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Some existing models of hippocampal function simulate performance in classical
conditioning tasks using the error backpropagation algorithm to guide learning (Gluck,
M.A., and Myers, C.E., (1993). Hippocampal mediation of stimulus representation: a
computational theory. Hippocampus, 3(4), 491–516.). This algorithm is not biologically
plausible because it requires information to be passed backward through layers of nodes
and assumes that the environment provides information to the brain about what correct
outputs should be. Here, we show that the same information-processing function proposed
for the hippocampal region in the Gluck andMyers (1993) model can also be implemented in
a network without using the backpropagation algorithm. Instead, our newer instantiation of
the theory uses only (a) Hebbian learning methods which match more closely with synaptic
and associative learning mechanisms ascribed to the hippocampal region and (b) a more
plausible representation of input stimuli. We demonstrate here that this new more
biologically plausible model is able to simulate various behavioral effects, including latent
inhibition, acquired equivalence, sensory preconditioning, negative patterning, and context
shift effects. In addition, the newer model is able to address some new phenomena
including the effect of the number of training trials on blocking and overshadowing.
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1. Introduction

We propose here a computational model that simulates
performance in classical conditioning following a similar
architecture to that of the Gluck and Myers (1993) model.
The newer model, however, uses Hebbian learning which is
more plausible than the error backpropagation algorithmused
earlier. The new model simulates all the tasks originally
simulated by the Gluck and Myers model while also account-
(A.A. Moustafa).

Elsevier B.V.
ing for several subtle additional classical conditioning phe-
nomena. The brain areas simulated in the new model
represent the simplest system needed to capture the role of
hippocampal region in different classical conditioning
phenomena.

The Hebbian learning algorithm is a simple model of
associative learning, which is a process that has been ascribed
to the hippocampal region function (Bunsey and Eichenbaum,
1995; Henke et al., 1997). It is also a simple model for synaptic

mailto:ahmedhalimo@gmail.com
http://dx.doi.org/10.1016/j.brainres.2009.04.020


Table 1 – Tasks simulated in the model.

Simulation Phase 1 Phase 2 Phase 3

A+ AX+
A− AX−
Sensory preconditioning ABX− AX+ BX−
Latent inhibition AX− AX+
Context shift AX+ AY+
Context sensitivity of
latent inhibition

AX− AY+

Learned irrelevance AX−; USX− AX+
Acquired equivalence AX−; AY−, Z− X+ Z−; Y −
Easy–hard
transfer learning

A1X+; B1X− A2X+; B2X−

Blocking AX+ ABX+ BX−
Compound
preconditioning

ABX− AX+; BX−

Overshadowing ABX+ AX+, BX+
Negative patterning AX+, BX+, ABX−

In all simulation experiments, contexts are referred to as X, Y, and
Z; cues as A and B. “AX−” means A is presented in context X. ‘;’
separates different trials in the same phase. In the easy–hard
learning task, A1 and B1 have very different representations in the
input layer, whereas A2 and B2 have similar representations. In the
overshadowing task, A ismore salient than B. This is simulated as A
activates more input units in the layer. In each of these phases, the
corresponding context is presented to the network by itself before
cue presentation mimicking the presence of animal inside a box
(see Experimental procedures).
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change through Long Term Potentiation (LTP) in the hippo-
campus (Bilkey, 1996; Bliss and Lomo, 1973). Using the Hebbian
learning algorithm in the currentmodel also helps account for
new behavioral effects not simulated by the Gluck and Myers
(1993) model. For example, recent studies showed that
blocking and overshadowing depend on the number of
training trials of compound cues (i.e., two conditioned stimuli
presented together) employed in these paradigms, such that
blocking and overshadowing fade with extended training
(Pineno, 2006; Stout et al., 2003). The use of Hebbian learning,
and not error backpropagation, in the model is key for
accounting for these effects, as we describe below. Also, the
hippocampal module in the current model responds to the
presentation of all cues, including conditioned stimuli (CSs)
and unconditioned stimuli (USs). This is in agreement with
existing neurophysiological studies reporting that hippocam-
pal neurons respond to the US presentation (McEchron and
Disterhoft, 1997, 1999).

Associative learning processes are integral aspects of the
performance and learning of classical conditioning tasks.
Associative learning involves either learning to associate a
neutral stimulus with a biologically salient stimulus (e.g., food
or shock) as in classical conditioning paradigms (Ito, Everitt,
and Robbins, 2005; Ito et al., 2006; Selden et al., 1991; Solomon
et al., 1983) or learning to associate two neutral stimuli as in
the paired associate paradigms, which are used with both
humans and animals (Eichenbaum, 2003; Henke et al., 1997;
Zeineh et al., 2003).

In classical conditioning, a neutral stimulus comes to elicit
a conditioned response (CR) after being consistently paired
with a US. An unconditioned stimulus is a biologically salient
stimulus, such as food or eye air puff, which is capable of
eliciting an instinctual response—known as the CR. Various
manipulations to the standard classical conditioning task
serve to explain the factors under which associative learning
occurs. These factors include a potential role for background
contextual information, number of training trials, and the
salience or novelty of stimuli employed in conditioning
paradigms. By context, we mean spatial or olfactory features
of the testing box and/or other external cues that might have
been used by subjects during learning. A good example of such
a manipulation is the blocking paradigm in which prior
training that one stimulus A predicts reinforcement hinders
(“blocks”) subsequent learning about a second stimulus B that
is presented together with A (Kamin, 1969). The blocking
paradigm demonstrates that predictiveness of a cue—and not
its co-occurrence with the US—is what drives learning to
associate that cue with the US. Another example is the latent
inhibition paradigm which is a phenomenon in which prior
exposure to a cue slows subsequent acquisition of a CR to that
cue when it is subsequently paired with a US (Lubow, 1973).

