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Abstract

■ Most existing models of dopamine and learning in Parkinson
disease (PD) focus on simulating the role of basal ganglia dopa-
mine in reinforcement learning. Much data argue, however, for a
critical role for prefrontal cortex (PFC) dopamine in stimulus se-
lection in attentional learning. Here, we present a new computa-
tional model that simulates performance in multicue category
learning, such as the “weather prediction” task. The model ad-
dresses how PD and dopamine medications affect stimulus selec-
tion processes, which mediate reinforcement learning. In this
model, PFC dopamine is key for attentional learning, whereas
basal ganglia dopamine, consistent with other models, is key for
reinforcement and motor learning. The model assumes that com-
petitive dynamics among PFC neurons is the neural mechanism
underlying stimulus selection with limited attentional resources,

whereas competitive dynamics among striatal neurons is the
neural mechanism underlying action selection. According to our
model, PD is associated with decreased phasic and tonic dopa-
mine levels in both PFC and basal ganglia. We assume that dopa-
mine medications increase dopamine levels in both the basal
ganglia and PFC, which, in turn, increase tonic dopamine levels
but decrease the magnitude of phasic dopamine signaling in
these brain structures. Increase of tonic dopamine levels in the
simulated PFC enhances attentional shifting performance. The
model provides a mechanistic account for several phenomena,
including (a) medicated PD patients are more impaired at multi-
cue probabilistic category learning than unmedicated patients
and (b) medicated PD patients opt out of reversal when there
are alternative and redundant cue dimensions. ■

INTRODUCTION

Parkinson disease (PD) is a neurodegenerative disorder
associated with reduced levels of dopamine in the basal
ganglia ( Jellinger, 1999; Kish, Shannak, & Hornykiewicz,
1988). In addition to basal ganglia dysfunction, several
studies showed that mesofrontal dopamine is also affected
in PD (Tadaiesky et al., 2008; Prediger et al., 2006; Ashby,
Alfonso-Reese, Turken, & Waldron, 1998). Furthermore,
some argue that dopaminergic medications (including
both the dopamine precursor L-dopa and dopaminergic
agonists) increase dopamine levels in prefrontal cortex
(PFC; see Silberstein et al., 2005; Kaasinen et al., 2001;
Carey, Pinheiro-Carrera, Dai, Tomaz, & Huston, 1995).
Most existing models of learning and cognition in PD

focus on simulating the role of basal ganglia dopamine in
reinforcement learning. These models assume that meso-
limbic dopamine phasic signals projected to the striatum
are key for reinforcing motor plans that lead to reward
(Guthrie, Myers, & Gluck, 2009; Moustafa & Maida, 2007;
Daw, Niv, & Dayan, 2005; Frank, 2005; Suri & Schultz,
1999). Most of these models ignore a potential role for
mesofrontal dopamine in behavioral performance. How-
ever, existing experimental studies argue for a critical role

for PFC dopamine in stimulus selection processes in at-
tentional learning (Iba & Sawaguchi, 2003). Furthermore,
some models of schizophrenia posit that PFC is key for
top–down attentional control of motor responding (Amos,
2000; Servan-Schreiber, Bruno, Carter, & Cohen, 1998;
Cohen & Servan-Schreiber, 1992). Using features from
the models of Kruschke (2003, 2005), Amos (2000), Braver
and Cohen (2000), and Cohen and Servan-Schreiber (1992),
here, we provide a new computational model that simu-
lates how PD and dopaminergic medications affect per-
formance in multicue category learning tasks.

Inmulticue category learning tasks, subjects learn to clas-
sify multicue patterns into one of two categories based on
corrective feedback about their responses. In these tasks,
somecuesmay bemore or less diagnostic of categorymem-
bership than other cues. One example is the “weather pre-
diction” task, in which subjects classify patterns composed
of sets of two to four cards (the “cues”) as being predic-
tive of rain versus sunshine (Fera et al., 2005; Shohamy,
Myers, Onlaor, & Gluck, 2004; Gluck, Shohamy, & Myers,
2002; Knowlton, Mangels, & Squire, 1996). Another related
task is Shohamy, Myers, Hopkins, Sage, and Gluckʼs (2009)
“slot machine” task, in which subjects are presented with
patterns consisting of three cues, each of which can have
two values, and subjects learn to categorize these patterns
as predictive of payoff in black or white coins.Rutgers University—Newark, Newark, NJ
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Performing multicue category learning tasks relies on at-
tentional processes, and thus, the integrity of PFC. Various
studies have argued that such multicue category learning
relies on the integrity of the fronto-striatal system. For ex-
ample, Fera et al. (2005) found that PFC and basal ganglia
structures are activated during the performance of the
“weather prediction” task. In multicue category learning
tasks, categorizing patterns based on a subset of cues
can lead to suboptimal behavior (but still better than
chance). Given that most subjects reach only suboptimal
performance in these tasks ( Jahanshahi, Wilkinson, Gahir,
Dharminda, & Lagnado, 2010; Shohamy et al., 2009),
it is possible that subjects pay attention to only a sub-
set of cues in the presented patterns. Multicue category
learning tasks ( Jahanshahi et al., 2010; Shohamy et al.,
2004, 2009) have become regularly used as a means to as-
sess cognitive function in PD patients. Some studies have
found that medicated PD patients are more impaired than
both unmedicated PD patients and healthy controls at
performing multicue category learning tasks ( Jahanshahi
et al., 2010). Although some researchers have tested
PD patients on the “weather prediction” task (Shohamy
et al., 2004; Knowlton et al., 1996), Jahanshahi et al. have
tested both medicated and unmedicated PD patients on
this task. As described later, the model presented here ad-
dresses these findings.

Relevant Existing Experimental Studies

Several studies point to a key role for PFC dopamine in at-
tentional processes. For example, in a recent study, Frank,
Moustafa, Haughey, Curran, and Hutchison (2007) found
that healthy subjects with high levels of PFC dopamine
were better at attentional shifting after receiving negative
feedback than subject with low levels of PFC dopamine.
Several studies also found that dopaminergic medications
enhance working memory (WM) performance (Moustafa,
Sherman, & Frank, 2008; Lewis, Slabosz, Robbins, Barker,
& Owen, 2005). Overall, these studies suggest that in-
crease of dopamine in PFC enhances prefrontal function
(Carey et al., 1995), which, in turn, enhances performance
in both attentional and WM processes.

Furthermore, PD and dopaminergic medications have
been found to impact attentional learning performance. Im-
portantly, dopamine agonists enhance performance in at-
tentional processes. For example, Cools, Barker, Sahakian,
and Robbins (2001) found that dopaminergic medications
enhance task switching performance in PD patients. In
this task, subjects see letters and digits on the screen, and
respond to either the digit or the cue based on the color of
the screen (e.g., red screen means response to letters,
whereas green screen to digits). The model assumes that
these effects of dopamine medications are due to an in-
crease of dopamine levels in PFC (see Cools et al., 2001
for further discussion on this).

