learning rate parameter by a modulation
factor. This modulation factor was calculated (in the form of a
Hamming distance metric) on the basis of the sum of the absolute
difference between each input node and its accompanying output
node, plus the absolute difference between the predicted US and
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the actual US. Encoding error (and consequently, learning rate)
thus increased when the hippocampal network failed to reconstruct
the input pattern or to predict the US. (Details of the dynamic
learning algorithm used in this model are provided in Rokers,
Myers, & Gluck, 2000.) The model assumes that if hippocampo-
septal feedback is blocked (either chemically or through physical
damage), learning rate in the system is no longer affected by
hippocampal encoding.

In each simulation, the corticohippocampal network was initial-
ized by training it with 200 context-alone trials, followed by 200
conditioning trials. Effectiveness of conditioning in the corticohip-
pocampal model was assessed on the basis of the probability that
a CS would €licit a conditioned response (CR) after training (the
criterion probability for successful conditioning was defined to
be 0.8). The modulation factor in the dynamic model provided a
global measure of encoding error in the hippocampal network and
was thus used as a measure of medial septal activity. Simulations
with the static model were equivalent to those with the dynamic
model, except that there was no modulation of learning rate based
on encoding error. For al simulations discussed, results were
averaged over five simulation runs.

Both the static and dynamic models generate predictions about
how septal activity levels affect behavioral responses during clas-
sical conditioning. In the following sections, we compare our
simulation results with available experimental data on septal ac-
tivity and CRs observed during various conditioning procedures.

Septohippocampa Dynamics During Conditioning

Behavior and Septal Activity During Acquisition

Neural activity in the medial and lateral septum changes across
trials as an animal learns to make a conditioned eyeblink response
(Berger & Thompson, 1978; Miller & Steinmetz, 1992). Changes
in lateral septum activity usually paralel changes in hippocampal
activity. For example, during early phases of training, activity
levelsin the hippocampus and lateral septum are high immediately
after the onset of a US. A CS that predicts the onset of a US will
not initially evoke increased activity in the hippocampus or |ateral
septum. As training progresses, however, changes in evoked ac-
tivity are often observed to occur earlier in theinterval between CS
presentation and US onset, until eventually increased activity
coincides with CS onset in both the lateral septum and hippocam-
pus. In contrast, presentations of both conditioned and uncondi-
tioned stimuli evoke activity in the medial septum early in training.
Levels of evoked medial septal activity decrease over the course of
training, whereas levels of |lateral septum and hippocampal activity
remain approximately constant. CS-evoked lateral septum activity
(which corresponds closely with production of a behaviora re-
sponse) rises sharply only after medial septal activity has reached
aplateau, suggesting that acquisition of a CR typically occurs after
an increase in media septal activity. These conditioning-induced
changesin CS-evoked septal activity are summarized in Figure 4a.
Differences in the responses of neurons in the lateral and medial
septum suggest that these two groups of neurons serve separate
functions (Zhou, Tamura, Kuriwaki, & Ono, 1999).

The static corticohippocampa model uses a fixed learning rate,
and thus septal modulation levels are constant during conditioning
(Myers et al., 1996, 1998). In the dynamic model, learning rate in

the hippocampal network (simulating activity levels in the medial
septum) varies as afunction of encoding error. Because CS-evoked
activity in the lateral septum corresponds closely to production of
a CR, we use the CR generated by the cortical network as an
estimate of lateral septal activity to compare our simulation results
with electrophysiological data.

The dynamic model exhibits a similar pattern of activity during
conditioning to that observed experimentally (see Figure 4b).
Media septal activity decreases as a function of training, whereas
the probability of a CR increases steadily. Media septal activity
does not rise immediately at the onset of training, but rises sharply
to peak shortly before Trial 20. This result occurs because the
increased modulation levels initially lead to disruption of repre-
sentations in the hippocampal network formed during context-only
conditioning, generating encoding errors for contextual patterns
that previously did not elevate modulation levels. The feedback
signal reflects how poorly the CS is encoded and how poorly the
CS predicts the US. Increased medial septal activity does not
directly influence acquisition of the CR, but rather drives the
hippocampus into alearning state, which leads to reorganization of
stimulus representations, thereby increasing the ability of the cor-
tical network to discriminate between stimuli that are predictive of
the US and stimuli that are not. As a result, the dynamic model
learns to produce CRs more rapidly than the static model (see
Figure 5).

