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1. Introduction

ABSTRACT

Building on our previous neurocomputational models of basal ganglia and hippocampal region function
(and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of
these models can inform our understanding of the interaction between the basal ganglia and hippocam-
pal region in associative learning and transfer generalization across various patient populations. As a
common test bed for exploring interactions between these brain regions and neuromodulators, we focus
on the acquired equivalence task, an associative learning paradigm in which stimuli that have been asso-
ciated with the same outcome acquire a functional similarity such that subsequent generalization
between these stimuli increases. This task has been used to test cognitive dysfunction in various patient
populations with damages to the hippocampal region and basal ganglia, including studies of patients
with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simu-
lation results show that damage to the hippocampal region—as in patients with hippocampal atrophy
(HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired
transfer generalization performance. Moreover, the model demonstrates how PD and anterior communi-
cating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mecha-
nisms—can have similar effects on acquired equivalence performance. In particular, the model shows
that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acqui-
sition learning but intact transfer generalization. Similarly, the model shows that simulating the loss
of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learn-
ing. We argue from this that changes in associative learning of stimulus-action pathways (in the basal
ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have sim-
ilar functional effects.

Published by Elsevier Inc.

2005; Myers et al., 2003, 2008; Weiler, Bellebaum, Brune, Juckel,
& Daum, 2009) and animal lesion (Coutureau et al., 2002) studies

As a common test bed for neurocomputational exploration of
the interactions between the basal ganglia (and dopamine) and
the hippocampal region (and acetylcholine), we focus on the ac-
quired equivalence task, an associative learning paradigm in which
stimuli that have been associated with the same outcome acquire a
functional similarity such that subsequent generalization between
these stimuli increases (Bondi, Kaszniak, Rapcsak, & Butters, 1993;
Grice & Davis, 1960). Both human neuropsychological (Bodi, Csibri,
Myers, Gluck, & Keri, 2009; Keri, Nagy, Kelemen, Myers, & Gluck,
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show that both the hippocampal region and the basal ganglia are
important for acquired equivalence.

The acquired equivalence task has two phases: acquisition
(learning to associate two stimuli) and transfer generalization
(learning that cues become equivalent when they were previously
associated with the same response). Several neuropsychological
studies from our lab have argued that the associative learning
and transfer generalization processes rely on different neural
structures (Myers et al., 2003, 2008): initial associative learning re-
lies on the integrity of the basal ganglia, whereas transfer general-
ization relies on the integrity of the hippocampal region.

For example, patients with mild Alzheimer’s disease, hippocam-
pal atrophy (HA), and hypoxia are impaired at the transfer gener-
alization phase of the task (Bodi et al., 2009; Myers et al., 2003,
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2008) (see Table 1). Mild Alzheimer’s disease is associated with
dysfunction to the medial temporal lobe and hippocampal region
(de Leon, George, Stylopoulos, Smith, & Miller, 1989). Similarly,
hypoxic brain injury causes bilateral neuropathology of the hippo-
campus and associated medial temporal areas (Kesner & Hopkins,
2001). Recently, Di Paola et al. (2008) reported hippocampal dys-
function in hypoxic patients. These results suggest that the hippo-
campal region plays an important role in transfer generalization
performance.

Keri et al. (2005) also found that schizophrenic patients are im-
paired at transfer generalization in the acquired equivalence task.
These results were also confirmed in a recent study (Weiler
et al., 2009). It is likely that impaired transfer generalization per-
formance in schizophrenic patients is due to hippocampal dysfunc-
tion, which has been reported in the literature (Goldman &
Mitchell, 2004; Goldman et al., 2007; Lodge & Grace, 2008; Spole-
tini et al., 2009). Schizophrenia is a psychiatric disorder which is
mainly associated with positive symptoms (e.g., delusions and hal-
lucinations) and negative symptoms (e.g., apathy). It has been
shown that schizophrenic patients have mediotemporal lobe and
hippocampal dysfunction (Bogerts, Meertz, & Schonfeldt-Bausch,
1985; Boyer, Phillips, Rousseau, & Ilivitsky, 2007; Goldman &
Mitchell, 2004; Heckers, 2001; Keri, 2008; Weinberger, 1999). Bog-
erts et al. (1985) also reported a decrease in hippocampal size but
an intact basal ganglia structure in schizophrenic patients as seen
in structural brain imaging. Schizophrenic patients also show
declarative memory deficits, which suggest hippocampal region
dysfunction (Aleman, Hijman, de Haan, & Kahn, 1999; Cirillo &
Seidman, 2003). Lesioning the hippocampus in animals is also used
as a model of schizophrenia (Tseng, Chambers, & Lipska, 2009). In
addition, Rametti et al. (2009) reported decreased hippocampal
activity in schizophrenic patients performing declarative memory
tasks. Our model argues that hippocampal dysfunction is responsi-
ble for transfer generalization deficits in schizophrenic patients.