Dopaminergic medications have also been shown to de-
crease the occurrence of perseverative errors (Rutledge

et al., 2009; Owen et al., 1993). Owen et al. (1993) found
that frontal patients and PD patients who were tested off
their dopaminergic medications showed more persevera-
tive errors on attentional shifting tasks than PD patients
tested on dopaminergic medication. Similarly, in a recent
article from our group in collaboration with Rutledge and
colleagues at NYU (Rutledge et al., 2009), we found similar
medication effects in a dynamic foraging task, which tests
subjectsʼ ability to adapt to unwarned reversal of reward
contingencies. According to our model, dopamine medi-
cations enhance attentional shifting, and thus, lead to a
decrease in the occurrence of perseverative errors in shift-
ing and reversal tasks. Based on these data, we assume
that dopamine medications enhance attentional learning
and shifting by increasing mesocortical dopamine levels.
Based on current models and theories, it is not clear

how dopamine, basal ganglia, and PFC interact and what
their contributions are to the performance of multiple-
cue category learning tasks. To the best of our knowledge,
there is no existing biologically based computational
model that explains the role of both PFC and dopamine
in attentional learning in multiple-cue category learning
tasks. Furthermore, existing literature does not clarify if
and what differential roles PFC and basal ganglia dopamine
play in multicue category learning processes. Specifically,
here we provide a computational model that simulates
performance in various multiple-cue category learning
tasks, including the “weather prediction” and “slot ma-
chine” tasks. In this model, PFC dopamine is key for stimu-
lus selection in attentional learning, whereas basal ganglia
dopamine, consistent with other models, is key for rein-
forcement and motor learning. Unlike existing models, the
basal ganglia in our model is key for mapping attended-
to cues to motor responses. Action selection is the pro-
cess of selecting and executing a motor response from a
set of possible actions (also see Prescott, Montes Gonzalez,
Gurney, Humphries, & Redgrave, 2006). Similarly, stimulus
selection is the mechanism by which one cue comes to
control behavior andmotor responding. The computational
principles underlying stimulus and action selection learn-
ing in the model are the same: Phasic dopamine signals
are important for stimulus and action selection learning.
In addition, competitive inhibitory dynamics—which we
simulate using a winner-take-all network—is the compu-
tational principle underlying the selection of a motor re-
sponse as well as focused attention. In other words, the
model learns to select and pay attention to only one cue
from the presented multicue pattern. The model takes the
form of actor–critic architecture (Houk, 1995), in which
the critic is key for reward and feedback-based learn-
ing and the actor is key for stimulus and action selection
learning.
According to the model, PD is associated with de-

creased phasic and tonic dopamine levels in both PFC
and basal ganglia. We assume that dopaminergic medica-
tions, commonly used to treat PD patients, increase tonic
dopamine levels (beyond those of healthy controls) in
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both the basal ganglia and PFC, but decrease the magni-
tude of phasic dopamine signaling in these brain structures.
Dopamine phasic signaling is the difference in firing rate
between tonic firing and elevated stimulus-locked firing
of dopamine neurons. Thus, an increase in tonic firing of
dopamine cells will decrease the magnitude of phasic do-
pamine signaling (for graphic illustration of these ideas,
see Guthrie et al., 2009). We simulate an increase in tonic
dopamine by increasing gain value of a sigmoidal activation
function, as previously proposed in models of schizophre-
nia (Cohen & Servan-Schreiber, 1992). (See Methods and
Appendix for more information on simulation details.) In
our model, an increase in tonic dopamine levels increases
activity of postsynaptic cells, as argued by Schultz (2007).
An increase of tonic dopamine levels in the simulated
PFC enhances attentional shifting performance. Similarly,
we simulate a decrease in tonic dopamine levels in a brain
structure (as in simulated PD) by decreasing gain value of
a sigmoidal activation in the simulated area. The model
also shows that lesioning PFC interferes with attentional
learning and attentional shifting.

METHODS

Here, we describe the model architecture. The learning
algorithm is described in the Appendix.

Model Architecture

The model architecture is shown in Figure 1. It takes the
form of an actor–critic architecture, in which the critic
is key for reward and feedback-based learning and the
actor is key for stimulus and action selection learning.
The critic and the actor influence each other in that the
critic sends a teaching signal to the actor to strengthen or
weaken stimulus and action selection learning (see equa-
tions in the Appendix). The critic is not informed about
what action the actor has selected, but it is informed
about whether the action made had rewarding conse-
quences. The model is trained using the temporal differ-
ence (TD) model. We describe details of the TD model in
the Appendix.
The model has four modules: input, PFC, motor re-

sponse, and dopamine module (see Figure 1). The PFC
layer is fully connected to the motor response layer (stria-
tum module). Each unit in the input module represents a
cue presented to the network. The input and PFC mod-
ules have the same number of nodes. The motor module
has three nodes, each representing a different motor
response. It is important to note here that although
there is regional specificity in PFC and the basal ganglia,
for the sake of simplicity, we are treating each of these
structures in the model as a single module. Input pat-
terns presented to the network activate their correspond-
ing units in the input module. The input module sends
topographic projects to the PFC layer (see Figure 2). Here,
we use a winner-take-all network to simulate inhibitory

connectivity among PFC neurons (see Appendix below
for more information on this). At the cognitive level, the
winning node represents the attended-to cue. For sim-
plicity, in the current simulations, we allow only one
PFC node to be active at each time step. Here, we argue
that competitive dynamics among PFC neurons is the
brain mechanism underlying limited attentional (as well
as WM) processes. Like the Amos (2000) model, we also
assume that a negative feedback decreases the activity
of most active PFC neurons. As mentioned above, we
assume that an increase in tonic dopamine levels increases
activity and competition among PFC neurons, which, in
turn, enhance selecting different stimuli following negative
feedback.

The model has four parameters that are manipulated
depending on the simulation of PD and dopaminergic
medications. These parameters are two learning rate param-
eters (one each for the striatal and PFC modules) and two
gain parameters (striatal and PFC modules). Learning rate
parameters simulate changes in phasic dopamine signaling
(see, for example, Shohamy, Myers, Kalanithi, & Gluck,
2008; for experimental support, see Reynolds, Hyland, &
Wickens, 2001), whereas gain parameters simulate changes
in tonic dopamine levels in the corresponding simulated

Figure 1. A schematic figure of the model showing relevant brain
structures. The model has four modules: input, PFC, motor response,
and dopamine module. The critic corresponds to dopamine neurons,
whereas the actor corresponds to the prefrontal–striatal system.
Learning (i.e., synaptic modification) takes place in both PFC and
striatum modules. Learning is modulated by dopamine phasic
responses projected from the dopamine module. The input layer
sends topographic projections to the PFC layer. The PFC layer is
fully connected to the striatum (motor) layer (i.e., every PFC unit is
connected to every striatal unit). Activation of a unit in the input
layer represents input received from the environment; activation
of a unit in the PFC layer represents attended-to stimuli; activation
of a unit in the striatum module represents a selected motor
response. Dotted lines represent dopaminergic modulatory effects.
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brain structure (Servan-Schreiber, Cohen, & Steingard, 1996;
Cohen & Servan-Schreiber, 1992; see Appendix for a de-
scription of all parameters). We simulate PD by decreas-
ing learning rate and gain values in the basal ganglia and
PFC. We simulate the effects of dopaminergic medication
by increasing gain values while concurrently decreasing
learning rate values, beyond those used for healthy partici-
pants (Table 1).