Changes in medial septal activity (as indicated by changes in
acetylcholine levels in the hippocampus) have also been observed
during acquisition of a positively reinforced operant conditioning
task. Orsetti, Casamenti, and Pepeu (1996) used microdiaysis
techniques to measure changes in hippocampal cholinergic levels
while rats learned to press a lever for a food reward. Rats were
trained in a sound-isolated chamber equipped with a single lever;
the total number of responses and acetylcholine levels were re-
corded every 30 min. Orsetti and colleagues observed that large
increases in responding were preceded by increases in hippocam-
pal cholinergic levels (see Figure 6). Once the rats reached a stable
rate of leverpressing, cholinergic levels returned to precondition-
ing levels. These findings can be interpreted within the framework
of the dynamic corticohippocampal model. When contextual and
conditioned stimuli that lead to leverpresses begin to be encoded,
this leads to increased medial septal activity, which in turn in-
creases cholinergic levels in the hippocampus. As representations
of these stimuli become more efficiently encoded, media septal
activity (and cholinergic levels) decrease, whereas responding
increases (as illustrated in Figure 4b). The dynamic corticohip-
pocampal model shows a more gradual decrease in medial septal
activity over timethan is evidenced by the changes in hippocampal
cholinergic levels reported by Orsetti and colleagues. They note,
however, that ong collection times may have masked short-lasting
changes. The dynamic model predicts that if measurements had
been made during each leverpress occurring after the 2nd hr of
training in Orsetti et al.’s experiment, then amore gradual decrease
in cholinergic levels would have been observed.

Behavior and Septal Activity During Extinction
and Reacquisition

After eyeblink conditioning, if the CSis repeatedly presented in
the absence of the US, responding to the CS eventualy extin-
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Figure 4.

Increased medial septal (MS) activity precedes increased lateral septal activity and acquisition of a

classically conditioned response (CR) in empirical tests and in simulations with the dynamic corticohippocampal
model. a: Septal activity (in arbitrary units) during acquisition of a classically conditioned eyeblink response.
Reprinted from Brain Research, 156, T. W. Berger and R. F. Thompson, “Neuronal Plasticity in the Limbic
System During Classical Conditioning of the Rabbit Nictitating Membrane Response: |1. Septum and Mamillary
Bodies,” pp. 293-314, Copyright 1978, with permission from Excerpta Media, Inc. b: Simulated M S activity and
conditioned responding in the dynamic corticohippocampal model. CS = conditioned stimulus.

guishes. Both the static and the dynamic corticohippocampal mod-
els predict that medial septal activity levels should remain stable
(and low) asa CR is extinguished and that disruption of hippocam-
poseptal feedback should not affect the rate of extinction.

If, after extinction, the CSis again paired with the US, the CR
will be acquired much faster than previously (e.g., Robbins, 1990).
Similar cases of rapid reacquisition have aso been observed in
operant conditioning tasks (Orsetti et al., 1996). Cholinergic levels
in the hippocampus do not increase during reacquisition of an
extinguished response, suggesting that medial septal activity is
stable during reacquisition (see Figure 7a; adapted from Orsetti et
a., 1996). Similarly, in the dynamic corticohippocampal model
(Figure 7b), medial septal activity does not change during reac-
quisition of an extinguished response. Learning rate is stable
because existing stimulus representations of the CS acquired dur-
ing previous training are still available (i.e., stimulus representa-
tions in the hippocampal and cerebellar cortical network are stable
until they need to be made more or less discriminable).