Unlike mild Alzheimer’s disease, schizophrenia, and hypoxia,
patients with Parkinson’s disease and ACoA (anterior communicat-
ing artery) aneurysm are impaired at the acquisition phase of the
acquired equivalence task. Parkinson’s disease is a neurodegenera-
tive disorder associated with reduced dopamine levels in the basal
ganglia (Jellinger, 1999; Kish, Shannak, & Hornykiewicz, 1988). On
the other hand, the ACoA is one of the most common sites of aneu-
rysm in the brain. The ACoA sends projection to the prefrontal cor-
tex and the basal forebrain (Wright, Boeve, & Malec, 1999), and an
aneurysm to ACoA is found to affect basal forebrain functioning
(Wright et al,, 1999). Patients with ACoA aneurysm have basal
forebrain damage, which affects cholinergic input to the hippo-
campus. Patients with ACoA aneurysm have amnesia (O’Connor &
Lafleche, 2004), executive dysfunction (Simard, Rouleau, Brosseau,
Laframboise, & Bojanowsky, 2003), and other cognitive deficits
(Bondi et al., 1993; DeLuca, 1993; Diamond, DeLuca, & Kelley,
1997; Mavaddat, Sahakian, Hutchinson, & Kirkpatrick, 1999). We
argue that ACoA amnesia results from basal forebrain damage that
disrupts learning in the hippocampal region (Myers et al., 2001,
2002). Cholinergic treatments are used to treat patients with ACoA

Table 1
Acquired equivalence performance in various patient populations. “X” means
impairment while “-" signifies performance comparable to healthy controls.

Acquisition  Transfer

Hippocampal atrophy/hypoxic/mild Alzheimer’s - X
(Bodi et al., 2009; Myers et al., 2003, 2008)

Parkinson’s patients (medicated) (Myers et al., 2003) X -

ACoA aneurysm (Basal forebrain amnesia) (Myers X -
et al., 2008)

Schizophrenia (Keri, Juhasz, et al., 2005) - X

aneurysm (Benke, Koylu, Delazer, Trinka, & Kemmler, 2005), which
is consistent with a dysfunction to the cholinergic system in these
patients. See Table 1 for summary of patient populations’ perfor-
mance on the acquired equivalence task.

Our model seeks to explain how various brain disorders affect
acquisition and transfer generalization performance by simulating
the interactions between changes in dopamine and acetylcholine
in the basal ganglia and hippocampal region, respectively, as well
as from damage to either or both regions. The model integrates fea-
tures from our existing models of the basal ganglia (Moustafa &
Gluck, 2010) and hippocampal region (Moustafa, Gluck, & Myers,
2009; Myers, Gluck, & Granger, 1995). In addition, the model ex-
plains how disruption to the dopaminergic (as in Parkinson’s dis-
ease) or cholinergic (as in ACoA aneurysm) systems affects
acquisition performance. Dopamine is produced in the midbrain
and is projected to the basal ganglia and prefrontal cortex. Several
studies show that phasic dopamine is important for stimulus-re-
sponse learning (Schultz, Dayan, & Montague, 1997; Wickens,
Begg, & Arbuthnott, 1996). Our model assumes that phasic dopa-
mine is key for stimulus-response learning through synaptic mod-
ification in the basal ganglia, as we have done in our past models of
the basal ganglia (Guthrie, Myers, & Gluck, 2009; Moustafa &
Gluck, 2010; Moustafa & Maida, 2007).