The hippocampus and the overlaying cortices are found to
play an important role in Pavlovian conditioning and associa-
tive learning tasks (Allen et al., 2002a; Berger et al., 1976;
Phillips and LeDoux, 1992; Rudy et al., 2002; Shohamy et al.,
2000). Lesion studies found that, although simple conditioning
is generally spared following hippocampal lesion, the hippo-
campal region is key for many more complex classical
conditioning paradigms including latent inhibition, acquired
equivalence, and sensory preconditioning (Coutureau et al.,
2002; Gluck and Myers, 1993; Nicholson and Freeman, 2000;
Port and Patterson, 1984; Puga et al., 2007; Solomon andMoore,
1975).

Sensory preconditioning describes the phenomenon that if
an animal is first given unreinforced trials with stimuli A and B
presented together as a compound cue (AB−), then training the
animal that A (alone) predicts the US will lead some of this
association to be transferred to B (Thompson, 1972). Acquired
equivalence, on the other hand, describes the findings that
contexts (say X and Y) in which similar events take place
acquire equivalent status, such that if X is subsequently paired
with a US, Ywill elicit a stronger CR than in a control condition
in which no common events take place in other contexts (say
Z; see Table 1 for explanation).

Similarly, in humans, it has been shown that the hippo-
campal region is important for incremental learning of the
paired associate task (Eichenbaum, 2003; Henke et al., 1997;
Zeineh et al., 2003). In addition, associative learning deficits
have been reported in patients with mild cognitive impair-
ment (Collie et al., 2002) who possibly have hippocampal
damage (Apostolova et al., 2006; de Leon et al., 1989). Both the
classical conditioning and the paired associate paradigms
(McClelland et al., 1995; Scoville and Milner, 1957) are similar
in that both usually require many trials to establish learning
and both involve learning to associate different stimuli. The
findings that the hippocampal region contributes to perfor-
mance in both the classical conditioning and paired associate
tasks suggest that (a) the hippocampal region is key for
incremental learning and that (b) the biological salience of
stimuli may not matter much for the hippocampus processes.
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In addition to the hippocampal region, several studies also
showed that the cerebellum is key for learning classical
conditioning tasks, particularly the eye blink conditioning
paradigm (Chapman et al., 1990). Chapman et al. (1990) found
that deactivating the interpositus nucleus of the cerebellum in
rabbits using lidocaine interferes with learning the eye blink
conditioning task. Similarly, Hu et al.(2009) recently found that
deactivating the cerebellum in guinea pigs using muscimol
interfered with learning the same task but did not interfere
with eliciting conditioned responses. Initiating conditioned
responses was shown to be mediated by cerebellar projection
to the red nucleus of the brain stem (Chapman et al., 1990). In
one interesting study, Woodruff-Pak et al. (1993) found that
inactivating different segments of the cerebellum after learn-
ing the eye blink conditioning task does not interfere with
performing the task, suggesting that the cerebellum is key for
learning processes. Furthermore, patients with essential
tremor—who were shown to have loss of cerebellar Purkinje
cells—show impairment at learning classical conditioning
tasks (Shill, De La Vega et al., 2009). Based on these studies, we
suggest that the cerebellum is key for learning to elicit
conditioned responses (for more discussion, see Gluck et al.,
2001).

We now discuss different models of classical conditioning
performance. Like our model, the Rescorla and Wagner (1972)
model also simulates performance in different classical
conditioning phenomena. This model posits that the predic-
tiveness of a cue and not just their co-occurrence with a US is
what derives learning to associate this cue with a US. In other
words, the Rescorla–Wagner model assumes that the differ-
ence between the (predictive) value of that cue and US value is
what derives associative learning. Although the Rescorla–
Wagner model accounts for some classical conditioned
phenomena, such as blocking and overshadowing, it does
not account for others including latent inhibition, sensory
preconditioning, compound preconditioning, negative pat-
terning, and acquired equivalence (Coutureau et al., 2002;
Farkas et al., 2008; Hall et al., 1993; Myers et al., 2003a; Spiker,
1956; Ward-Robinson and Hall, 1999). Moreover, the Rescorla–
Wagnermodel accounts for classical conditioning phenomena
that can be simulated using a one-layer feedforward network
that learns based on the delta learning rule (Gluck and Bower,
1988; Gluck andMyers, 2001). Gluck andMyers (1993) proposed
a connectionist model showing that augmenting this network
with an autoencoder is sufficient to simulate many of the
classical conditioning tasks not accounted for by the Rescorla–
Wagner model. In the Gluck and Myers (1993) model, the
autoencoder forms either a compressed or differentiated
representation of input stimuli. By compression, we mean
stimuli that tend to co-occur will have similar (compressed)
representations. Differentiation is the opposite of compres-
sion, and it means forming spare (differentiated) representa-
tions of stimuli that do not co-occur. Another main idea of the
Gluck and Myers model is that compression and differentia-
tion of input stimuli is one function of the hippocampal
region. The current study builds on these earlier models,
incorporates a similar architecture, addresses their limitations
(e.g., using error backpropagation algorithm), and also
addresses a potential role for the number of training trials
on behavioral effects, as reported in experimental studies of
blocking and overshadowing (see the Experimental proce-
dures section for more details on model and tasks simulated).
2. Results

First, we will present data regarding how the intact model
performs the different classical conditioning tasks described
in Table 1. Then, we will describe the effects of lesioning the
hippocampal module on classical conditioning performance.
2.1. Intact model

The simplest conditioning task to learn is to show a condi-
tioned response to a cue that is associated with the US
presentation but not to context alone. This is the case in the
model as shown in Fig. 1a. The model shows an increase in
response to cue A, while it shows a decrease in response to the
context since it is not consistently associated with the US
presentation, though the context and the US occasionally
overlap. Similarly, the CR decreases to the cue and context
presentations when neither is associated with the US pre-
sentation (Fig. 1b).

In the subsequent simulation studies, the conditioned
response to contexts is always the same as in the A+ and A−
simulations (Fig. 1). Furthermore, data in early phases in
subsequent simulation studies are very similar to the A+ and
A− simulation results. Accordingly, we will not present these
results again.

