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g ABSTRACT

Generalization of a pattern categorization task was investigated in a simple, deterministic,
inductive learning task. Each of eight patterns in a training set was specified in terms of four
binary features. After subjects learned to categorize these patterns in a supervised learning para-
digm they were asked generalize their knowledge by categorizing novel patterns. We analyzed
both the details of the learning process as well as subjects’ generalizations to novel patterns.
Certain patterns in the training set were consistently found to be more difficult to learn than oth-
ers. The subsequent generalizations made by subjects indicate that in spite of important indivi-
dual differences, subjects showed systematic similarities in how they generalized to novel situa-
tions. The generalization performance of subjects was compared to those that could possibly be
generated by a two-layer adaptive network. A comparison of network and human generaliza-
tions indicate that using a minimal network architecture is not a sufficient constraint to guarantee
that a network will generalize the way humans do.

INTRODUCTION

Inductive leaming is one of the most difficult and least understood aspects of cognition. During
supervised leaming an organism is exposed to a few examples of stimulus-response pairs (the training
set) from which the organism infers how to to generate correct responses to many other stimuli. The
theoretical problem arises from the fact that there usually are many rules that are consistent with the
training set but which generate different responses to the novel stimuli. Unlike deduction, induction has
no a priori normative procedure to decide which set of rules is the most appropriate.

Thus, induction problems can be considered ill-posed problems in that there too many very dif-
ferent solutions. Such problems can be solved by introducing additional constraints or objectives that
are external to the original problem. One of the central problems for understanding induction in natural
(human) or artificial systems is to determine useful constraints or regularization principles that convert
the ill-posed problems into well posed problems.

In spite of the inherent difficulties with defining "good" inductions, people appear to be very
good at rapidly learning to induce useful rules. Investigation of how people perform induction or gen-
eralization is, therefore, interesting not only to the students of cognition but also to builders of artificial
learning machines. Although there have been many attempts to study this problem, most of previous
research has been focused primarily on investigation and modeling of average performance (Medin &
Schaefer, 1978; Medin, Dewey, & Murphy, 1983; Nosofsky, 1986).
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One goal of study reported here was to examine how people generalize in a simple deterministic
categorization task in which each pattern is characterized in terms of known binary features. While we
expected certain similarities to emerge across human learners, we anticipated that the particular general-
izations might be subject to considerable individual differences. To test this idea, we used an experi-
mental paradigm that would permit us to to observe individual subjects during the leamning of a categor-
ization task on a set of training patterns and then allow us examine the types of categorizations they
made on a set of novel test patterns. In the last section of this paper we compare human generalizations
to those of a small adaptiye network.

EXPERIMENT 1

The purpose of this study was to record subjects’ progress in learning a deterministic categori-
zation, analyze their generalizations, and compare their performance to that of small adaptive networks.
The stimuli were similar to those used by Medin, Altom, Edelson, & Freko, (1982), but the procedure
was designed to enable us to monitor the learning process in addition to evaluating subsequent generali-
zations.

Method

Seventy-eight Stanford undergraduates were run from a pool of subjects enrolled in an introduc-
tory psychology course. Each stimulus item was composed of four binary dimensions and was
presented to subjects as a patient chart listing four different symptom types: Muscles (tense or relaxed),
Insulin (kigh or low), Glands (swollen or recessed), and Sinus (stuffy or runny). The complete stimulus
set consisted of the 16 possible patterns resulting from forming all combinations of the four binary
dimensions. As shown in Table 1, with the alternate values of each dimension indicated by either "1" or
"0", four of the 16 stimuli were designated as members of category A, four as members of category B,
and the remaining 8 were presented as novel items to test for generalization.

TABLE 1: Category Structure from Experiment 1
Category Item Dimension

1 2 3 4

A Al 1 1 1 1

A2 1 1 0 0

A3 0 1 1 1

A4 1 0 0 0

B B1 0 0 1 0

B2 0 0 0 1

B3 1 0 1 0

B4 0 1 0 1

Novel N1 0 0 0 0

N2 0 0 1 1

N3 0 1 0 0

N4 1 0 1 1

N5 1 1 1 0

N6 1 1 0 1

N7 0 1 1 0

N8 1 0 0 1




Pavel, Gluck, & Henkle 3

The training stimuli were carefully selected so that the categorization could be performed per-
fectly by an exclusive-or (XOR) on the last two dimensions (3 & 4) while the first two dimensions (1 &
2) could be used to form a simpler but less effective rule.