The basal forebrain is an important source of the neurotrans-
mitter acetylcholine throughout the cortex, with the medial sep-
tum in particular sending acetylcholine to the hippocampal
region (Hasselmo & Barkai, 1995; Nauta & Feirtag, 1986; Nolte,
1993). In a recent study, Kukolja, Thiel, and Fink (2009) found that
human subjects taking cholinergic medications show enhanced
hippocampal functions such as encoding. Septal lesions disrupt
hippocampal function and impair acquisition of conditioned eye-
blinking in rabbits (Berry & Thompson, 1979; Salvatierra & Berry,
1989; Powell, Milligan, & Buchanan, 1976). Similarly, studies show
that scopolamine (an acetylcholine antagonist) impairs encoding of
new information in humans and animals, a behavioral task that re-
lies on the integrity of the hippocampal region (Carli, Luschi, &
Samanin, 1997; Mewaldt & Ghoneim, 1979). Furthermore, rodent
studies have shown that acetylcholine is important for synaptic
modification in the hippocampal region (Huerta & Lisman, 1993).
In agreement with these experimental studies, our model assumes
that acetylcholine plays a critical role in learning in the hippocam-
pal region, much as in our earlier models of septo-hippocampal
function in associative learning (Myers et al., 1996; Rokers,
Mercado, Allen, Myers, & Gluck, 2002).

Our integrated model of basal ganglia and hippocampal region
function also attempts to explain how patients with ACoA aneu-
rysm or hippocampal atrophy—brain disorders that affect the hip-
pocampal region—show different performance in the acquired
equivalence task. The model assumes that hippocampal atrophy
(and also mild Alzheimer’s disease and hypoxia) impairs hippo-
campal function, while ACoA aneurysm slows down learning in
the hippocampal region. The model also shows how patients with
ACoA aneurysm or Parkinson’s disease—brain disorders that affect
different brain systems—show similar performance in the acquired
equivalence task. The model shows that decreasing learning rate
parameter values either in the hippocampal region or basal ganglia
modules slows down acquisition but does not affect transfer gen-
eralization performance. See Table 1 for summary of various pa-
tient groups’ performance in the acquired equivalence task.

The model has two modules: basal ganglia and hippocampal re-
gion (Fig. 1). In agreement with most models (Frank, 2005; Mous-
tafa & Gluck, 2010), the basal ganglia is key for stimulus-response
learning. Also in agreement with computational models and exper-
imental data (Dusek & Eichenbaum, 1997; Gluck & Myers, 1993),
we assume that the hippocampal region is important for stimu-
lus-stimulus representational processes. In the model, dopamine
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Hippocampus

Input

Basal Ganglia

Fig. 1. Model architecture. Acetylcholine (Ach) projected from basal forebrain is
key for learning in the hippocampal module as in Myers et al. (Myers et al., 1996),
while dopamine (DA) is key for learning in the basal ganglia module. Weight update
in the hippocampal module is based on Hebbian learning. The basal ganglia and
dopamine are modeled using the TD model and actor-critic architecture (also see
Moustafa & Gluck, 2010). Dotted lines represent neuromodulatory effects. Abbre-
viations: DA, dopamine; Ach, acetylcholine.

is key for learning in the basal ganglia, while acetylcholine is key
for learning in the hippocampal region (see Appendix A for more
details on model simulations).

2. Results

Below, we present simulation results of healthy control sub-
jects, subjects with hippocampal damage, and lastly Parkinson’s
disease and ACoA aneurysm patients. As in all experimental studies
with the acquired equivalence task, we present simulation results
in terms of number of errors in the acquisition and transfer
(including retention and transfer trials) phases.

2.1. Healthy controls

As with experimental results from healthy controls in various
studies, simulation results show that simulated controls make
more errors in retention than in transfer trials of the transfer phase
(see healthy control data in Figs. 3-5): In the model, hippocampal
representations of antecedents and consequents of the “retention”
pairs are more overlapped than the representations of “transfer”
pair. Accordingly, the model makes more errors during the perfor-
mance of transfer trials. In other words, the model suggests that

(a) Intact hippocampal representation

the strength of acquired equivalence effect is related to the degree
of overlap of representations of stimuli in the hippocampal region:
The greater the overlap, the stronger the acquired equivalence ef-
fect. Simulation results also show that increasing the number of
training trials in the acquisition phase leads to a stronger acquired
equivalence effect (not shown).