The simulated striatum in the proposed model learns
to map input stimuli to responses (for similar ideas, see
Guthrie et al., 2009; Suri & Schultz, 1999). Like the PFC
module, we use a winner-take-all network to simulate in-
hibitory connectivity among simulated striatal neurons.
At the cognitive level, the winning node represents the se-
lected motor response (for similar ideas, see Guthrie et al.,
2009; Suri & Schultz, 1999). Unlike most existing basal
ganglia models (Ashby, Ell, Valentin, & Casale, 2005; Frank,
2005; Suri & Schultz, 1999; Houk, 1995), the basal ganglia,
in our model, learns to map representations of attended-to
stimuli tomotor responses. Thesemechanisms, as discussed
below, can explain performance in various multiple-cue
category learning tasks.

Based on experimental findings (Silberstein et al., 2005;
Kaasinen et al., 2001; Carey et al., 1995), it is likely that
dopaminergic medications increase dopamine levels in
PFC. Specifically, we simulate an increase in PFC tonic do-
pamine levels by increasing the gain value of the sigmoidal
activation function, as previously proposed by various
computational models (Amos, 2000; Cohen & Servan-
Schreiber, 1992). This, in turn, increases the signal-to-noise
ratio in PFC neurons, which has important implications
for attentional learning processes: Increasing the gain value

causes the sigmoidal function to decrease the difference
between inputs. For example, the difference in the activa-
tion level given input of 0.7 versus 0.8 decreases as the gain
value increases; that is, for a large gain value, the sigmoidal
activation function de-emphasizes differences in input val-
ues (within a certain range). In other words, increasing the
gain value increases the competitive dynamics in PFC and
the likelihood to shift to a new dimension. This has im-
plications for learning multiple-cue category learning tasks,
as described below.

RESULTS

We now describe how the model and theories proposed
above can simulate performance in various category learn-
ing tasks. We first describe simulation results of instrumen-
tal conditioning, “weather prediction,” and some other
multiple-cue category learning tasks ( Jahanshahi et al.,
2010; Shohamy et al., 2009). All simulation results pre-
sented here are based on averages across 50 runs of the
model (see Table 1 for parameter values chosen for simu-
lation results presented below).

Figure 2. A schematic figure of
the model showing functions of
different modules. The model
uses an extended actor–critic
architecture in which the
critic is responsible for
reward-prediction learning
and the actor is responsible for
action and stimulus selection
learning (compare to Figure 1).
Like Figure 1, activation of a
unit in the input layer
represents input received
from the environment;
activation of a unit in the
attentional layer (which is a
simulation of PFC) represents
attended-to stimuli; activation
of a unit in the motor module
(which is a simulation of the
striatum) represents selected
motor response. In the
model, the number of
attentional weights is equal to
the number of input nodes—each input node has a corresponding attentional weight. In this example, a filled node means it is active (and an
unfilled node means it is inactive). In this example, Cue 1 and Cue 3 are presented to the model (see activation of nodes in the input module).
The model is paying attention to Dimension 3 (see attentional module) and selects motor response, a motor response represented by the
middle node in the motor module. Teaching signal corresponds to dopamine phasic signals coming from the ventral tegmental area and
substantia nigra pars compacta.

Table 1. Parameter Values Used in the Simulations

Parameter LRBG GBG LRPFC GPFC

HC 0.13 1 0.06 1

PD off 0.09 0.06 0.032 0.06

PD on 0.06 1.9 0.01 1.9

LR= learning rate; G= gain; BG= basal ganglia; PFC= prefrontal cortex.
See Appendix for description of all parameters.
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We note that the learning rate is larger for the basal
ganglia than for the PFC module to allow for faster motor
than attentional learning and, most importantly, to allow
the model to explore different responses after a negative
feedback before shifting attention to different cues.

Instrumental Conditioning
(Stimulus–Response Learning)

Instrumental conditioning is a simple task in which subjects
learn to associate different stimuli with different responses,
based on corrective feedback. In this task, on each trial,
a different cue (A or B) is presented at Time Step 1. The
model is trained to associate different cues with different
responses (make response R1 if A is presented and R2 if
B is presented). Feedback is delivered at Time Step 2: Re-
ward presented is 1 if themodel made the correct response
and is 0 otherwise. Many experimental studies have shown
that PD patients are impaired at instrumental condition-
ing, or stimulus–response (S–R) learning, tasks (Filoteo,
Maddox, Ing, & Song, 2007; Shohamy, Myers, Geghman,
Sage, & Gluck, 2006; Czernecki et al., 2002). Czernecki
et al. (2002) found that both medicated and unmedicated
PD patients were impaired on this task. Similarly, Shohamy
et al. (2006) found medicated PD patients to be more
impaired than unmedicated patients at feedback-based as-
sociative learning. In our simulations, we also found both
simulated medicated and unmedicated PD patients to be
more impaired at stimulus–reward learning than healthy
controls (see average correct performance in each block
in Figure 3).
We now describe the performance of the critic and the

pattern of changes in the TD error signal during the course
of learning (see Appendix for definition of TD error). Fig-
ure 4B shows the TD error for the successive time steps

within one simulation run. Figure 4D shows the TD er-
ror when the modelʼs response was correct. On each of
these trials, the model received the primary reward whose
value was 1. As learning proceeded, the TD error signal
moved earlier in time to the time step of CS presentation.
This is in accordance with the observed phasic response
of dopamine neurons (Schultz, Dayan, & Montague, 1997;
Figure 4A and C). In subsequent simulation studies, the
characteristic of TD error signal is the same as shown here,
so we will not present them again.

“Weather Prediction” Task
( Jahanshahi et al., 2010)

In the “weather prediction” task, subjects are presented
with patterns of cards, each of which is composed of one
to three cards taken from a set of four cards; subjects are
asked to classify each pattern of cards into one of two cate-
gories (Fera et al., 2005; Shohamy et al., 2004; Gluck et al.,
2002; Knowlton et al., 1996). On each trial, subjects see one
of these patterns, and are asked to predict whether there
will be good or bad weather the next day (sun or rain). In
this task, each cue (card) is a partially accurate predictor of
the outcome category (Fera et al., 2005; Shohamy et al.,
2004; Gluck et al., 2002; Knowlton et al., 1996). Jahanshahi
et al. (2010) found that medicated PD patients are
more impaired at this task than unmedicated patients,
who were, in turn, more impaired than healthy controls
(see Figure 5A). In agreement with these findings, we found
similar qualitative results: Simulated medicated PD patients
were more impaired than unmedicated PD patients, who
were more impaired than controls (see Figure 5B). In ad-
dition, the model provides an account for suboptimal be-
havior of subjects (including healthy controls) in this task.
We argue that suboptimal behavior in this task is due to
the model paying attention to one cue of the presented
multicue pattern. In this case, the model learns to select
and pay attention to the most advantageous card, and cate-
gorizes patterns according to this rule. This is also in agree-
ment with experimental finding that human subjects often
appear to follow single-cue strategies (i.e., responding on
the basis of the presence or absence of a single cue, dis-
regarding all other cues) to solve the “weather prediction”
task (Gluck et al., 2002) (see model limitations and fu-
ture directions below for why this is not always so). Fur-
thermore, a lower learning rate in medicated PD patients
than in unmedicated PD patients (see Table 1) explains
why dopamine medications impair learning, as reported
in Jahanshahi et al. In the model, dopamine medications
increase tonic dopamine levels, which, in turn, compromise
dopamine phasic signaling.