Procedure. Throughout the experiment the two categories were referred to as "Turitis" and
"Purosis”, with the association of each name to a category randomized across subjects. The patient
charts were presented on a computer screen with the symptoms arranged vertically (as above). For each
individual subject, the oxder in which the symptom types were displayed on each chart was consistent
throughout the entire experiment. However, across subjects the order of display was randomized. The
particular symptom names associated with each dimension were also randomized across subjects.

Subjects were instructed to imagine that they were medical interns learning to diagnose patients
suffering from one of two diseases. They were told that they would learn to make their diagnoses by
attempting to diagnose individual patients: they would be shown a patient chart listing four symptoms,
attempt to make a diagnosis, and then be given the correct diagnosis. Subjects were told that they would
complete their training after correctly diagnosing approximately 32 patients in a row, at which point
they would be tested on their ability to make diagnoses. After being given these instructions, the train-
ing phase of the experiment began.

The training phase consisted of successive presentations of the eight stimuli in categories A and
B. On each trial one stimulus item was presented, the subject was prompted for a category judgement,
and then the subject was given feedback specifying the correct categorization. The order of presentation
for the training stimuli was randomized over blocks of 16 trials so that two instances of each item from
category A and two instances of each item from category B occurred in each block. The training phase
continued until a subject had either met the learning criterion of correctly categorizing all items in two
successive blocks, or until the subject had completed 15 blocks without meeting the criterion.

Upon completing the training phase of the experiment the subjects were instructed that they
would be tested on the knowledge they had gained in that phase by diagnosing 32 additional patients.
They were then presented with 2 instances of each of the 16 stimuli in a random order. For each
stimulus they were asked to make their diagnosis and then rate their confidence of the diagnosis on a
scale of 1-7 (least to most confident). No feedback was given on these test trials. Following the experi-
ment, subjects were asked to describe the methods they used to make their diagnoses. The entire exper-
imental process took between 30 minutes and one hour, depending on how quickly the subject reached
criterion during the training phase.

Results

A summary of the results for all subjects are shown in Figure 1. (see Appendix A for numerical
data). Each panel of Figure 1 represents the proportion of A responses; the first eight patterns represent
the training and the last eight the transfer set. The first four pattems of the training set are from
category A and the second four patterns from category B. The left panel shows data from the 40 sub-
jects who reached the criterion together with the data of Medin at al (1982). criterion subjects learned
the task better than those of Medin et al. (1982). Their average performance is almost identical to the
results of Medin et al. (1982). In contrast, our non-criterion subjects who did not reached the criterion
are more similar to Medin’s data for the training pattems but differ considerably on the novel patterns.
We conclude that our criterion subjects are most like those of Medin except for the more rigorous train-
ing given in this experiment.
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Figure 1. Generalization profiles.

Responses to the novel pattemns represent the transfer of learning or generalization performed by
subjects. There are several ways of interpreting the proportions of the A responses. According to one
interpretation, the average responses arise from an ensemble of identically distributed subjects. That is,
the probability of assigning a given pattem to category A is the same for each subject and is approxi-
mated by the graph on Figure 1. This interpretation is commonly assumed by investigators (e.g. Medin
et al., 1982) who used such data to test exemplar-based models of categorization. An alternative way of
interpreting these proportions, however, is in terms of a mixture of distributions corresponding to sub-
jects who learned different rules during the training phase. We examined individual differences in order
to distinguish these two interpretations. ‘

The extreme version of the mixture hypothesis is that each subject leamned a different set of
rules. That model is unlikely because although there are 256 different possible generalizations for the
eight test patterns, 14 different generalizations accounted for 85% of the subjects. In particular, general-
izations of 38% of the subjects who reached criterion were consistent with the hypothesis that subjects
based their categorization on the exclusive-or (XOR) of dimensions 3 and 4 (the graph of XOR perfor-
mance, if plotted on Figure 1, would consist of alternation of four high and four low responses). On the
other hand more than a half of the subjects who leamed the task generalized differently. This supports
the notion that individual subjects abstracted different set of rules during the training phase. The data in
Figure 1 appear to represent a mixture of strategies and generalizations.