Behavior and Septal Activity During
Multiple-Phase Learning

Past modeling work by Gluck and Myers (1993) suggests that
hippocampal region damage should not impair conditioned eye-
blink responding unless new stimulus representations are required.
However, representations of conditioned stimuli in intact animals
should differ from those in animals with hippocampal damage,
after training. Such differences are most likely to be evident in
tasks that involve secondary tests of transfer or generalization of
learned associations. Multiple-phase conditioning tasks can thus be
particularly useful for investigating the role of septohippocampal
processing in conditioning.

Discrimination Reversal

Reversal learning tasks involve at least two phases of training.
In the first phase, CS1 is associated with a US, whereas a second
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Figure 5. Acquisition is more rapid in the dynamic corticohippocampal
model than in the static model (a), although medial septal activity (i.e.,
learning rate, in arbitrary units) is lower, on average, in the dynamic model
(b). CR = conditioned response.

CS (CS2) is presented an equal number of times in the absence of
any US. After subjects have learned that CS1 is predictive of aUS
and that CS2 is not, the second phase begins. In this phase, the US
is presented in association with CS2 and not with CS1.

In simulations of discrimination reversal with the dynamic
model, the encoding of novel associations in the hippocampal
network during the second phase increased encoding error, leading
to some increase in medial septal activity and modifications of
hippocampal stimulus representations. However, because both
CS1 and CS2 were familiar and well encoded, the hippocampal
learning rate was lower in the second phase than in the first phase,
leading to slower acquisition (see Figure 8). These results are
consistent with previous reports that acquisition in the second
phase of discrimination reversa tasks is generaly slower than
acquisition in the first phase (e.g., see Berger & Orr, 1983; Miller
& Steinmetz, 1997). In contrast, in previous simulations with a
static corticohippocampal model, slightly fewer trials were re-
quired to learn the discrimination in the second phase (Gluck &
Myers, 1993).

Figure 8c shows the predicted medial septal activity during the
first and second phases of reversal learning. Medial septal activity

increases at the onset of both phases. Because encoding error in the
second phase is caused primarily by errors in predicting the US,
the duration and magnitude of increased septal activity in the
second phase is less than in the first phase. Similarly, neurophys-
iological measurements show much less hippocampal activity at
the beginning of the second phase than at the beginning of the first
phase (Miller & Steinmetz, 1997).

Blocking

A classical conditioning task that has been the focus of many
empirical tests and theories in recent years is the Kamin (1969)
blocking task. The blocking task traditionally consists of three
phases. In the first phase, a CS (CS1) is paired with a US and the
subject learns to respond to CSL1. In the second phase, the subject
is presented with a compound CS paired with the US. The com-
pound CS consists of the previously trained CS1 and a hovel CS
(CS2). After the second phase, CS2 by itself is presented to the
subject to test how many CRs are €elicited to CS2 alone. There is
typically less responding to CS2 in these “blocked” subjects than
in subjects that were trained with the CS1-CS2 compound, but not
with the CS1 alone. This suggests that CS1-US associations
learned in the first phase interfere with the later formation (or
recall) of CS2-US associations in the second (or third) phase.

Although the role of hippocampal processing in blocking is not
well understood (Garrud et al., 1984; Kim, Krupa, & Thompson,
1998; Solomon, 1977), recent findings indicate that the septohip-
pocampal system does play some role in this effect. In particular,
blocking experiments conducted using animals with lesioned sep-
tohippocampal projections showed that the blocking effect is re-
duced by such damage (Baxter et al., 1999).

Both the static and dynamic corticohippocampal models show
little generalization to CS2 in the third phase of simulated blocking
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Figure 6. Increased hippocampa cholinergic levels precede increased