Multiple-cue Category Learning “Slot Machine”
Task (Shohamy et al., 2009)

This task has two phases: acquisition and reversal. In the
acquisition phase, subjects are presented with one of eight

Figure 3. Simulation results of instrumental conditioning (or S–R)
performance. The data from all simulation runs were divided into four
blocks of 25 trials each, and we show an average correct performance in
each block (same applies to all experiments presented below). In the
model, both medicated and unmedicated PD patients were more
impaired at S–R learning than healthy controls. HC = healthy controls;
PD off = Parkinson patients off medications; PD on = Parkinson
patients on medications.
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different patterns; each pattern is composed of three dif-
ferent cues that can each have one of two values (see
Table 2). Subjects learn to categorize each pattern based
on feedback provided after subjects select a category. Each
pattern belongs to either Category A or B. Optimal per-
formance in this task depends on subjects responding
to information about all cues presented in each pattern.
However, responding based only on one cue from the pre-

sented pattern will lead to suboptimal (and above chance)
performance. Upon finishing the acquisition phase, sub-
jects perform a reversal phase, in which the category
membership is reversed. Shohamy et al. (2009) found that
medicated PD patients were not significantly more im-
paired than healthy controls in the acquisition and reversal
phases (Figure 6A and B). Like Shohamy et al., our simula-
tion results showed that medicated patientsʼ performance

Figure 5. Weather prediction task performance. Each block here has 50 trials. (A) Adapted from Jahanshahi et al. (2010). (B) Simulation
results are qualitatively similar to the results of Jahanshahi et al.

Figure 4. The time shifting of dopamine phasic signal and TD error during instrumental conditioning task learning. (B and D) The TD error
captures main characteristics of dopamine phasic responses (A and C) to conditioned and unconditioned stimuli. (A and C) Figures are adapted from
Schultz et al. (1997). In subsequent simulation studies, the time shifting of the TD error is very similar to the figures here, so we will not show
them again. R = reward; US = unconditioned stimulus; CS = conditioned stimulus.
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is slightly lower than controls in both the acquisition and
reversal phases (Figure 6C and D). Shohamy et al. did not
test unmedicated PD patients on this task. The model pre-
dicts that unmedicated PD patients will be slightly slower
to learn the acquisition phase but perform similarly to
healthy controls during the reversal phase. Future experi-
mental work should confirm or refute this prediction.
According to the model, because of inhibitory dynamics
among PFC neurons, the model can pay attention to only
one cue at each time step. Accordingly, the model learns
to map the attended-to cue to its corresponding category.
This provides a mechanistic account for suboptimal—and
above chance—behavior in medicated PD and healthy
control subjects, as found in the Shohamy et al. study. An
increase of dopamine levels in PFC (which increases activ-
ity of PFC neurons), along with receiving negative feedback
in the reversal phase, causes medicated PD patients to
be more likely to pay attention to a different cue, and thus,
opt out of reversal, as reported in the Shohamy et al. study.
In otherwords, an increase in the gain value of sigmoidal ac-
tivation function of the PFC module increases the competi-
tion among PFC nodes, and thus, any of the cues is likely
to win the competition (see Discussion for more details).
Furthermore, Shohamy et al. also found that most sub-

jects appeared to follow a one-cue strategy in categorizing
the patterns; that is, they categorized the patterns guided
by only one of the cues in the presented pattern. In the
reversal phase, most healthy control subjects reversed
along the same cue they have chosen during the acquisi-
tion phase, whereas approximately 65% of medicated PD
patients learned the new association by shifting to a one-
cue strategy based on a different cue, therefore opting out
of reversal. We analyzed changes in attentional weight

values (weights connecting the input module to the PFC
module) during task learning (Figure 7). Simulation results
showed that all groups paid attention to only one cue dur-
ing the acquisition and reversal phases. Furthermore, sim-
ulation results show that, in most runs, medicated PD
patients paid attention to a different cue during the rever-
sal phase. This is explained by attentional weight change
during reversal performance (see Figure 7F).

We also conducted strategy analysis on model output
for each run. Here, we assume that each run of the model
corresponds to a different subject performing the task (for
more details on strategy analysis conducted on model out-
put, see Appendix and also Gluck et al., 2002). Simulation
results also found that simulated medicated PD randomly
chooses to pay attention to one of the three cues during
reversal, making it likely to reverse along the same dimen-
sion which happens in about third of the simulation runs
(Figure 8B). Interestingly, we found that the model behav-
ior here is in agreement with the existing experimental
data of the Shohamy et al. study (see Figure 8A). We also
predict that similar to healthy controls, unmedicated PD
patients will reverse along the same cue chosen during
the acquisition phase (Figure 8C).

As we have mentioned earlier, the key feature of this
model is simulating the role of PFC dopamine in behavioral
performance. Here we study the effects of lesioning PFC on
performing the “slotmachine” task.We simulated lesions of
a brain area by adding noise to the activation levels of the
simulated area, as previously done in other computational
models ( Joanisse&Seidenberg, 1999;Olson&Humphreys,
1999). In the “slot machine” task (Shohamy et al., 2009),
the PFC-lesioned model was slower at performing the
acquisition and reversal phases; the lesioned model also

Table 2. Description of the “Slot Machine” Task Used by Shohamy et al. (2009) and Other Variants of This Task

Cue 1 Cue 2 Cue 3

Slot Machine
Task (Phase 1:
Acquisition)

Slot Machine
Task (Phase 2:

Reversal)

Forced-cue and
Shifting (Phase 1:

Acquisition)

Forced-cue
Version (Phase 2:

Reversal)

Shifting
Version (Phase 2:

Shifting)

1 1 1 A B A B A

1 1 0 A B A B A

1 0 1 A B A B B

1 0 0 B A A B B

0 1 1 A B B A A

0 1 0 B A B A A

0 0 1 B A B A B

0 0 0 B A B A B

0 and 1 represent different cues. A pattern consists of three cues presented together. Each row in the first three columns on the left represents a
pattern. For example, Pattern 110 represents “candle–fish–plane,” whereas Pattern 101 represents “candle–butterfly–boat.” A and B represent dif-
ferent categories. The slot machine task used by Shohamy et al. (2009) has two phases: acquisition and reversal (see forth and fifth columns from the
left). In the reversal phase, we simply change category membership for each pattern (e.g., if A was correct during acquisition, B is correct during
reversal). Here, we also propose two task variants of the slot machine task: forced-cue and shifting tasks. Both tasks have the same acquisition phase
(see third column from the right). Here, paying attention to one cue is key for a good performance (example here is Cue 1). The second phase of
forced-cue task is a reversal phase (see second column from the right). In the second phase of the shifting task, paying attention to a different cue (in
this example, it is Cue 2 instead of Cue 1) will lead to a correct performance.
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showed more perseverative errors than the intact model.
This is because adding noise interfered with quickly find-
ing and responding to one cue during early training tri-
als. In other words, adding noise to PFC activity makes
strengthening weights in the PFC module in early training
trials somewhat ineffective, and thus, slows down learning.