While subjects produced many different generalizations, it is possible that these generalizations
are very similar to each other. The following analysis was performed to determine similarity among
LN
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Figure 2. Hierarchical clustering of generalizations

different generalizations. The generalization performed by each subject can be represented as an eight
dimensional generalization profile vector, where each "1" bit corresponds to assignment of the
corresponding pattern to category A. ~ Hence, similar generalizations would have similar profiles. To
analyze the generalization profiles we computed Hamming distances between all pairs of the 14 most
frequent generalizations and then used hierarchical clustering, based on average inter-cluster distances,
to represent the similarities among generalizations. The resulting hierarchy is shown in Figure 2A. The
distance between any two profiles, shown as terminal nodes of the tree, corresponds to the lowest com-
mon node on the tree. This analysis indicates that different subjects generalized in many, quite different
ways.

In order to understand human categorization process it is important to determine how different
subjects arrive at different rules. While a complete answer to this question is beyond the scope of this
paper one can get some indications of the underlying processes by examining subjects’ average perfor-
mance during the training phase. Subjects’ performance on each pattern during the leaming phase was
summarized by computing the average cumulative error for each training pattem. Three sets of such
cumulative error leamning curves are shown in Figure 3A for all subjects who reached criterion, for those
that performed XOR (Figure 3B) and for the remainder (Figure 3C). The most important aspect of the
cumulative error curves is that, more or less consistently over subjects, each pattern is leamed with dif-
ferent difficulty. For example, the pattern 1111 from category A was very easy (few errors) while the
pattem 1000 from the same category was very difficult. This regularity which was was true for for all

1 The order of bits corresponds to the ordering of novel stimuli in Table 1,(N1,N2...N8).

11110000 —J



Mean Cumulative Errors

Pavel, Gluck, & Henkle 6
A. Criterion Subjects (N=40) B. XOR Subjects (N=16) C. Non-XOR Subjects (N=24)
- o b g A4-1000
A3-0111
B4-0101
o 7. . -
83-1010
B2-0001
A4-1000
- « b B4-0101 I
s 831010 | 2
E Al-1111 §
w R
; a0 | 4 390
® A3-0111 k]
" E ® pF 35 o
5 §
[5] (g At-1111
g § B82-0001
- N P b
- N . (=1 4 1 1 i o L 1 1
0 5 10 15 20 0 5 10 15 0 5 10 15
Blocks Blocks Blocks

Figure 3. Cumulative error leaming curves

subjects who reached the criterion performance is indicative of the type of rules abstracted by subjects.
In particular, even those subjects who eventually used the XOR categorization were initially using the
first two dimensions.

MODELING GENERALIZATIONS

The empirically observed subjects’ generalizations can provide information about the con-
straints used by human beings. To discover these constraints frequently requires a model-based analysis
of the data. Models of categorization can be used in two ways. One approach is based on those models
that can represent any generalization and do not impose any prior constraints. Their utility is in remap-
ping the data so that the constraints are easily observed and extracted.

Another way to discover the constraints imposed by the learner is to construct a model of a pat-
temn categorization process that embodies some of those constraints. Such a model can then be used to
predict the generalizations and its predictions can be compared to the data.

Generalizations by Networks

An interesting class of models to consider for categorization are multi-layered adaptive net-
works. Layered networks are acyclic (nonrecursive) directed graphs with defined starting (input) and
terminating (output) nodes (units) in which each unit has a uniquely defined distance (in terms of arcs)
from all the input units. Hidden units are those nodes that are labeled neither input nor output.
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Figure 4. Generalization profile for a network.

Each directed arc is labeled by a real valued weight. A unit may, in general, be a dynamical system but
in the current framework a unit is defined by a threshold function of the sum of incoming arcs; the value
contributed by each arc is equal to the value of the originating unit multiplied by the weight of the arc.
Each unit performs a linear threshold function which is the essential nonlinearity required for a pattern
recognition mechanism.