leverpressing in a positively reinforced operant conditioning task. a: Levels
of acetylcholine (ACh) during training. b: Number of responses during
training. Reprinted from Brain Research, 724, M. Orsetti, F. Casamenti,
and G. Pepeu, “Enhanced Acetylcholine Release in the Hippocampus and
Cortex During Acquisition of an Operant Behavior,” pp. 89-96, Copyright
1996, with permission from Excerpta Media, Inc.
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Figure 7. a Mean (=SEM) number of reinforced responses and acetylcholine (ACh) levels during reacqui-
sition of a conditioned response (CR). Cholinergic levels in the hippocampus do not increase during reacqui-
sition. Reprinted from Brain Research, 724, M. Orsetti, F. Casamenti, and G. Pepeu, “Enhanced Acetylcholine
Release in the Hippocampus and Cortex During Acquisition of an Operant Behavior,” pp. 89-96, Copyright
1996, with permission from Excerpta Media, Inc. After training, rats were implanted with a microdialysis probe,
and cholinergic levels were measured on reintroduction to the operant conditioning chamber. b: Reacquisition
does not lead to changes in medial septal (MS) activity in the dynamic model. Asterisk indicates a significant

difference in reinforced responses (p < .01).

tasks (see Figure 9). When two conditioned stimuli are presented
together in the second phase, CS1 is already highly predictive of
the US, and thus few changes are made in the hippocampal
network relating CS2 to the occurrence of the US. Consequently,
when CS2 is presented alone, it is a poor predictor of the US, and
this observation is consistent with empirical findings.

Simulations of blocking in the dynamic corticohippocampal
model show that changesin medial septal activity at the beginning
of the second phase can potentialy lead to decreases in condi-
tioned responding (see Figure 9). After CS1 and CS2 have been
presented together several times, the change in media septal
activity disappears, and conditioned responding returns to normal.
Recent eyeblink conditioning experiments conducted in our labo-
ratory have allowed us to examine whether such decreases occur at
the beginning of the second phase of training. These experiments
are described below.

Method. Ten male rabbits (Oryctolagus cuniculus; Covance Laborato-
ries, PA) were used in this experiment. The rabbits were housed in

individual cages in the Rutgers University Animal Facility (Newark, NJ).
They were given free access to food and water and were maintained on a
12-hr light—dark cycle with light on at 7 am. All testing occurred between
8am. and 6 p.m. Rabbits were divided into two training groups (n = 5 per
group): (&) tone-light and (b) light followed by tone-light.

The rabbits were restrained in Plexiglas restraint boxes in individual
conditioning chambers. Each chamber contained a speaker, air hose as-
sembly, and eyeblink detection system. Presentations of the stimuli and
recording of behavioral responses were controlled by a PC computer. The
computer housed an interface board (Keithley Metrabyte, Taunton, MA)
which triggered a set of relays that controlled the presentation of the tone
CS and airpuff US based on software developed by Chen and Steinmetz
(1998). Eyeblinks were monitored with an optoelectronic sensor that con-
sisted of an LED and a phototransistor (for technical details see L. T.
Thompson, Moyer, Akase, & Disterhoft, 1994). The LED emitted a beam
of infrared light that was reflected off the cornea, and the reflectance of this
beam was converted to a DC voltage by a phototransistor. The eyeblink
signa wasfiltered (between 0.1 Hz and 1.0 kHz) and amplified (><100) by
adifferential AC amplifier (A-M Systems, Everett, WA). When the rabbit
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Figure 8. Acquisition in the second phase (Sessions 1-8) of a discrimi-
nation (DISCR.) reversal task is slower than in the first phase (Sessions
1-4) in (a) rabbit eyeblink conditioning (Reprinted from Behavioural
Brain Research, 8, T. W. Berger and W. B. Orr, “Hippocampectomy
Selectively Disrupts Discrimination Reversal Conditioning of the Rabbit
Nictitating Membrane Response,” pp. 49—68, Copyright 1983, with per-
mission from Excerpta Media, Inc.) and (b) the dynamic corticohippocam-
pal model. Note in Panel b that at the onset of the first phase there is
generalization in that both Conditioned Stimulus 1 (CS1) and CS2 are
equally likely to elicit a conditioned response (CR). Medial septal activity
(in arbitrary units) increases in the dynamic model at the beginning of the
second phase of training, but to a lesser degree than seen at the beginning
of training (c).

closed its eye, the reflectance of the infrared beam changed and was
recorded as an eyeblink. Any movement greater than 0.5 mm during the
pre-CS period caused the training tria to be discarded from the analysis. A
CR was scored if movement of greater than 0.5 mm was seen in the CS
period.