Variants of the “Slot Machine” Task: Forced-cue
and Shifting

Here, we simulate performance in two different variants
of the original “slot machine” task (Shohamy et al., 2009):
forced-cue and shifting tasks (see Table 2 for task descrip-
tion). The acquisition phase is the same in both tasks but
is different from the acquisition phase used in the origi-

nal “slot machine” task (see Table 2). In the acquisition
phase of both tasks, only one of the three cues is diag-
nostic of category membership (with 100% probability),
whereas the other two are less reliably predictive of cate-
gory membership (50% probability). This is different from
the original task because, in the original task, the con-
figuration of all three cues was predictive of category
membership, and each individual cue predicted category
membership with only 80% probability. In the reversal
phase of the forced-cue task, that same cue is still diagnos-
tic (although the valence is reversed), and thus, subjects
cannot opt out of reversal by shifting to another equally di-
agnostic cue (unlike the original task). In the second phase
of the shifting task, the previously diagnostic cue becomes
irrelevant, and subjects must shift—and pay attention to a

Figure 6. Multicue category learning performance (Shohamy et al., 2009). The data from all simulation runs were divided into four blocks of 25 trials
each. (A and B) Experimental results of the acquisition and reversal phases of the multicue category task (Shohamy et al., 2009). Shohamy et al.
found medicated PD patients to be numerically worse at both the acquisition and reversal phases of the task. They have not tested unmedicated
patients on the task. Figure is adapted from Shohamy et al. (2009). (C and D) Simulations results of the study of Shohamy et al. Simulation
results are qualitatively similar to the results of Shohamy et al. The model predicts that unmedicated PD patients would be slightly better at
performing this task than medicated patients.
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different cue in order to be able to respond correctly (see
Table 2).
Unlike the original “slot machine” task, modeling results

showed that simulatedmedicated PD patients aremore im-
paired at reversal learning in the forced-cue task than simu-
lated unmedicated PD patients (see Figure 9). This is due
to increased attentional shifting performance in simulated

medicated PD patients, which impairs performance in the
reversal phase of this task because the simulatedmedicated
PD patients shift their attention away from the relevant
stimuli. Correct performance in this task requires subjects
to reverse responses along the same cue chosen in the ac-
quisition phase (see Table 2). In the shifting task, contrary
to our expectations, we found that simulatedmedicated PD

Figure 7. Attentional weight change during the performance of the “slot machine” task in simulated healthy controls (top), unmedicated PD
patients (middle), and medicated PD patients (bottom). (A, C, E) Change in attentional weight values during performance in the acquisition phase
of the multicue category task (Shohamy et al., 2008). (B, D, F) Change in attentional weight values during performance in the reversal phase of
the task. These are data from a typical run in all groups. In all groups, the model selected a random cue and categorized patterns based on that rule.
The example shown here is when the model selected Cue 2. In reversal, simulated healthy controls (HC) and PD off patients reversed along the
same cue (Cue 2) selected during acquisition. However, in the example shown here, simulated medicated PD (PD on) chose Cue 1 during
reversal, therefore opting out of reversal. This is because of increased tonic DA levels in PFC that increase competition among PFC nodes, and
thus, also increase the likelihood of shifting attention after receiving negative feedback.
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patients perform better than controls and unmedicated pa-
tients in the first block of the shifting phase, although the
other groups quickly caught up, and controls eventually
surpassed both PD groups due to the low learning rates
in the PD groups. This is a novel prediction of the computa-
tional model, which remains to be tested empirically.

DISCUSSION

Here, we presented a simple model that simulates a poten-
tial role for the mesofrontal and nigrostriatal dopamine in

stimulus and action selection in multicue category learning
tasks. The model assumes that basal ganglia (nigrostriatal)
dopamine is key for motor and S–R learning, whereas PFC
(mesocortical) dopamine is key for stimulus selection learn-
ing. The model provides a qualitative fit to some of the ex-
isting behavioral data (but see below for model limitations
and potential future extension to the model).
In agreement with existing experimental studies, the

model shows that in attentional learning and multiple-cue
category learning, bothmedicated and unmedicated PDpa-
tients are relatively impaired compared to healthy controls.

Figure 8. Performance in the reversal phase of the multicue category learning task (Shohamy et al., 2009). Here we assume that each run of
the model represents a simulated subject performing the task, and thus, different runs of the model represent different subjects running the task.
(A) Experimental results of the reversal phase of the multicue category learning task (adapted from Shohamy et al., 2009). Compare to simulation
results (above). (B) Simulation results of the reversal phase of the multicue category learning task (Shohamy et al., 2009). Simulated HC: Like
Shohamy et al. (2009), simulated HC subjects reversed along the same cue chosen during acquisition, although some few subjects opted out
of reversal, which we did not simulate. Simulated PD on: Simulated medicated PD patients opted out of reversal in almost two-thirds of the
runs (each run simulates a different PD patient). In some runs, the model did not opt out because it was still paying attention to the same cue
chosen during the acquisition phase. This, however, happens in roughly 30% of the runs, which is in agreement with the experimental results
(Shohamy et al., 2009). (C) Simulated unmedicated patients (PD off ) reversed along the same cue chosen during acquisition, as in healthy controls.
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We first tested the model by simulating an instrumental
conditioning task, which is considered a simple motor
learning task. This is to assure us that adding a stimulus
selection module to the model does not interfere with
learning simple tasks. In addition, in agreement with many
of the existing data, the model shows that both medicated
and unmedicated PD patients should be relatively impaired
at instrumental conditioning learning compared to con-
trols, a finding supported by multiple experimental studies
(Filoteo et al., 2007; Shohamy et al., 2006; Czernecki et al.,
2002).
The model also simulated performance in the “weather

prediction” task. In agreement with experimental studies,
the model shows that (a) most subjects reach suboptimal
(above chance) performance in this task and (b)medicated
PD patients are more impaired than unmedicated PD pa-
tients and controls in this task, as found experimentally
( Jahanshahi et al., 2010). Existing models of “weather
prediction” task performance do not account for this ef-
fect (Frank, 2005). Finally, the model provides a qualitative
fit to the multicue category task used by Shohamy et al.
(2009). As in the “weather prediction” task, the model ac-
counts for the finding that many subjects performing the
“slot machine” task achieve only suboptimal performance.
According to the model, suboptimal behavior in this task
is related to attentional limitations, that is, paying atten-
tion only to one single cue of the presented pattern. One
difference between the “weather prediction” task and the
“slot machine” task is that, in the latter, each cue is equally
diagnostic of the category membership, whereas in the
“weather prediction” task, some cues are better predictors
of category membership than others. Finally, the model
provided a mechanistic account for why medicated PD pa-
tients opt out of reversal on the multicue category task of

Shohamy et al. An increase in tonic dopamine levels within
PFC helps the model shift attention to other cues, which is
in agreement with the verbal description by Cools et al.
(2001) that dopaminergic medications enhance lateral
PFC functioning but impair and overdose orbito-frontal
cortex functioning.