2.2. Hippocampal lesion

We simulated lesioning of the hippocampal region by running
the simulations without the hippocampal module (see Appendix
A). This results in stimulus-response learning in the absence of dy-
namic modification of stimulus representations. Simulation results
are very similar to the performance of patients with hippocampal
damage, including patients with hippocampal atrophy, hypoxia,
schizophrenia, and mild Alzheimer’s disease (Fig. 3). Without a
hippocampal module, the model only uses the basal ganglia for
stimulus-response learning. Accordingly, model’s performance in
the transfer trials is at chance level.

2.3. Dopaminergic and cholinergic lesions

As noted earlier, our model argues that dopamine is important
for synaptic modification in the corticostriatal pathway, and ace-
tylcholine is important for learning in the hippocampal region
module. We simulated Parkinson’s disease by decreasing the value
of the learning rate parameter in the basal ganglia module, as we
had previously done in Shohamy, Myers, Kalanithi, and Gluck
(2008). Simulation results show that decreasing the learning rate
parameter value in the basal ganglia leads to slow acquisition
learning and intact transfer generalization performance (Fig. 4).
Similarly, we simulated ACoA aneurysm by decreasing the value
of the learning rate in the hippocampal module capturing the func-
tional effect of reducing cholinergic inputs to the hippocampal re-
gion. As in simulated Parkinson’s disease (with loss of dopamine
inputs), our modeling results show that decreasing the learning
rate in the hippocampal region leads to slow acquisition learning,
as in ACoA aneurysm patients (Fig. 5).

3. Discussion

We present a new integrated neural network model that simu-
lates functional roles of the basal ganglia and hippocampal region
in associative learning and transfer generalization performance.
This model integrates various features from our past models of
the basal ganglia (Guthrie et al., 2009; Moustafa & Gluck, 2010)
and hippocampal region (Gluck & Myers, 1993; Myers et al.,
1995). The model simulates performance in the acquired

(b) Lesioned hippocampal representation

Fig. 2. Representational (and compression) processes of the hippocampal region. (a) Compression in intact hippocampal region. During associative learning, the hippocampal
region forms compressed representations of antecedents and consequents. In this example, the hippocampal region compresses the representations of A1, A2, X1, X2 when
trained on A1 — X1, A2 — X1, and A1 — X2. This allows the model to associate A2 with X2 during transfer test (and thus acquired equivalence effect). (b) Lesioning the
hippocampal region interferes with compression processes. Using the same example in (a), the model here does not properly compress the representations of input stimuli,
and thus does not show acquired equivalence effect (i.e., it does not learn to associate A2 with X2).
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(a) Hippocampal Atrophy (Myers et al., 2003). HC = healthy controls; HA = hippocampal atrophy.
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(b) Hypoxic patients (Myers et al., 2008). HP = hypoxia.
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(c) Mild Alzheimer’s patients (Bodi et al., 2009). AD = Alzheimer’s disease.
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(d) Schizophrenic patients (Keri et al., 2005). SZ = Schizophrenia.
Fig. 3. Performance of various patient groups with hippocampal damage in the acquired equivalence task. (a-d) Patients with hippocampal atrophy, hypoxia, or

schizophrenia, were impaired at transfer generalization performance, particularly during the performance of transfer trials (Keri, Juhasz, et al., 2005; Myers et al., 2003, 2008).
(e) Simulated hippocampal damage. Simulation results are quantitatively similar to all other groups with hippocampal damage.

equivalence task in various patient groups, including patients with rysm, and schizophrenia. Simulation results show that lesioning
Parkinson’s disease, mild Alzheimer’s disease, hypoxia, ACoA aneu- the hippocampal region or disrupting the dopaminergic or
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(e) Simulated hippocampal damage. HL = hippocampal lesion.
Fig. 3 (continued)
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(a) Parkinson’s disease (Myers et al., 2003). PD = Parkinson’s disease.
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(b) Simulated Parkinson’s disease