The CS was either a 450-ms, 90-dB, 1000-Hz tone or a 450-ms, 12-V
light delivered from a panel in front of the rabbit’'s face. The US was a
50-ms, 4 psi (27.6 kPa) corneal airpuff delivered viaarubber hose attached
to the eyeblink detector assembly and aimed at the rabbit’'s cornea. All
training trials were paired presentations in which the CS onset was 400 ms

prior to the US onset, and the CS and US coterminated. The intertrial
interval between training trials was a pseudorandom number around 25 s.
All training was done in darkened chambers in a conditioning room
illuminated by a red light.

Prior to acquisition, each rabbit was adapted to the conditioning chamber
and restraint box for two daily sessions. On the 1st day of adaptation, the
rabbit was placed in the restraint box in the conditioning chamber for 30
min. On the 2nd day of adaptation, the rabbit was placed in the restraint
box in the conditioning chamber for 45 min with the eyeblink detector
aimed at the cornea.

Acquisition consisted of two phases of training. Phase 1 consisted of 700
trials over seven consecutive daily sessions. The tone blocking group
received tone—airpuff training with an interstimulus interval (ISI) of 400
ms between the onset of the light and the onset of the airpuff. The light
blocking group received light—airpuff training with an ISl of 400 ms
between the onset of the light and the onset of the airpuff. The light control
group and tone control group received 700 “trials’ in which no stimuli
were presented. Phase 2 consisted of 500 trials over five consecutive daily
sessions. All four groups received tone-light—airpuff training in which the
tone and light were presented simultaneously, with an ISI of 400 ms
between the onset of the toneight and the onset of the airpuff.

Results. In Phase 1 training, there was a significant difference
in conditioned responding across sessions, F(13, 104) = 43.60,
p < .01, such that rabbits exhibited more CRs as training pro-
gressed. There was also a significant difference in conditioned
responding between the conditioned stimuli, F(1, 8) = 7.47, p <
.01, such that there was more conditioned responding overall to the
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Figure 9. a The dynamic model shows a decrease in conditioned re-
sponding to the novel stimulus in the initial trials of the second phase of
conditioning, whereas the static model does not. Both models show little
generalization to Conditioned Stimulus 2 (CS2) in the third phase. b:
Medial septal activity (in arbitrary units) increases slightly at the beginning
of the second phase of training in the dynamic model and to a greater
degree at the beginning of the third phase. CR = conditioned response.
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tone than to the light. Finally, there was a significant interaction of
Stimuli X Session, F(13, 104) = 4.49, p < .01, indicating that CRs
to the tone and light were learned at different rates (see Fig-
ure 10q). In Phase 2, there was not a significant difference in
conditioned responding across sessions, F(9, 72) = .77, p > .50,
nor in conditioned responding between stimuli, F(1, 8) = 2.95,
p > .10, and there was no Stimuli X Session interaction, F(9,
72) = 0.80, p > .60.

To test for a decrement between Phase 1 and Phase 2, the last 10
trials of Phase 1 were compared with the first 10 trials of Phase 2
by using a t test. For the light followed by tone-light training
group, there was a significant differencein conditioned responding
between the end of Phase 1 and the start of Phase 2, t(4) = 10.95,
p < .01, such that there was less responding at the start of Phase 2
than at the end of Phase 1. For the tone followed by tone-ight
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Figure 10. Conditioned responding in rabbits during the first two phases
of a blocking task involving classically conditioned eyeblinks. The tone
blocking group was first trained to respond to a light (L+), and then to a
tone and light presented simultaneously (TL+). The light blocking group
was first trained to respond to atone (T +), and then to atone and light. &
Rabbits learned to respond to tones more quickly than to lightsin Phase 1,
suggesting that the tones were more salient. b: Conditioned responding
decreased at the beginning of Phase 2 in rabbits initially trained to respond
to alight, but not in rabbitsinitially trained to respond to atone. Error bars
represent SE. CR = conditioned response.

training, there was no significant difference in conditioned re-
sponding between the end of Phase 1 and the start of Phase 2,
t(4) = —0.62, p > .50. Overall, for the end of Phase 1, there was
no significant difference in conditioned responding between the
light and tone conditions. However, for the start of Phase 2, there
was a significant difference in conditioned responding between
light and tone conditions, t(4) = 6.90, p < .01, such that there was
less responding to the tone-light compound in the group previ-
ously trained to the light than there was in the group previously
trained to the tone (see Figure 10b).