The model also simulates performance in the blocking
paradigm. Training the model on A+ trials and then on AB+
trials blocks B from being associated with the US. This is
because the CR to B at the beginning of phase 3 in this
paradigm is lower than the CR to B in a control condition that
does not include A+ training (see Fig. 2a). Furthermore, we
found that extended training of AB+ trials abolished the
blocking effect: here, B elicits a CR comparable to that of the
control condition (see Fig. 2b). The findings that the number of
training trials of the compound cue (AB) plays a role in
whether we obtain the blocking effect have been reported
experimentally (see Azorlosa and Cicala, 1988; and for similar
effects see Pineno, 2006), and to our knowledge, were not
previously simulated in a neural network or abstract model.

Similarly, the model accounts for the overshadowing
effect. Training the model on AB+ trials where A is more
salient than B leads to A eliciting a stronger CR than B—this is
known as the overshadowing effect (Fig. 3a). Like the blocking
paradigm, extensive training of the compound cue (AB+)
abolishes the overshadowing effect (Fig. 3b), in agreement
with experimental studies (see Stout et al., 2003).

In addition, the model shows that shifting background
contexts during learning temporarily slows down the model's
performance (Fig. 4a). This is known as the context shift effect.
Supporting this finding, using fMRI, Hayes et al. (2007) found
that changing background contexts slows down learning a
recognition task, and that hippocampal region activation is
key for correct task performance. Further, we also found that
the context shift effect depends on the number of training
trials in phase 1, such that extended training abolishes the



Fig. 1 – Simulation of the A+ and A− tasks. (a) A+ simulation:
the model shows an increase in response to cue A, while it
shows a decrease in response to the context since it is not
always associated with the US presentation. A trial involves
the presentation of context (alone) and then the presentation
of context, A, and US (see Experimental procedures). (b)
A− simulation: the model shows a decrease in response to
both the context and cue A since neither is associated with
the US presentation. A trial here involves the presentation of
context alone and then the presentation of context and cueA.
Abbreviation: ctx, context; CR, conditioned response
(same abbreviation is used in all simulation studies
mentioned below).

Fig. 2 – Performance in phase 3 of the blocking paradigm. (a)
Standard blocking performance. A+ training followed by
compound (AB+) training leads to B eliciting a weaker
response than that of a control condition that does not
include A+ training—hence the blocking effect. (b) Extended
training in phase 2 of the compound (AB+) cue abolishes the
blocking effect. Experimental and Control in the legend refer
to experimental and control conditions.
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context shift effect (Fig. 4b) (see Hall and Honey, 1990). The
interpretation of the context shift effect is that the model
compresses the representations of the cue and context and
shows a CR to their combined representation. A decrease in CR
after shifting contexts is because the cue alone and not the
context elicits the response. However, with extensive training,
the model differentiates the representations of the cue and
contexts and learns that it is only the cue that is consistently
associated with the US and thus elicits a CR. Accordingly, a
context shift after extensive training of A+ learning in phase 1
does not slow down learning.

Also, the model accounts for the sensory preconditioning
effect. Training the model first on AB− trials and then on A+
trials leads to B eliciting a stronger CR than in a control
condition that does not include AB− training (Fig. 5a).
According to the model, this occurs because the hippocampal
module compresses the representations of stimuli A and B
during training in phase 1. Accordingly, training the model
that A predicts the US leads some of this association to be
transferred to B. This is not the case in a control condition in
which the model is not trained on AB− trials (Fig. 5a). This is
in agreement with experimental findings (Nicholson and
Freeman, 2000). As conceptually similar to the sensory
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preconditioning task, the model also accounts the compound
preconditioning effect. Here, compound (AB−) training in
phase 1 slows down learning to subsequently differentiate
A− and B+ learning. Like the sensory preconditioning task, this
is because the hippocampal module compresses the repre-
sentations of stimuli A and B during training in phase 1.
Learning to differentiate A+ and B− is faster in a control
condition that does not include AB− training (Fig. 5b).
Simulation results are qualitatively consistent with experi-
mental findings of Lubow et al. (1976).

Along the same lines, the model also accounts for the
latent inhibition effect: pretraining themodel onA− trials, that
is pre-exposure to cue A alone, slows down learning to
subsequently associate A with the US (Fig. 6a). This is because
the model compresses cue A with the background context
during learning in phase 1, and this slows down learning to
respond differently to the cue and context in phase 2. This is
not the case in a control condition in which the model is not
pretrained with A− trials. These simulation results are
consistent with experimental findings (Shohamy et al., 2000).
Interestingly, shifting background contexts at the beginning
Fig. 3 – Performance in phase 2 of the overshadowing
paradigm. (a) Standard task. A is more salient than B; here A
elicits a stronger CR than that of B. (b) Extended training of
phase 1 abolishes the overshadowing effect, as reported in
experimental studies (Stout et al., 2003).

Fig. 4 – (a) Context shift slows down learning (i.e., context
shift effect). (b) However, extended training in phase 1
abolishes the context shift effect.
learning in phase 2 (see Table 1) abolishes the latent inhibition
effect (Fig. 6b), which is also qualitatively consistent with
recent experimental results (Yap and Richardson, 2005). These
findings support the theory that combining both the cue and
context during training in phase 1 is possibly the mechanism
underlying the latent inhibition effect (see below for further
discussion on that).

Similarly the model accounts for the learned irrelevance
effect (Fig. 6c). Simulation results show that prior exposure to
A and US, uncorrelated with each other, slows subsequent
acquisition of the CS–US association. Further, we found that
extended training in phase 1 of the latent inhibition or learned
irrelevance task exacerbates the observed effect. This is in
agreement with the simulation results of the Turnock and
Becker (2007) modeling study (described below). The same
simulation results hold true with the simulations of the
sensory preconditioning or compound preconditioning tasks
(figures not shown).