Fig. 4. Parkinson’s disease patients’ performance in the acquired equivalence task. (a) Patients with Parkinson’s disease are impaired at acquisition performance but showed
similar performance to healthy controls on the transfer phase. (b) Simulated Parkinson’s disease show similar results.

cholinergic signal interferes with behavioral performance of the
acquired equivalence task. First, the model simulates behavioral
results in healthy controls. In the transfer phase, the model makes
more errors during the performance of transfer than retention tri-
als, as found in all experimental studies using the acquired equiv-
alence task (Bodi et al., 2009; Keri, Nagy, et al., 2005; Myers et al.,
2003, 2008).

The basal ganglia module in the model is important for stimu-
lus-response learning, in agreement with many modeling and

experimental studies (Frank, 2005; Houk, 1995a, 2005; Jog, Kubota,
Connolly, Hillegaart, & Graybiel, 1999; Shohamy, Myers, Geghman,
Sage, & Gluck, 2006). The hippocampal module in the model is
important for stimulus-stimulus representational learning and re-
sponds to the presentation of antecedents and consequents, as in
our past models (Gluck & Myers, 1993). This is in agreement with
existing neurophysiological studies reporting that hippocampal
neurons respond to the presentation of conditioned and uncondi-
tioned stimuli (McEchron & Disterhoft, 1997, 1999). Specifically,
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(a) ACoA aneurysm (Myers et al., 2008). ACoA = anterior communicating artery aneurysm.
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(b) Simulated ACoA aneurysm

Fig. 5. (a) As similar to Parkinson’s disease, patients with ACoA aneurysm are impaired at acquisition performance. (b) Simulated patients with ACoA aneurysm show similar

results.

the simulated hippocampal region in our model is responsible for
compressing stimulus inputs that repeatedly co-occur, as we have
done in our past models (Moustafa et al., 2009; Myers et al., 1995).
Supporting evidence that subjects compress the representation of
stimuli in the acquired equivalence paradigm, Meeter, Shohamy,
and Myers (2009) found that subjects tend to confuse stimuli that
were previously associated with the same response in the acquired
equivalence paradigm. This study suggests that subjects’ confusion
of stimuli is likely due to overlapped representations of these stim-
uli, as proposed in our model. In addition, research shows that hip-
pocampal lesioned rats are impaired at performing the sensory
preconditioning paradigm (Port & Patterson, 1984), which also re-
lies on compression processes. Lesioning the hippocampal region
in the model weakens stimulus—stimulus representational learning
(see Fig. 2), and leads to making more errors during the perfor-
mance of transfer than retention trials in the transfer phase of
the acquired equivalence task.

Furthermore, our modeling results show that different manipu-
lations of different components within the hippocampal module
lead to different behavioral performance, which is in agreement
with existing experimental studies. Our simulations showed that
lesioning the hippocampal region leads to weak compression
(and thus impaired transfer performance). However, our modeling
results show that decreasing the learning rate parameter value in
the hippocampal module (which simulates the decreased acetyl-
choline levels in the hippocampal region) leads to slower compres-
sion of stimuli. This consequently leads to slow learning in the
basal ganglia module as well, thus slow stimulus-response learn-
ing. Similarly, decreasing the learning rate in the basal ganglia
module, capturing a loss of dopamine inputs, leads to impaired

acquisition learning, which models Parkinson’s disease patients’
performance in the acquired equivalence task.

Unlike our model, most existing computational models focus on
simulating the role of one neuromodulator to performance (Frank,
2005; Hasselmo, Wyble, & Wallenstein, 1996; Moustafa & Gluck,
2010 ; Myers et al., 1996), but for some exceptions see Cox and
Krichmar (2009), Frank, Scheres, and Sherman (2007), Doya
(2002, 2008). Our model captures the interaction between two
neuromodulators in two brain regions, arguing that dopamine is
key for stimulus-response learning in the basal ganglia, while ace-
tylcholine is key for stimulus-stimulus learning in the hippocampal
region.

3.1. Acetylcholine, dopamine, and learning

A wide range of experimental studies show that acetylcholine is
important for learning in the hippocampal region, whereas dopa-
mine is important for learning in the basal ganglia.