Discussion. When rabbits were switched from being trained to
respond to a light to being trained to respond to a tone-light
compound, there was a significant decrease in conditioned re-
sponding, consistent with the predictions of the dynamic cortico-
hippocampal model. This decrease was not observed, however, in
rabbits that were initially trained to respond to a tone. Because
there was faster acquisition of conditioned responses to the tone
than to the light, it appears that the tone is a more salient stimulus
than the light (at least for the parameters used in this study). This
suggests that if the salience of the added cue is weaker than the
initially trained cue, a decrement in conditioned responding will
not occur at the beginning of Phase 2. The results of our ssimula-
tions suggest that a decrement in conditioned responding at the
start of Phase 2 will not occur if medial septal activity is fixed
during the transition from Phase 1 to Phase 2 in the blocking task
(see Figure 9). Our model thus predicts that changes in medial
septal activity evoked by switching from light-US training to
light—tone-US training will be greater than changes in activity
evoked by switching from tone-US training to light-tone-US
training. The model further predicts that a novelty-induced reduc-
tion in CRs at the start of Phase 2 can be blocked by preventing
changes in medial septal activity (e.g., by lesioning hippocampo-
septal connections or blocking neurotransmission). Additional
studies examining how the salience of a stimulus affects septohip-
pocampal responses to novelty are clearly needed.

General Discussion

In this article, hippocamposeptal feedback has been incorpo-
rated into the Myers et al. (1996) model of septohippocampal
modulation during associative learning, resulting in a more com-
plete characterization of septohippocampal dynamics during con-
ditioning. Hippocamposeptal feedback is instantiated in the corti-
cohippocampa model by dynamically adjusting the learning rate
in the hippocampal network (but not in the cerebellar cortical
network) on the basis of how well stimulus representations are
encoded in this network. Both novel stimuli and novel associations
between stimuli generate larger encoding errors, which lead to
higher learning rates, which ultimately facilitate faster encoding of
stimulus representations. This self-regulating process is based on
the mechanisms of septohippocampal interaction postulated by
Hasselmo and colleagues (Hasselmo & Schnell, 1994; Hasselmo,
1995). The resulting model correctly accounts for behavioral and
physiological data from studies of both classical and operant
conditioning. Specifically, the model accounts for observations
that (a) disruption of hippocamposeptal feedback does not prevent
acquisition of conditioned responses, but does retard learning; (b)
increases in evoked medial septal activity precede conditioned
changes in behavioral responses and levels of media septal activ-
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ity decrease over the course of training (i.e., as stimuli become
more familiar); (c) medial septal activity does not increase during
reacquisition of an extinguished operant response; (d) duration and
magnitude of medial septal activity increase at the beginning of the
second phase of discrimination reversal learning, but to a consid-
erably lesser degree than in the first phase; and (e) introduction of
anovel, salient stimulus, in combination with a familiar stimulus,
leads to a decrease in conditioned responding in the second phase
of blocking. The model further predicts that cholinergic levels
gradually decrease in the hippocampus as acquisition of a condi-
tioned response progresses, that medial septal activity is low
during extinction, and that the disruption of CRs evoked at the
beginning of the second phase of the blocking task can be blocked
by disrupting hippocamposeptal feedback or by familiarizing sub-
jects with CS2 prior to training.