The model also simulates performance in the acquired
equivalence task. The model learns that two contexts become
equivalent when similar events take place in them: In phase 1,
themodel learns that contexts X and Y are equivalent because
cue A occurs in both and also learns that both contexts are



Fig. 5 – (a) Performance in phase 3 of the sensory
preconditioning paradigm. Training the model first on
AB− trials and then on A+ trials leads to B eliciting a stronger
CR than in a control condition that does not include
AB− training. (b) Performance in phase 2 in the compound
preconditioning task: Compound (AB−) training in phase 1
slows down learning to respond differently to cues A and B in
phase 2. As mentioned above, Experimental and Control in
the legend refer to experimental and control conditions.
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different from context Z since A does not occur in Z. Note that
performing the acquired equivalence task requires both the
compression of the representations of contexts X and Y and
Fig. 6 – Latent inhibition and learned irrelevance. (a)
Performance in phase 2 of the latent inhibition paradigm.
Pretraining with cue A (alone) slows down learning to
subsequently associate A with the US. (b) Context sensitivity
of latent inhibition. Context shift between the preexposure
(A−) and acquisition (A+) phases of the latent inhibition
paradigm interferes with the latent inhibition effect. This is
contrasted with the latent inhibition effect in which
A− learning in phase 1 slows down learning in phase 2.
(c) Performance in phase 2 of the Learned Irrelevance task. As
similar to the latent inhibition effect, prior exposure to A and
US, uncorrelated with each other, slows subsequent
acquisition of the CS–US association.
the differentiation of Z fromboth X andY. Given that context X
is associated with the US (because of learning in phase 2) and
that context X is equivalent to context Y (because of learning
in phase 1), the model learns that context Y predicts the US.
Accordingly, in the third phase, the model's response to Y is
stronger than its response to context Z (Fig. 7a). These
simulation results are generally in agreement with experi-
mental findings (Coutureau et al., 2002).

The model also simulates performance in the easy–hard
transfer learning paradigm (Terrace, 1963). Here, training the
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model on easy discrimination (i.e., discriminating between
two stimuli that have very different representations) facili-
tates learning a hard discrimination (i.e., discriminating
Fig. 7 – (a) Performance in phase 3 of the acquired equivalence
task. The response to context Y is stronger than the response
to context Z (see text for explanation). (b) Performance in
phase 2 of the easy–hard transfer learning task. Training the
model on easy discrimination facilitates learning a hard
discrimination. This is not the case in a control condition in
which the model is not trained on easy discrimination. (c)
Negative patterning. The model learns to show a stronger
response to cues A and B than to the compound cue (AB).

Fig. 8 –A+ and context shift performance in the hippocampal-
lesioned model. (a) Lesioning the hippocampal module does
not impair A+ learning but actually speeds up learning. (b)
Unlike the intact model, the lesionedmodel did not show the
context shift effect.
between two stimuli that have similar representation) (Fig.
7b). Finally, the model simulates performance in the negative
patterning paradigm (Fig. 7c). The model learns to show a
stronger response to cues A and B than to the compound cue
(AB). This is because themodel learns to form a representation
of the compound cue (AB) that is different from the repre-
sentations of A and B.

In short, the model here provides a unified account for
performance in many different classical conditioning para-
digms, including sensory preconditioning, compound precon-
ditioning, acquired equivalence, easy–hard transfer, negative
patterning, learned irrelevance, and latent inhibition.

2.2. Lesion studies

Here we test the behavioral effects of lesioning the hippo-
campal module on classical conditioning performance.
Lesioning the hippocampal module is done by disabling
learning in this module (see Fig. 11). The hippocampal-



Fig. 9 – (a) Performance in phase 3 of the blocking paradigm in
the hippocampal-lesioned model. Lesioning the
hippocampalmodule does not have an effect on performance
in the blocking paradigm; like the intact model, the lesioned
model shows the blocking effect. (b) Performance in phase 2
of the overshadowing paradigm in the hippocampal-lesioned
model. Lesioning the hippocampal module does not abolish
the overshadowing effect, also in agreement with existing
experiment studies (Garrud et al., 1984; Good and Macphail,
1994; Holland and Fox, 2003).

Fig. 10 – Performance in the latent inhibition, sensory
preconditioning and acquired equivalence tasks in the
hippocampal-lesioned model. In all of these tasks, the
lesioned model did not show much difference between the
control and experimental conditions, meaning that the
lesioned model does not successfully simulate performance
in these tasks.

187B R A I N R E S E A R C H 1 2 7 6 ( 2 0 0 9 ) 1 8 0 – 1 9 5
lesionedmodel does not form a representational code of input
stimuli which could in turn lead to changes to classical
conditioning performance.

For example, lesioning the hippocampal did not impair A+
performance. These simulated lesions actually speed up
learning in our model (Fig. 8a), which is in agreement with
many experimental studies (Eichenbaum et al., 1988; Gluck
and Myers, 1993; Ito et al., 2005; Ito et al., 2006; Port et al., 1985;
Schmaltz and Theios, 1972). The reason the intact model is
slower than the lesioned model to learn A+ is because the
intact model takes many trials to learn to dissociate the
representations of the context and cue in the hippocampal
module. In other words, the intact model learns (a) to
differentiate the representations of context from cue in the
hippocampal module and then (b) associate the representa-
tions of the cue and context in the MTC layer with the US
presentation (and response). The lesioned model, however,
only learns the latter mechanism—and thus it is faster. As for
context shift, the lesioned model did not show the context
shift effect even after a few learning trials (Fig. 8b) since it did



Fig. 11 – Model architecture. The model has four modules: cortical input, hippocampal region, MTC, and response unit. The
sensory association layer represents input information. The hippocampal module is the key for associative memory (see text).
The conditioned response (motor) learning module learns to make responses based on information relayed from the
hippocampal layer. Each box inside the hippocampal module and MTC modules represents a patch of nodes. Hippocampal
layer sends information to the MTC layer through a topographical mapping. The MTC layer is fully connected to the response
unit. Activation of the response unit represents probability of conditioned response. The response unit possibly corresponds to
a cerebellar mechanism (M. A. Gluck et al., 2001). Abbreviations: HR, hippocampal region; MTC, medial temporal cortex; CR,
probability of a conditioned response (throughout the text will be used interchangeable with conditioned response or just
response for simplification); US, unconditioned stimulus.
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not learn to compress the representations of the cue and
context.