Along the same lines, Cools et al. (2001) found that
medicated PD patients show better performance at task
switching than unmedicated PD patients. Aron, Poldrack,
and Wise (2009) presented a qualitative model showing
how PFC is key for task switching behavior. The findings
that medicated PD patients (a) opted out of reversal during
the performance of multiple-cue category learning tasks
(Shohamy et al., 2009), (b) showed fewer perseverative
errors than unmedicated PD patients in attentional shift-
ing tasks (Rutledge et al., 2009; Owen et al., 1993), and (c)
showed improved performance in the shifting version of
the “slot machine” task (see Figure 9) can be accounted
for in our model by a single mechanism. In all cases, medi-
cated PD patients quickly learn to change rules and pay at-
tention to different cues than one used during previous
task phases. Another factor underlying the opt-out perfor-
mance in medicated patients is that their performance
in the acquisition phase was numerically lower than that
of controls. In our model, this corresponds to lower at-
tentional weight values than that of healthy controls (Fig-
ure 7). This makes it easier for medicated PD patients to
switch attention to a different cue in the reversal phase. Ac-
cordingly, our model shows that overtraining medicated
PD patients in the acquisition phase of Shohamy et al.ʼs
(2009) task might lead to enhanced performance in the ac-
quisition phase and fewer medicated patients will opt out
of reversal than found in the original Shohamy et al. study,
which is a new prediction of the model. Unlike the original

Figure 9. Simulation results
of the modified versions of
the Shohamy et al. (2009) slot
machine task in which only one
cue is diagnostic of category
membership (see Table 2
for task description). The
acquisition phases in both
forced-cue and shifting tasks
are the same so they are
presented once. (A) Acquisition
performance in both forced-cue
and shifting tasks. (B) Reversal
performance of the forced-cue
task. (C) Shifting performance
in the shifting slot machine
task. Unlike the original
task, we found our simulated
medicated PD patients to
be more impaired at reversal learning in the forced-cue task (see figure above) as compared to the original version of the task discussed
previously. This is due in the model to increased attentional shifting performance in simulated medicated PD patients, which impairs
performance on this task. In the shifting task, we found simulated medicated PD patients to be better than controls and unmedicated patients
in the first block of the shifting phase. This is due to enhanced shifting in medicated PD patients. In the shifting task, we predict a significant
interaction between block number and group, such that medicated patients are more enhanced in early block but more impaired toward the
end of the shifting phase.
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“slot machine” task, in the forced-cue task (Table 2), medi-
cated PD patients were much more impaired at performing
the reversal phase compared to unmedicated patients. This
is due to enhanced attentional shifting, which impairs per-
formance in this task. Simulation results of the original
“slot machine” and forced-cue tasks might explain why dif-
ferent experimental studies report impairment (Czernecki
et al., 2002; Cools et al., 2001) or enhancement (Rutledge
et al., 2009) in reversal tasks in medicated PD patients. It
might be the case that medicated PD patients can cor-
rectly perform reversal tasks that involve the option to shift
attention to different cues (i.e., to perform the reversal
phase using a different cue than ones used during previ-
ous acquisition phases).

PFC in the model is key for stimulus selection and atten-
tional shifting. Disrupting PFC activity by adding noise
leads to delayed learning and the occurrence of more per-
severative errors than in the intact model. We simulated
lesions by adding noise to the activation levels of PFC,
as done in other models ( Joanisse & Seidenberg, 1999;
Olson & Humphreys, 1999). This is in agreement with be-
havioral observations (Owen et al., 1993) and modeling re-
sults (Amos, 2000).

Importantly, themodel also assumes that PD is associated
with decreased levels of both phasic and tonic dopamine
levels in the basal ganglia and PFC. Dopamine medications,
according to the model, increase tonic dopamine levels
in the basal ganglia and PFC, and thus, lead to a smaller
phasic dopamine signal than that of unmedicated PD pa-
tients. This is in agreement with existing experimental data
showing that medicated patients are impaired at associative
learning compared to unmedicated patients ( Jahanshahi
et al., 2010; Shohamy et al., 2006). This hypothesis is
also in agreement with earlier models (Guthrie et al., 2009),
although these models did not address the role of PFC do-
pamine to behavioral performance. This is, however, differ-
ent from other computational models, which assumes that
PD and dopaminergic medications mainly affect dopamine
levels in the basal ganglia (Frank, 2005).

Existing Computational Models of Attentional and
Motor Learning

We first review various neural network models that simu-
late performance in stimulus selection and attentional tasks.
Second, we review basal ganglia models of action selec-
tion learning.

Kruschke (2003, 2005) developed a series of computa-
tional models that simulate the role of attention in the
performance of different learning and attentional shifting
paradigms. The main feature of Kruschkeʼs models is the
inclusion of an attentional module that influences S–R
associative learning. This module controls which percep-
tual information affects motor responses. In these mod-
els, activation of the attentional module is modulated by
feedback provided to the network. By building different

models that revolve around this idea, Kruschke simulated
performance in the highlighting paradigm, a modified
blocking task that tests for attentional processes, and the
intradimensional/extradimensional shifting (IDS/EDS) tasks
(Kruschke, 2005). Similar to Kruschkeʼs models, our model
assumes that corrective feedback affects stimulus learn-
ing, yet our model additionally maps brain processes.
Cohen and Servan-Schreiber (1992) provided a simple

computational model of performance in the Stroop test.
The main feature of this model is that active maintenance
of the relevant dimension in PFC biases responses to per-
ceptual information in favor of that dimension. Similarly,
Cohenʼs model assumes that amphetamine enhances ac-
tivity and maintenance of relevant information in PFC. Do-
pamine projected to the attentional module was assumed
to increase the signal-to-noise ratio. Recently, Aron et al.
(2009) showed that a similar theory can account for perfor-
mance in the task switching task, although it was not a sim-
ulation model. Furthermore, Stafford and Gurney (2007)
have proposed a simulation model augmenting the Cohen
model, in which they showed that adding a basal ganglia
module to the original frontal module of Cohenʼs models
provides a better fit to human data on the Stroop test.
These models do not incorporate the role of PFC dopamine
to behavioral performance. However, similar to our model,
Gurney and et al. have also argued that the basal ganglia is
key for action selection and motor learning (Prescott et al.,
2006).
Ashby et al. (1998) provided a conceptual model (termed

COVIS) which assumes that the basal ganglia is key for
implicit category learning, whereas PFC is key for verbal
(explicit) category learning. Unlike Ashby et al.ʼs model,
neither ourmodel nor the experimental data we have simu-
lated made a distinction between the performance of ex-
plicit and implicit category learning tasks. Similar to our
model, Ashby et al. also assumed that PFC dopamine is
key for rule selection, and that PD is associated with a de-
crease in dopamine levels in the basal ganglia and PFC.
Monchi, Taylor, and Dagher (2000) and Monchi and

Taylor (1999) provided a biologically inspired computa-
tional model that simulates the role of the basal ganglia,
thalamus, and PFC in different WM tasks. These models
assume that basal ganglia input to PFC is key for mainte-
nance of information in WM. Monchi et al. simulate PD
by decreasing values of weights connecting PFC and stria-
tal units. Unlike our model, Monchi et al. did not sim-
ulate the role of dopamine in learning, as suggested by
experimental studies (Schultz et al., 1997). A potential
extension of our model is to include basal ganglia–PFC
loops which, according to Monchi et al., are key for WM
performance.
Braver and Cohen (2000) provided a computational

model showing how PFC learns to actively maintain rele-
vant information in WM. The model was trained using the
TD model, which accounts for experimental findings re-
lated to learning Pavlovian conditioning tasks. The design
of the TD algorithm is based on the assumption that
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reward prediction failure drives learning. The key feature of
the Braver and Cohen model is that a positive TD error
signal enhances the learning of gating of input into WM.
Accordingly, information that is not associated with do-
pamine phasic signal, such as background noise or task-
irrelevant stimuli, will not be gated into WM. This model
simulates performance in the standard AX–CPT task, which
was used in various experimental studies (Moustafa et al.,
2008; Cohen, Barch, Carter, & Servan-Schreiber, 1999). In
this task, subjects are presentedwith one stimulus at a time,
someof which are relevant and some are not. Relevant stim-
uli are, by definition, associated with receiving positive
feedback, and thus, elicit dopamine phasic responses. Ac-
cordingly, task-relevant stimuli are gated and maintained
in WM in PFC (for more elaboration on these ideas, see
Cohen, Braver, & Brown, 2002). Unlike our model, this
model does not simulate stimulus selection processes.
Unlike the Braver and Cohen model, Hazy, Frank, &