Relation to Other Computational Models of
Septohippocampal Function

Past computational models of septohippocampal processing
have often been designed to characterize detailed biophysical—
circuit level dynamics affecting memory formation (Hasselmo,
1995; Menschik & Finkel, 1998). For example, much attention has
been given to modeling how variation in levels of acetylcholine
and GABA influence theta rhythm oscillations in the hippocampus
(Denham & Borisyuk, 2000; Hasselmo et al., 1996; Wallenstein &
Hasselmo, 1997). Such oscillations are thought to play a critical
role in septohippocampal processing (for review, see Hasselmo,
2000). One limitation of this approach is that the dynamics of
septal neuromodulation in behaving animals are currently not well
characterized. For example, effects once thought to depend on
cholinergic modulation are now attributed to GABAergic modu-
lation (Alrgja, Wu, Atkins, Leranth, & Shanabrough, 2000; Wu,
Shanabrough, Leranth, & Alreja, 2000), and the roles of dopamine,
serotonin, norepinephrine, and various neuropeptides are currently
not accounted for in these biologically based models (Walsh,
2000). How chemical or physical aterations affect these dynamics
is also poorly understood. Complex interactions between neuro-
modulators can lead to comparatively simple outcomes, such as
increases or decreases in the adaptability or excitability of hip-
pocampal neurons. In the present model, we have attempted to
characterize such functional outcomes of septohippocampa mod-
ulation, without incorporating details of the electrochemical mech-
anisms underlying these outcomes. Both biophysical and process-
level approaches can provide useful information toward
understanding the role of septohippocampal processing in learning
and memory. The biological plausibility of our model rests on the
accuracy of biologically based simulations conducted by Hasselmo
and colleagues (Hasselmo & Schnell, 1994; Hasselmo & Wyble,
1997), from which our implementation of hippocamposeptal feed-
back was derived. Whether such biologically realistic models can
accurately predict the effects of conditioning on behavior and
neurophysiology is an important issue for future research to
address.

Several biologicaly inspired, novelty-driven learning algo-
rithms have been developed in the past (Borisyuk et a., 2001; den
Dulk, Rokers, & Phaf, 1996; Japkowicz et al., 1995; Sutton &
Barto, 1981), and an extensive literature exists in the area of
dynamic learning rates (Cater, 1987; Carter et al., 1998; Luo,

1987; Silva & Almeida, 1990). Dynamic learning algorithms are
typically used to increase the speed and effectiveness of training
relative to training with static algorithms. Although impressive
gains in acquisition speed can sometimes be achieved, dynamic
learning algorithms are often unstable. In the present model, how-
ever, there appeared to be a self-regulating effect, leading to
stability. Including hippocamposeptal feedback in the corticohip-
pocampal model enhanced acquisition, despite the fact that the
learning rate was, on average, lower than in the static model (see
Figure 5). Throughout training, the dynamic model generated a
higher percentage of correct responses and, consequently, reached
criterion sooner than the static model. Other dynamic learning
agorithms may have worked as well as the one we chose. For
example, some success has been attained with systems in which
learning rate decreases simply as a function of time (Hinton &
Segjnowski, 1986; Kohonen, 1997; Sohal & Hasselmo, 1998).
Identifying which algorithm most closely parallels neural process-
ing was not a goa of our study. Rather, we focused on assessing
whether adding a feedback loop to an existing model of septohip-
pocampal processing would increase its ability to predict and
explain behavioral and physiological phenomena.

Earlier neural network models of septohippocampal processing
in conditioning have proposed somewhat different mechanisms
from the ones implemented in our model. In particular, Schmajuk
and colleagues have developed a computational model that ac-
counts for many of the same findings from classical conditioning
experiments that our model does (Buhusi & Schmajuk, 1996;
Schmajuk et al., 1994; Schmajuk, 1997). Similarities and differ-
ences between the Schmajuk (Schmajuk & DiCarlo, 1992) model
and the Gluck and Myers (1993) model have been previously
discussed in detail (Myerset a., 1995). A main difference between
these models is how they characterize septohippocampal interac-
tions. The Schmajuk model assumes that the medial septum pro-
vides an error signa to the hippocampus that is used to regulate
learning in cortical networks, whereas our dynamic model assumes
that the hippocampus provides an error signal to the medial septum
to self-regulate hippocampal encoding of stimulus representations.
Additionally, our model assumes that novelty detection plays a
critical role in septohippocampal interactions, whereas the Schma-
juk model assumes that novelty is computed in the nucleus ac-
cumbens and plays no role in septohippocampal interactions.
These differences lead to disparate predictions regarding how
septohippocampal disruption should affect conditioning. In partic-
ular, in the Schmajuk model, formation of new stimulus represen-
tations cannot occur if projections from the medial septum are
eliminated, whereas our model predicts that such damage would
simply retard learning. The Schmajuk model also predicts that
stimulus novelty should have little effect on medial septal (or
hippocampal) activity, contrary to the predictions of our model.