Lesioning the hippocampal module also did not affect
performance in the blocking paradigm (Fig. 9a), which is
generally in agreement with existing experimental studies
(Allen et al., 2002b; Garrud et al., 1984; Good and Macphail,
1994; Holland and Fox, 2003). Further, lesioning the hippo-
campus did not affect performance in the overshadowing task
(Fig. 9b). Unlike the intact model, the hippocampal-lesioned
model did not show much difference between the control and
experimental conditions in the latent inhibition, sensory
preconditioning, and acquired equivalence paradigms (Figs.
10a, b, and c), which means that the lesioned model does not
successfully simulate performance in these tasks. These
simulations results are generally in agreement with existing
lesioning studies (Coutureau et al., 2002; Myers et al., 2003b;
Nicholson and Freeman, 2000; Shohamy et al., 2000).
3. Discussion

Our revised model extends the Gluck and Myers (1993) model
of classical conditioning by proposing an alternative more
biological instantiation of the earlier model's theory of
cortico–hippocampal interactions in classical conditioning.
Like the earlier model, the new version captures the key
findings in intact and hippocampal-lesioned animals for
various classical conditioning phenomena including the
latent inhibition, learned irrelevance, sensory precondition-
ing, acquired equivalence, easy–hard transfer learning, con-
text shift effects, blocking, overshadowing, compound
preconditioning, and negative patterning. Unlike the Gluck
and Myers model, the current model shows that the use of
Hebbian learning as well as plausible representation of inputs
to the hippocampus can account for these classical condition-
ing effects. The findings that the hippocampal region is key for
some classical conditioning tasks such as latent inhibition,
acquired equivalence, and sensory preconditioning, but not
others such as blocking, overshadowing, or simple condition-
ing, poses a theoretical problem since it is not clear what kind
of computational processes the hippocampal region employs
so that it can specifically account for these classical con-
ditioning tasks. Our theory proposes that the hippocampal
region is key for forming a representational code of input
stimuli, which depends on their co-occurrence (Gluck et al.,
2003; Gluck and Myers, 1993). This feature of our model
explains why and how damage to the hippocampal region
does not impair performance in the A+, overshadowing, or the
blocking tasks (Allen et al., 2002b; Garrud et al., 1984; Good and
Macphail, 1994; Holland and Fox, 2003) but impairs perfor-
mance in latent inhibition, sensory preconditioning, and
acquired equivalence tasks.

Specifically, the simulated hippocampal region in our
model is key for compressing stimulus inputs that repeatedly
co-occur. This mechanism explains the latent inhibition effect
as described above (see Results section). One alternative
theory of the latent inhibition effect is that presenting cue A
by itself in phase 1 habituates subjects and makes them less
prone to subsequently learn that A is associated with the US
(Meeter et al., 2005). This theory is similar to the attentional
theory of classical conditioning (Mackintosh, 1975) which as-
sumes that the hippocampal region is key for attentional pro-
cesses (Schmajuk and DiCarlo, 1992). This theory, however,
does not account for the context sensitivity of latent inhibition
effect, as found experimentally (Yap and Richardson, 2005).
In addition, our theory also explains performance in the
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sensory preconditioning and acquired equivalence tasks, all
within a unified framework. Gluck and Myers (1993) simulated
latent inhibition in a similar fashion. The Turnock and Becker
(2007) model also simulated the latent inhibition effect yet
it is not clear what role the hippocampus plays during the
performance of latent inhibition tasks in this model (see below
for a description of this model).

In addition, two features allow our model to form sparse
representations of input stimuli. First, input stimuli that do
not co-occur will have differentiated representation since it
is not very likely that different input stimuli will be mapped
to the same representations in the hippocampal module.
Having a large number of hippocampal nodes in the model
also further increase the likelihood that different input
stimuli will be mapped to different nodes in the simulated
hippocampal region. Differentiation of input stimuli is the
default mode of the hippocampal module in our model. In
other words, different input stimuli are very likely to be
mapped to different representation in the hippocampal
module unless these stimuli co-occur and will thus be
compressed. This mechanism allows the model to account
for performance in the acquired equivalence task, since the
representations of control context Z will be mapped to
different hippocampal nodes from nodes representing con-
texts X and Y (see Table 1 for task description). Second,
simulating the hippocampal region's responses to the US
presentation in our model helps increase the sparse repre-
sentations of input stimuli. In other words, cues associated
with the US presentation are more likely to have different
representations from cues that are not associated with the
US presentation. This mechanism allows the model to
account for performance in the easy–hard transfer and
negative patterning tasks. For example, in the negative
patterning task, the model learns to form different repre-
sentations of cues A and B from those of the compound cue
(AB). Simulating the hippocampal region's responses to the
US presentation in our model is also in agreement with
neurophysiological studies (McEchron and Disterhoft, 1997,
1999). Gluck and Myers (1993) did not simulate performance
in the negative patterning paradigm.

We also found that representational processes in the
hippocampal module depend on the number of training trials
employed in simulation studies. For example, the context
shift effect is obtained if the number of training trials before
changing the background context is low. Extended training
of A+ in phase 1 makes the model learn that the cue alone
predicts the US presentation and that context is irrelevant.
Similarly, we found that extended training of the compound
cue (AB+) abolished the blocking effect. This is because with
extended training the representations of both A and B are
compressed in the hippocampal module, and thus the model
responds in a similar fashion to both A and B. This might
explain why the blocking effect cannot be successfully
established in some experimental studies; extended training
could be one reason for not obtaining the blocking effect
(Azorlosa and Cicala, 1988). The same rationale applies to the
overshadowing effect which is also abolished with extensive
training, as reported experimentally (Stout et al., 2003).