Orsetti, Casamenti, and Pepeu (1996) found that stimulus-re-
sponse learning performance is correlated with acetylcholine lev-
els in the hippocampal region. These data argue against the view
that basal ganglia alone is key for stimulus-response learning
(Houk, 1995b). In our model, the hippocampal region forms repre-
sentations of stimuli and send these signals to the basal ganglia for
further stimulus-response learning, as in the earlier Gluck and
Myers (1993) model of cortico-hippocampal function.

Studies also show that galantamine (a cholinesterase inhibitor)
enhances eye-blink conditioning learning performance in both
young (Simon, Knuckley, & Powell, 2004) and old (Weible, Oh,
Lee, & Disterhoft, 2004) rabbits, a behavioral task that has been
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argued to rely on the integrity of the hippocampal region. Interest-
ingly, using rabbits, Woodruff-Pak, Lehr, Li, and Liu-Chen (2008)
found that enhanced eye-blink conditioning learning correlates
with nicotinic acetylcholine receptors binding in the hippocampal
region. These results suggest that increase in acetylcholine levels in
the hippocampal region is important for enhanced eye-blink condi-
tioning learning. These experimental data also are consistent with
model assumption that acetylcholine is key for learning in the hip-
pocampal region.

As for nigrostriatal dopamine, synaptic plasticity was found in
the corticostriatal pathway (Reynolds & Wickens, 2002; Reynolds,
Hyland, & Wickens, 2001; Wickens, 1997; Wilson, 2004). It has
been reported that dopamine projected to the striatum is neces-
sary for modifying synaptic strength in the corticostriatal pathway
(Cepeda, Buchwald, & Levine, 1993; Wickens et al., 1996; Wilson,
2004). In an in vitro study on spiny neurons, Wickens et al.
(1996) found that dopamine plays an important role in inducing
long-term potentiation (LTP) in the corticostriatal pathway. We
simulated the effects of dopamine on learning using the 3-factor
rule of learning, as we have done in our earlier models (Guthrie
et al., 2009; Moustafa & Gluck, 2010; Reynolds & Wickens, 2002).

3.2. Brain disorders and behavior

Below, we discuss behavioral performance in the acquired
equivalence and other related tasks in various patient groups.

3.2.1. Parkinson’s disease

Our simulation results show that Parkinson’s disease patients
are impaired at acquisition but show intact performance at the
transfer phase of the acquired equivalence task, as reported in
Myers et al. (2003). This is consistent with experimental findings
of Shohamy et al. (2006) showing similar results albeit using a dif-
ferent behavioral task. In addition, Parkinson’s disease patients’
impaired performance in stimulus-response learning tasks has
been shown in various experimental studies (Frank, Seeberger, &
O'Reilly, 2004; Jahanshahi, Wilkinson, Gahir, Dharminda, & Lagna-
do, 2009; Knowlton, Mangels, & Squire, 1996; Moustafa, Sherman,
& Frank, 2008; Shohamy et al., 2006).

3.2.2. ACoA aneurysm

Consistent with experimental results (Myers et al., 2008), our
simulation results show that patients with ACoA aneurysm are im-
paired at the acquisition phase of the acquired equivalence task.
This is consistent with existing data showing that patients with
ACoA aneurysm also show impairment learning other behavioral
tasks, including eye-blink conditioning (Myer, Bryant, DeLuca, &
Gluck, 2002; Myers, Deluca, Hopkins, & Gluck, 2006; Myers et al.,
2001): Performing both of the acquisition phase of the acquired
equivalence task and the eye-blink conditioning task relies on
associative learning processes.