A two-layer adaptive network consisting of an input, hidden and output layer with unlimited
number of hidden units can represent any computable boolean function (Nilsson, 1965; Minsky and
Papert, 1969). Therefore, such networks can be used to analyze the data by finding a set of weights that
performs the same categorization as an individual subject and then examine the structure of such a net-
work,

Because an unconstrained network can make any possible generalization, additional constraints
must be imposed if an adaptive network is to predict human generalization performance. An important
question to ask is whether or not a network with a specific set of constraints can predict a particular gen-
eralization. A complete theory would have to include a characterization of the effects of different con-
straints on generalization. Although such an analysis is beyond the scope of this paper we illustrate the
approach using a particular constraint.

An example of one such constraint involves imposing a limit on the number of hidden units. In
the extreme, most constraining case, this amounts to finding an adaptive network with the minimum
number of hidden units that can perform the categorization on the training set. The motivation for such
an approach is in the usual heuristic arguments for simplicity; a smaller network should generalize
better.
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To examine the generalization behavior of minimal networks, however, requires a computa-
tional method capable of finding all the solutions to a categorization problem for a given number of hid-
den units. We used a technique developed by Pavel and Moore (1988) using linear programming
approach to enumerate all the solutions for a given number of hidden units in small two-layer networks.
The smallest network capable of performing the particular task used in Experiment 1 is a two-layer net-
work with four input, two hidden and one output unit. For such a network there are 18 different solu-
tions to the problem which result in 8 distinct generalizations. These different generalizations were
summarized in the same manner as the experimental data shown in Figure 4 by computing the propor-
tion of times that each of the test stimuli was assigned to category A. The resulting distribution differs
from that observed for the criterion subjects (left panel of Figure 4). In fact, it is more similar to the dis-
tribution of responses of the non-criterion subjects (right panel of Figure 4). The clustering analysis of
the generalization profiles in Figure 3B are clearly different. In fact, only three generalizations found in
the results of Experiment 1 were generated by a two-layer network with two hidden units. One of these
generalizations (11110000) corresponded to the frequent XOR solution; the other two were a comple-
ment of XOR (00001111) and a rare profile (00101111) which is not shown in Figure 2. The same ana-
lyses were performed on networks with larger number of hidden units. As the number of units
increased, the number of human generalizations accounted for by the networks increased but so did the
number of generalizations not exhibited by human subjects.

SUMMARY

We have demonstrated that subjects who leamn the same pattern categorization may abstract dif-
ferent principles and therefore show large individual differences in their generalization behavior. Adap-
tive networks with the minimum number of hidden units exhibit a similar behavior but generalize dif-
ferently. Thus, the constraint of using the minimum number of hidden units does not alone provide a
sufficient constraint on adaptive network models to allow them to model human categorization
processes. Currently we are investigating the effects of other constraints.
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The first column below contains the patterns and the remaining columns indicate the proportion
of responses to the corresponding patterns during the test phase. Each number represents the proportion
of responses, averaged over subjects, that the pattern was assigned to category A. The second and third
columns contain a summary of the responses of 40 subjects who have reached and 38 who have not
reached the criterion, respectively. The average performance of all 78 subjects is shown in the fourth
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APPENDIX A

column, and the last column hag the data of Medin et al. (1982) for reference.

Summary of Results of Experiment 1

Pattern Criterion  No Criterion Alll  Medin at al
Al | 1111 .99 73 .86 .88
A A2 | 1100 .98 73 .86 .89
A3 [ 0111 .99 .70 .84 73
A4 | 1000 95 .54 74 a7
B1 | 0010 .01 .18 .09 12
B B2 | 0001 01 21 11 17
B3| 1010 .01 .26 .14 25
B4 | 0101 00 23 A1 33
N1 | 0000 .58 25 41 53
Novel N2 | 0011 .56 .34 45 53
N3 {0100 71 45 58 75
N4 | 1011 70 43 44 .67
N5 1110 46 .70 .58 45
N6 | 1101 45 .65 .55 .38
N7 (0110 40 .58 49 .36
N8 | 1001 26 .36 31 28
Number of Subjects 40 38 78 32