The findings that lesioning the hippocampal region does
not affect performance in the overshadowing or blocking
paradigms is generally in agreement with many existing
experimental studies (Allen, Padilla et al., 2002b; Garrud
et al., 1984; Good and Macphail, 1994; Holland and Fox, 2003),
though some older studies found that lesioning the hippo-
campal region impairs blocking (Solomon, 1977). The findings
that the number of training trials of compound cues plays a
role in whether we obtain the overshadowing or blocking
effects were shown experimentally (Azorlosa and Cicala, 1988;
Good andMacphail, 1994; Pineno, 2006; Stout et al., 2003) but to
our knowledge was not previously simulated in any model.
The Rescorla–Wagner model does not account for these
behavioral effects. The use of Hebbian learning in our model
is key for accounting for these effects. This is because unlike
the error backpropagation algorithm, the Hebbian learning
algorithm allows weights to be continuously strengthened
with further training. Thus, extended training of compound
cues (AB) increases the associative links between the repre-
sentations of cues A and B making it unlikely to obtain the
blocking or overshadowing effects.

We have argued here that a computational model incor-
porating interactions among different memory systems can
simulate various classical conditioning tasks including latent
inhibition, learned irrelevance, sensory preconditioning, com-
pound preconditioning, and acquired equivalence. Perfor-
mance in these tasks cannot be accounted for by a response
learning system alone, such as the Rescorla–Wagner model.

3.1. Lesioning the hippocampus

Electrophysiological studies showed that the hippocampus
is involved in classical conditioning (Berger et al., 1976;
McEchron and Disterhoft, 1997, 1999). However, some
researchers argued that the hippocampal region is not key
for classical conditioning because lesioning the hippocampus
does not have a major impact on Pavlovian conditioning
performance (Dusek and Eichenbaum, 1997; Phillips and
LeDoux, 1992; Selden et al., 1991; Solomon et al., 1983). In
agreement with such claims, we found that lesioning the
hippocampal region does not impair simple classical con-
ditioning learning as reported experimentally; in fact, these
lesions actually speed up learning in our model, which is in
agreement with experimental findings (Eichenbaum et al.,
1988; Ito et al., 2005; Ito et al., 2006). In other words, the
findings that hippocampal neurons respond to conditioned
and unconditioned stimuli are in agreement with our model.
We argue that responses of hippocampal neurons to condi-
tioned and unconditioned stimuli are key for representational
processes and not conditioned response learning. We, how-
ever, argue that the cerebellum is key for conditioned
response learning, as suggested by several lesion studies
(Chapman et al., 1990; Hu et al., 2009).

Finally, manipulations of the standard classical condition-
ing task, such as in the latent inhibition and sensory
preconditioning tasks, were found to depend on the integrity
of the hippocampal region (Nicholson and Freeman, 2000;
Shohamy et al., 2000). In agreement with experimental
studies, the model also shows that lesioning the hippocampal
module impairs latent inhibition, sensory preconditioning,
and acquired equivalence but not the standard blocking or
simple conditioning tasks, which is in qualitatively consistent
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with much of the existing lesion studies of the hippocampal
region. Furthermore, our simulation results are generally in
agreement with the findings that hippocampal region is key
for contextual processes as reported in both animals (Bucci
et al., 2000; Eacott and Gaffan, 2005) and humans (Hayes et al.,
2007).

3.2. Acquired equivalence

It is important to note here that there are two different
variations of the acquired equivalence task used in the
literature. First, in the acquired equivalence task used by
Coutureau et al. (2002), different contexts become equivalent
(i.e., acquire similar representations) because similar events
occur in them (e.g., cue A appears in both contexts; see Table 1).
This is conceptually different from another acquired equiva-
lence task (Bonardi et al., 1993) in which cues become
equivalent because they are associated with the same
response (or same cue). We simulated the former acquired
equivalence task motivated by data regarding the role of the
hippocampal region in its performance. We do not know of
any lesion study that tests if the hippocampal region
subserves performance in the latter version of the acquired
equivalence task, though one neuropsychological study sug-
gests that the hippocampal region is key for its performance in
humans (Myers et al., 2003a).

The acquired equivalence paradigm (see Table 1) can
alternatively be simulated in a computational model that
has different nodes representing different cues and contexts
and only learns to strengthen connections between these
nodes during learning. For example, in AX− trials, such model
can learn to strengthen a connection between the representa-
tions of X and A. The same holds true for AY− and X+ trials.
Through successive activations of different units, the pre-
sentation of Y will elicit a stronger response than the response
associated with context Z. This is because weights connecting
Z to A, X, or the US, were not strengthened during learning. In
our model, compression of contexts X and Y and the
differentiation of both of them from Z is the mechanism by
which the model performs the acquired equivalence task. We
do not have much experimental data by which we can assess
which model is more psychologically or biologically plausible.
However, the neural mechanism underlying the performance
of the acquired equivalence task in our model also explains
performance in other classical conditioning tasks, such as
latent inhibition and context shift, which cannot be simulated
using the other hypothetical network model. Thus, our model
provides a unified account for performance in different
classical conditioning phenomena.

One difference between the acquired equivalence and
sensory preconditioning paradigms is that two cues become
equivalent (i.e., acquire similar representations) in the sensory
preconditioning task because they are presented together as a
compound cue while in the acquired equivalence task two
cues or contexts become equivalent because each is separately
associated with the same cue or response. Another difference
between these two paradigms is that performing the acquired
equivalence task may require differentiation processes (i.e.,
forming different representations of contexts X and Y from
those of Z) while this does not seem to be the case in the
sensory preconditioning paradigm. It is important to note here
that Gluck and Myers (1993) did not simulate performance in
the acquired equivalence paradigm though that model can
readily simulate this task.