Relation to Theories of Attention in Conditioning

Past theoretical accounts of the role novelty playsin condition-
ing have focused on how it affects attentional processes (e.g., see
Pearce & Hall, 1980). For example, familiarity with a stimulus is
thought to retard acquisition of a conditioned eyeblink response
because the subject has previously learned to ignore nonpredictive
stimuli. Slow extinction rates have also been postulated to result
from attentional effects (e.g., Krushcke & Johansen, 1999).
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Additionally, performance in multiphase conditioning tasks has
been explained in terms of interactions between stimulus novelty
and stimulus relevance (or predictive novelty) (Rescorla & Wag-
ner, 1972; Pearce & Hall, 1980). The Rescorla-Wagner learning
rule (Rescorla & Wagner, 1972) suggests that the effectiveness of
conditioning depends primarily on the novelty of the conditioned
stimulus, whereas Pearce and Hall (1980) suggest that condition-
ing depends primarily on the ability of the CS to predict the US.
Our dynamic corticohippocampal model incorporates aspects of
both of these learning theories. During acquisition, both novelty of
the CS and novelty of the CS-US relationship determine the
learning rate, and thus the rate of CR acquisition. The previous
model of septohippocampal processing developed by Myers et al.
(1996) does not incorporate such a general mechanism. In the
static model, each node is only modified to the extent that it is a
source of encoding error (as a consequence of back-propagation);
no genera error measure influences this process. Simulations with
the dynamic model suggest that learned inattention may manifest
itself neurobiologically in the form of reduced medial septal acti-
vation during early phases of conditioning with familiar stimuli.

Implications for Other Neural Processes

The self-regulatory processes implemented in our model prob-
ably play arole in other neural systems involved in learning and
memory. For example, connections between the medial septum
and the entorhinal cortex are similar to septohippocampal connec-
tions (Hasselmo & Wyble, 1997; Hasselmo, Fransen, Dickson, &
Alonso, 2000). Connections between several neocortical areas and
neuromodulatory centersin the basal forebrain have been found to
be either directly or indirectly reciprocal (Zaborszky, Gaykema,
Swanson, & Cullinan, 1997; Zaborszky, Pang, Somogyi, Nadasdy,
& Kallo, 1999). Models of experience-induced plasticity in sen-
sory cortical networks suggest that reorganization is modulated by
neurons in a part of the basal forebrain known as the nucleus
basalis (Weinberger et a., 1990; Mercado, Myers, & Gluck, 2001)
and that activation of these neurons is regulated by the cortical
networks they innervate (for review, see Weinberger, 1998).

Comparative analyses of the different roles medial septal neu-
rons and nucleus basalis neurons play in conditioning can clarify
whether similar self-regulatory mechanisms are used throughout
the basal forebrain. A critical question is how modulation of
plasticity in cortical networks and modulation of information pro-
cessing in the hippocampal system are coordinated at the level of
the basal forebrain. Experiments investigating correlations be-
tween activity in medial septum and nucleus basalis neurons
during conditioning may shed light on how these systems interact,
as may experiments examining the effects of hippocampal lesions
on experience-induced cortical plasticity. Computational models
of corticohippocampal dynamics that are constrained by both
behavioral and neuroscientific data can provide a deeper under-
standing of how basal forebrain neurons influence representations
and recollections of stimulus events.
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