OʼReilly (2007) and OʼReilly and Frank (2006) argued that
the basal ganglia is key for filtering out irrelevant infor-
mation. Specifically, OʼReilly et al. argued that the basal
ganglia is key for gating perceptual information into WM,
whereas PFC is key for maintenance of information in WM.
Based on the models of OʼReilly and Houk (1995), Moustafa
and Maida (2007) show that the TD learning algorithm can
be used to simulate S–R learning as well as learning to gate
perceptual information into WM in delayed-response tasks.
Mostmodels assume that PD and dopaminemedications

mainly affect basal ganglia processes (Guthrie et al., 2009;
Moustafa & Maida, 2007; Frank, 2005), although experi-
mental studies found evidence that dopamine medications
do increase dopamine levels in PFC. Most importantly, the
abovementionedmodels do not, however, simulate perfor-
mance in attentional tasks, in which subjects should learn
to pay attention to some stimuli and ignore co-occurring
irrelevant stimuli or noise. This is a key problem for ani-
mal and human learning and survival as animals should
be able to learn to identify relevant objects—or features
of objects—that are important for survival. An interesting
example given by Kruschke (2005) is that if flat-headed
mushrooms are poisonous, but round-headed mushrooms
are nutritious, one should learn to pay attention only to
such relevant features of mushrooms (i.e., head shape)
and ignore others (e.g., stalk) in order to be able to survive.
The Braver and Cohen model does not simulate perfor-
mance in such behavioral processes. A laboratory equivalent
of such behavioral processes is the Wisconsin Card Sort-
ing Test and some of the tasks used by Shepard, Hovland,
and Jenkins (1961), in which paying attention to a subset
of features of a presented pattern does sufficiently lead
to optimal performance. Another similar paradigm is the
“slot machine” task (Shohamy et al., 2009), in which paying
attention to one cue of a presented multicue pattern leads
to sufficiently good, although not optimal, behavior. The
abovementioned models also did not incorporate the find-
ings that dopamine medications increase dopamine levels
in PFC, as found in experimental studies (Carey et al., 1995).

Limitations and Future Directions

The proposed model, although it can account for various
multiple-cue category learning processes, has some lim-
itations. For example, several studies have shown that
dopaminergic medications enhance learning from positive
feedback but impair learning fromnegative feedback (Frank,
2005). We do believe that an increase in tonic dopamine
levels, as proposed here, can account for this reward learn-
ing effects. Specifically, an increase in tonic dopamine lev-
els most likely increases excitability of spiny neurons in the
striatum (Mallet, Ballion, Le Moine, & Gonon, 2006) and
might thus facilitate learning in the direct cortico-striatal
pathway through the three-factor learning rule (Reynolds
et al., 2001). With regards to negative reinforcement or re-
versal deficits in medicated PD patients, it is perhaps the
case that dopamine medications (a) overdose orbito-frontal
cortex or inferior frontal cortex, which are brain regions
that were shown to be key for inhibiting motor responses
(Cools et al., 2001), and/or (b) enhance learning in the basal
ganglia indirect pathway (Frank, 2005). Future models will
attempt to address these studies, and address why some
studies report reversal deficits in medicated PD patients
(Cools et al., 2001), whereas others do not report reversal
deficits (Rutledge et al., 2009).

Furthermore, the model, in its current form, can only
learn to pay attention to one cue at a time. This, we recog-
nize, is a highly oversimplified model of stimulus selection,
as animals and human subjects can learn complex tasks
that require paying attention to configurations of multiple
cues, such as in the negative patterning task (Bussey et al.,
2000), or tasks used by Shepard et al. (1961). Learning
these complex tasks has been found to engage additional
brain areas, including the anterior cingulate. Furthermore,
some argue that the hippocampal region is needed for
configural learning, and thus, the use of multicue category
learning (Rudy & Sutherland, 1989). According to the
Gluck and Myers (1993) model, the hippocampus learns
to form compressed and differentiated representations of
input stimuli. Accordingly, in order for the model to reach
optimal behavior and employ a multicue strategy in both
the “weather prediction” task and Shohamy et al.ʼs (2009)
task, it will learn to form new representations of all pre-
sented patterns and then learn to map these new rep-
resentations to various responses. Like most actor–critic
models (Suri & Schultz, 1999; Houk, 1995), the model pre-
sented here only learns to make one motor response at a
time. Along the same lines, our model does not account for
transfer generalization processes in acquisition and acquired
equivalence tasks because these processes arguably rely
on the integrity of the hippocampal region (Myers et al.,
2002; Gluck & Myers, 1993). Future modeling plans will
attempt to simulate the role of the anterior cingulate and
hippocampus in more demanding attentional processes.

It is important to note that a good fit does not make a
theory plausible (for a discussion, see Roberts & Pashler,
2000): A good fit is but one aspect of a plausible theory.
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The possibility that some other parameter values might
work (which might then suggest a different theory) is un-
avoidable (see Roberts & Pashler, 2000). We also found
that, assuming that PD and dopamine medications affect
(a) tonic dopamine levels alone or (b) affect one brain struc-
ture alone, did not account for all existing data, although
our attempts do not rule out the possibility of finding other
parameter values (and theories) to explain existing results.

Furthermore, in addition to providing a good fit, our
model is largely constrained by existing biological data (e.g.,
role of dopamine in learning and performance, effects of do-
pamine medication on different brain areas, among others).
One limitation, however, is that like most existing models
(Frank, 2005; Amos, 2000; Suri & Schultz, 1999; Gluck &
Myers, 1993), values chosen for learning rate and gain pa-
rameters in our model do not necessarily correspond to
biological features, and it is possible that some other val-
ues might lead to the same results (see Roberts & Pashler,
2000 for a discussion). However, we found that actual val-
ues are not critical for simulation results presented above,
that is, variations in parameter values do not dramatically
change model performance. Nevertheless, the key feature
of the model is that parameter values (or minor variations
of these values) chosen for the simulations of PD and do-
paminergic medications might reflect how PD and dopa-
minergic medications affect biological features (phasic and
tonic dopamine levels). The model suggests that PD and
dopaminergic medications affect phasic and tonic dopa-
mine firing in the basal ganglia and PFC. Furthermore, we
also note that a modelʼs learning performance does not ex-
actly match the learning performance of the experimental
data. This is because the goal of the model is to capture be-
havioral differences (a) in various tasks and (b) among dif-
ferent groups (controls and two PD patient groups), which
the model was able to simulate with some success.