3.3. Comparison to other models

Most models of the hippocampal region focus on simulating
episodic and spatial learning tasks (Foster et al., 2000;
Hasselmo et al., 2002; Hasselmo and Eichenbaum, 2005;
Hasselmo and Wyble, 1997; McClelland et al., 1995; O'Reilly
and Norman, 2002; Siekmeier et al., 2007). Some other
modeling work, however, suggests that the hippocampal
region including the parahippocampal region is important
for buffering information across short delays (Hasselmo et al.,
2000). Even though our models do not incorporate such a
mechanism, they do not necessarily disagree with Hasselmo's
(2000)model. The Hasselmo model simulated performance in
delayed sample to matching tasks, which requires subjects to
maintain a cue during a delay and respond when that cue
matches one of many cues presented during the delay. It
might be the case that the hippocampal region implements
both functions: buffering information across short delays (i.e.,
short-term memory) and associative memory. Short-term
memory buffering was not necessary for the simulations of
the Pavlovian conditioning paradigms presented here,
although it probably plays a key role in classical conditioning
where there is a long interval between cue onset and US onset
as in the trace conditioning paradigm (see section below on
Model limitations).

3.3.1. Hippocampal models of Pavlovian conditioning
Unlike episodic memory, fewer models in the literature have
addressed the role of the hippocampal region in Pavlovian
conditioning. One notable exception is a neurocomputational
model proposed by Turnock and Becker (2007) which simu-
lated performance in contextual conditioning tasks. This
model assumes that the hippocampal region subserves rapid
encoding of contextual information and is key for gating
prefrontal cortex information into the basal ganglia. Accord-
ingly, the model shows that the hippocampus (via interaction
with the ventral striatum and prefrontal cortex) is key for
flexible behavioral control especially when context is shifted
(Hall and Channell, 1986; Yap and Richardson, 2005). The
Turnock and Becker model simulates interactions between
the hippocampus and ventral striatum that are beyond the
scope of the current hippocampal model. Turner and Becker
did not, however, simulate some classical conditioning
paradigms that are known to be subserved by the hippocam-
pal region, such as sensory preconditioning and acquired
equivalence.

Further, unlike Turner and Becker's model, our hippocam-
palmodel does not treat (background) contexts any differently
from other cues. It is not plausible to assume beforehand that
contextual information, but not other neutral or conditioned
cues, has a special or privileged input to the hippocampus. The
findings that the hippocampal module treats contextual
information differently from other cues, as reported in many
experimental studies (O'Reilly and Norman, 2002; Phillips and
LeDoux, 1992; Rudy and O'Reilly, 1999), was not assumed
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beforehand but came out from the dynamics and learning
processes in our model.

Gluck, Myers, and other colleagues (Gluck et al., 2003; Gluck
and Myers, 1993; Meeter et al., 2005; Myers et al., 1996)
provided a series of connectionist models that attempt to
explain how the hippocampal region contributes to perfor-
mance in different classical conditioning paradigms. Specifi-
cally these models argue that the hippocampal region is key
for differentiation and compression of the representations of
stimuli (see Introduction for description of these processes).
This is a plausible theory because it accounts for many
associative learning paradigms whose performance was
found to rely on the integrity of the hippocampal region.
Some of the models' predictions have also been recently
confirmed in recent fMRI studies in healthy subjects, including
findings that the hippocampal region subserves stimulus
differentiation (Kumaran and Maguire, 2006) and is also key
for associative learning tasks (Poldrack et al., 2001). Subse-
quent models attempt to address the differential functions of
hippocampus subregions, including the septum (Myers et al.,
1998; Myers et al., 1996) and entorhinal cortex (Myers et al.,
1995), in associative learning. Unlike these earlier models, our
model assumes that the hippocampal region responds to all
input stimuli: cues (CSs and US) and contexts.

Further, Myers et al. (1995) proposed a computational
model which suggests that the entorhinal cortex is important
for stimulus compression. Though this model accounts for
the latent inhibition and context shift effects, it did not
simulate tasks that are presumably supposed to require
differentiation processes, such as negative patterning,
acquired equivalence (Coutureau et al., 2002), and easy–hard
transfer (Terrace, 1963). Myers et al. argue that differentiation
processes are subserved by the hippocampus proper (includ-
ing dentate gyrus) (for more discussion on this, see Gluck et
al., 2003).

3.4. Model limitations

Although the model accounts for various classical condition-
ing phenomena, it has some limitations. First, the model
simulates the hippocampal region only as one module and
only simulates a subset of processes ascribed to the hippo-
campal region. Our model is not intended to provide a unified
theory of the hippocampal function; it only attempts to
provide a theory of the role of the hippocampal region in
associative learning and classical conditioning. The model
does not provide an account for how the hippocampal region
is key for recognition (Hasselmo et al., 2000) or episodic
memory (Hayes et al., 2007; Moscovitch et al., 2006). The
model also does not simulate performance in delayed
matching tasks, which are known to depend on the integrity
of the entorhinal cortex (McGaughy et al., 2005; Young et al.,
1997). This is because our model is a trial-level model and
simulating delayed matching tasks requires the simulations
of intra-trial temporal information. Moreover, the model does
not simulate performance in trace conditioning tasks where
there is a long interval between cue offset and US onset.
Experimental studies show that performance in trace con-
ditioning tasks depends on the integrity of the hippocampal
region (Ryou et al., 2001; Solomon et al., 1986).
Furthermore, one limitation of the model is that it only
provides a qualitative fit to existing behavioral data, even
though simulation and experimental results are generally in
the same direction. This is because the model has a few free
parameters and attempts to account for various experimental
data. In order to provide a quantitative fit to various
behavioral results, a neural model will require having many
free parameters and possibly more complex architecture. So
we believe that the simplicity of the model is the reason for
why it only provides a qualitative fit to experimental data.

Furthermore, the model does not address the roles of some
brain areas in classical conditioning. It is known that different
brain areas, including the basal ganglia, play a role in classical
conditioning tasks, such as sensory preconditioning (Suri,
2001;Young et al., 1998) and blocking (Gallo and Candido,
1995). Current work at our lab attempts to simulate intra-trial
information and thus address the role of the hippocampal
region in trace conditioning as well as other cognitive tasks.
We will also seek in future work to further address the role of
the hippocampal region in interacting with other brain
regions. It is possibly the case that simulating the contribu-
tions of other relevant brain structures to classical condition-
ing will allow our future extension of the model to provide
quantitative fits to behavioral data.

Furthermore, our model simulates the role of the hippo-
campus in acquisition of classical conditioning tasks. With
regard to long-term retention processes, it is not clear in the
literature what the exact contributions of the hippocampus
and medial temporal cortex are, even though some physiolo-
gical studies point to a key role of the hippocampus in learning
but not necessarily performance or long-term retention
(McEchron and Disterhoft, 1999). Our model, in its current
form, assumes that the hippocampal region is needed to
transfer learned representational codes of the input stimuli to
other brain structures. However, one possible extension of the
model could be the inclusion of a cortical learningmechanism
that acquires information about learned representational
codes that does not require hippocampal processes in late
stages of learning, as has been proposed in othermodels of the
basal ganglia function (Ashby et al., 2005; Frank, 2005;
Moustafa and Maida, 2007).

To sum up, our model provides a unified mechanistic
account for (a) many classical conditioning tasks, such as
latent inhibition, sensory preconditioning, and compound
conditioning; (b) how the number of training trials of
compound cues might interfere with classical conditioning
effects, including blocking and overshadowing; and (c) how
lesioning the hippocampal module impairs, enhances, or has
no effect on the performance of classical conditioning tasks.
4. Experimental procedures

Here, we describe themodel architecture, learning algorithms,
and behavioral tasks we simulate.

The model has four modules: cortical input, hippocampal
region, medial temporal cortex (MTC), and response unit (Fig.
11). The hippocampal and MTC modules employ different
memory processes, and learning is different in each segment.
In the hippocampal module, learning is Hebbian (Bilkey, 1996).
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The MTC module, on the other hand, is key for (conditioned)
response learning (Gluck et al., 2001). Both the MTC and
hippocampal layers have many patches (i.e., a separate group
of neurons). Within each patch of the hippocampal layer, a
winner-take-all (WTA) network computes the most active
neuron, and silences the remaining neurons in the patch, a
process representing lateral inhibition through interneuron
interactions with principal cells (de Curtis and Pare, 2004).

4.1. Simulation details

The model simulates performance in different classical con-
ditioning tasks (see Table 1). In all simulation studies presented
here, A and B are used to refer to cues while X, Y, and Z are used
to refer to background contexts (e.g., different features of the
testing box and/or other external cues that might have been
used by the subjects during learning). We also study the effects
of lesioning the hippocampal region on classical conditioning
performance. Lesioning the hippocampal module is done by
disabling learning in this module.

The model was implemented using Matlab. The model has
four segments: sensory association cortex (input layer),
hippocampal region, MTC, and output node. The input layer
is fully connected to both hippocampal module and MTC. The
MTC is fully connected to the output node.

Each trial has 4 time steps; the first two time steps always
included the presentation of context alone mimicking the
presence of animal inside a box (i.e., context) before the cue
presentation. Depending on the simulation experiments, the
latter two time steps might include the presentation of cues as
well as contexts (see Table 1 for more details).

The input pattern consists of a 48-bit stimulus vector. This
can specify the values of up to 2 conditioned stimuli, 3
contextual cues, and one unconditioned stimulus. Each
stimulus is represented using an 8-bit vector.

Activation levels of all units in the model are computed as
follows:

Aj tð Þ = f
Xn
i = 1

uji tð Þxi tð Þ
 !

where uji is the weight connecting unit i to unit j, n is the
number of units in the input; the input units take binary (0,1)
values (for similar simulation details see Barto, 1995; Schultz
et al., 1997; Suri and Schultz, 1999); t is time step, f is the
logistic sigmoid function:

f xð Þ = 1
1 + e�x

Weights are updated at every time step. Weight update is
different in the different modules (see below).

4.2. Hippocampal module (associative learning system)

The hippocampal module is a 2-layer network in which the
sensory association cortex (input) layer is fully connected to
the hippocampal layer. Learning in this network is Hebbian.
The weight update rule here is as follows:

wji t + 1ð Þ =wji tð Þ + ahxi tð Þyj tð Þ
where αh is the learning rate for the hippocampal module
(0.002 in the simulations presented here); xi represents
activation level of cortical input unit i; yj represents the
activation level of the unit j in the hippocampal layer. The
hippocampal layer consists of many patches of neurons
(10 patches and each patch has 20 nodes), each forms a
separate representational code of the input. Winner-take-all
networks are used to simulate lateral inhibitory connections
among neurons in each patch. A hippocampal representation
is projected to the MTC layer. There is one-to-one connection
from hippocampal layer to MTC, with non-adaptive, fixed
weights.

4.3. MTC module (response learning system)

The MTCmodule is a 2-layer network. The cortical input layer
is fully connected to the MTC layer which in turn is fully
connected to the response unit. Weights from the input layer
to theMTC layer are non-adaptive,making hippocampal input
to the MTC layer more effective in driving its activity. Weights
from MTC layer to the response unit are updated according to
the delta rule as follows:

wi t + 1ð Þ =wi tð Þ + ac g tð Þ � R tð Þð Þmi tð Þ
where αc is the learning rate for the MTC module (0.02 in the
simulations presented here); γ represents the presence/sal-
ience of the US (it takes the value 1 if the US is present and 0 if
not present);mi is the activity ofMTCunit i; R(t) is the activation
of the responseunit. Allweights in themodelwere initialized to
random values in the range [0, 0.4].

We simulated lesion by disabling weight update in the
hippocampal module. Activation of the MTC module's output
node is interpreted as the probability of producing a condi-
tioned response, which in turn represents the likelihood that
the model will produce a conditioned response. This can be
directly compared to observed conditioned responses in
experimental studies.
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