Another limitation is that the model does not incorpo-
rate functional contributions of different dopamine recep-
tors to behavioral performance. For example, Frank (2005)
argued that D1 receptors in the basal ganglia are key for
reward learning, whereas D2 receptors are key for pun-
ishment and avoidance learning (for similar ideas, see
Prescott et al., 2006). As mentioned above, the model, in
its current form, does not simulate performance in reward/
punishment learning tasks. The Frank model does not ad-
dress the differential contribution of different DA recep-
tors in PFC. Cohen et al. (2002) argued that D1 and D2
receptors in PFC play different roles, such that tonic dopa-
mine is key for maintenance of information in WM via D1
receptors modulation, whereas phasic dopamine is key for
learning (synaptic modification) via D2 receptor modula-
tion (but see Schultz, 2007 for different ideas regarding
behavioral functions of D1 and D2 receptors). Our model
does not incorporate the differential contributions of do-
pamine receptors to behavioral performance, although it
does not necessarily conflict with assumptions of the Frank
and Cohen models. It is important to note here that some
studies found that increase of dopamine in PFC does im-

pair its function (Takahashi et al., 2008). We are led to as-
sume that it is perhaps an excessive increase in dopamine
levels beyond that of normal doses of Parkinsonian medi-
cations that might impair prefrontal function. This finding
is not accounted for by our model.
Another limitation of the model is that it only provides a

qualitative fit to existing behavioral data. This is because the
model has a few free parameters and, within this constraint,
seeks to account for a broad range of experimental data. To
provide a quantitative fit to these and other behavioral re-
sults, a model would require many more free parameters.
Despite its limitations, our model does provide several

new predictions. For example, in the multiple-cue cate-
gory learning task used by Shohamy et al. (2009), we pre-
dict that nonmedicated PD patients perform better than
medicated PD patients at learning the acquisition phase.
We also predict that unmedicated PD patients, unlike med-
icated PD patients, will reverse successfully along the same
cue chosen during the acquisition phase. As mentioned
above, we also predict that overtraining medicated PD pa-
tients on the Shohamy et al. (2009) “slot machine” task
might lead to enhanced performance in the acquisition
phase, and that fewer medicated PD patients will then
opt out of reversal than in the original Shohamy et al.
study. Furthermore, as shown in Figure 9, we predict that
medicated PD patients will show impairment at the rever-
sal phase of the forced-cue “slot machine” task but will
show enhancement at the shifting phase of the modified
“slot machine” task (see Table 2 for task description). Fu-
ture experimental work should confirm or refute these
predictions.

APPENDIX

Model Details: Learning and Weight Update

We assume that learning in the attentional (PFC) and mo-
tor (striatal) modules relies on phasic dopamine signals
projected from the midbrain (for similar ideas, see Suri
& Schultz, 1999). In this model, phasic dopamine signals
are key for both attentional and S–R learning. The model is
trained using the TD algorithm, which simulates various
characteristics of phasic dopamine firing (Schultz et al.,
1997). Let TD(t) be the TD error signal at time t (also
known as the effective reinforcement); R(t) be the reward
presented at time t (reward is 1 when reward is presented
after correct feedback and is 0 otherwise); P(t) be the re-
ward prediction at time t; γ be the discount factor (which
determines how future reward affect reward predictions; is
set to 0.99 in all simulation runs presented here). The TD
error is computed as follows:

TDðtÞ ¼ RðtÞ þ γPðtÞ − Pðt − 1Þ

Let wi be the weight connecting unit i to the critic node,
n be the number of input nodes, and xi be activation of
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input units (which take binary (0,1) values). Reward pre-
diction P(t) is computed by the critic node as follows:

PðtÞ ¼
Xn
i¼1

wiðtÞxiðtÞ

Now, we describe the equations of the actor module.
Let wji be the weight connecting unit i to unit j; δji(t) be
the Gaussian noise associated with the weight wji (with
zero mean and standard deviation of 0.025; also see
Moustafa & Maida, 2007).
All weights are perturbed using Gaussian noise, which

is included to induce exploration in the system. Let uji be
the perturbed weight connecting unit i to unit j. Per-
turbed weight values are computed as follows:

ujiðtÞ ¼ wjiðtÞ þ δjiðtÞ;

Activations of all units in the network are computed
using a sigmoidal function:

f ðxÞ ¼ 1
1þ e−Gmx

where Gm is the gain parameter (Gpfc for PFC and Gbg for
basal ganglia module). Let n be the number of input (or
prefrontal) units. The input units take binary (0,1) values.
The activation of a unit j is computed as:

AjðtÞ ¼ f
Xn
i¼1

ujiðtÞxiðtÞ
 !

In the model, a winner-take-all network computes the
unit with the highest activation in both the attentional
(PFC) and motor (striatal) modules. In other words, we
assume that a winner-take-all competition among striatal
neurons is the mechanism underlying the choice of motor
responses. Similarly, we assume that a winner-take-all com-
petition among PFC neurons is the mechanism underlying
competition among attentional nodes.

Apj ¼ 1 if Aj > β & Aj > Ai for all i ≠ j
0 otherwise

�

where β is a threshold, Aj is the activation of unit j, Aj
p is the

activation of unit j resulting from winner-take-all computa-
tions (for similar ideas, see Suri & Schultz, 1999; Schultz
et al., 1997).
Learning in themodel is based on the three-factor rule of

learning—also known as the dopamine-based Hebbian
learning rule (for similar ideas, see Guthrie et al., 2009). Ac-
cording to this rule, the phasic dopamine signal is key for
strengthening weights linking active nodes. It is also key for

weakening weights linking an active node and another
inactive node. Also, different computational models incor-
porate this learning rule (Guthrie et al., 2009; Braver &
Cohen, 2000; Suri & Schultz, 1999).

Let LRm be the learning rate. There are two learning
rate parameters in the model, one for the PFC (stimulus
selection) module and one for the basal ganglia (motor)
response module. Let xi represent the activation level of
the presynaptic node. The weight update rule is

wjiðt þ 1Þ ¼ wjiðtÞ þ LRmTDðtÞxiðtÞApj

Lesioning PFC in the model is simulated by adding
noise to activation levels of PFC nodes. Let δ be Gaussian
noise, Aj

pre be activation before adding noise to PFC activa-
tion levels, Aj

post be activation after adding noise to PFC
activation. Then, for every PFC unit j,

Apostj ¼ Aprej þ δj

Strategy Analysis

Wehave conducted strategy analysis onmodel output from
the “slot machine” task following the same procedures de-
scribed previously for use with empirical data from human
subjects (Shohamy et al., 2004, 2009; Gluck et al., 2002). In
the original “slot machine” task, suboptimal performance
(80% correct) can be achieved using a one-cue strategy
based on any one of the three cues, whereas optimal per-
formance (100% correct) can be achieved using a config-
ural strategy based on all three cues. To determine which
strategy a subject was using, that subjectʼs trial-by-trial re-
sponses were compared against “ideal data” that would
have been expected if a subject were consistently following
either a one-cue or a configural strategy. In the same way,
we compared the model output in each simulation run
against ideal data and classed the simulationʼs “strategy,”
based on which set of ideal data more closely approxi-
mated the modelʼs actual performance. Most importantly,
in the reversal phase, we considered whether, in each
run, the model was responding based on the same specific
cue during acquisition and reversal, but simply reversed
response valence, or whether responding was based on a
new cue during the reversal, meaning attention had shifted.
This approach allowed us to classify individual simulation
runs as attending to the same cue during acquisition and
reversal, or as shifting attention to a new cue during the
reversal phase.
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