3.2.3. Schizophrenia

Consistent with experimental studies (Keri, Nagy, et al., 2005),
our simulation results show that schizophrenic patients are im-
paired at transfer generalization but show intact acquisition perfor-
mance. The neural dysfunction in schizophrenia is heterogonous,
with various studies reporting hippocampal, prefrontal, and striatal
dysfunction. Some argue that positive symptoms are due to basal
ganglia dysfunction (Keri, 2008), while others argue that positive
(and negative and cognitive) symptoms are due to prefrontal (Rolls,
Loh, Deco, & Winterer, 2008) or hippocampal (Chen, 1995; Lisman &
Otmakhova, 2001; Oertel et al., 2007) dysfunction. The model
presented here argues that impaired transfer performance in the
acquired equivalence task in schizophrenic patients is due to a dys-
function to the hippocampal region. Hippocampal dysfunction has

been reported in schizophrenic patients (Goldman & Mitchell,
2004; Keri, 2008). Given that schizophrenic patients’ performance
is very similar to patients with mild Alzheimer’s disease, hippocam-
pal atrophy, and hypoxia, it is very likely that transfer generaliza-
tion impairment in schizophrenic patients is due to hippocampal
dysfunction.

With regard to the acquisition phase of the acquired equiva-
lence task, it is debatable whether schizophrenic patients show
feedback learning deficits. Waltz, Frank, Robinson, and Gold
(2007) found that patients are impaired at learning from reward
but not from punishment. In our own prior studies (Farkas et al.,
2008; Polgar et al., 2008), we found that deficit patients (i.e.,
schizophrenic patients with negative symptoms) show feedback
learning impairments, arguing that the basal ganglia might be
responsible for negative symptoms in schizophrenia. In Keri, Ju-
hasz, et al. (2005), Keri et al. (2000) and Weickert et al. (2002),
we found intact performance in schizophrenic patients on a mul-
ti-cue probabilistic learning task (the “weather prediction” task).
Overall, consistent with many existing experimental studies, our
model assumes that schizophrenic patients show intact feedback
learning.

3.2.4. Alzheimer’s disease

Hippocampal dysfunction has been consistently reported in
Alzheimer’s disease patients. For example, several studies report
dysfunction to different segments of the hippocampus in Alzhei-
mer’s disease patients (Apostolova et al., 2006; de Leon et al.,
1989; Jack et al., 2000). In addition, fMRI studies report decreased
hippocampal activity in Alzheimer’s disease patients (Allen et al.,
2007; Wang et al., 2006). Our model argues that transfer general-
ization impairment in Alzheimer’s disease patients may be due
to hippocampal dysfunction.

3.3. Relation to existing models

Below we compare our model to existing models that simulate
performance in similar behavioral tasks and/or model of brain dis-
orders that we have simulated in this project.

Our model is novel in that it simulates performance in the ac-
quired equivalence task through integration of our past modeling
of the basal ganglia and hippocampal region. To our knowledge,
no existing neural network model simulates performance in this
task. Our previous models (Gluck & Myers, 1993; Gluck, Myers, &
Meeter, 2005; Myers et al., 1995; Rokers et al., 2002) simulated
performance in other associative learning paradigms, such as la-
tent inhibition and sensory preconditioning, but did not simulate
performance in the acquired equivalence task, because these past
models did not integrate the functionality of both brain regions.
Turnock and Becker (2007) proposed a model that assumes that
the hippocampus plays a role in contextual processes and is impor-
tant for gating prefrontal cortex information into the basal ganglia.
This model did not simulate functional roles of dopamine and ace-
tylcholine in learning and performance.

As noted earlier, our current integrated model, builds on our
earlier models of septo-hippocampal function in associative learn-
ing. In particular, as in Rokers et al. (2002), we showed that cholin-
ergic input to the hippocampal region is key for learning classical
conditioning tasks. The Rokers et al. model builds on our earlier
model (Hasselmo et al., 1996), which argues that acetylcholine is
key for encoding of new information in the hippocampus. Unlike
existing models, Rokers et al. simulate a role for the hippocampo-
septal pathway in learning. Rokers et al. argue that the hippocam-
pus is key for novelty detection, and that the hippocampus projects
this novelty detection signal to the septum. In this model, septal
acetylcholine increases for novel stimuli, and thus learning to
encode information is faster for novel than familiar stimuli. The
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model presented here does not simulate the function of the hippo-
camposeptal pathway. However, the Hasselmo et al. and Rokers
et al. models do not simulate performance in acquired equivalence
and do not incorporate a basal ganglia module. Another novel fea-
ture of our newer integrated model is that it simulates functional
roles of both dopamine and acetylcholine in behavioral perfor-
mance and learning.

Unlike most existing models, the model presented here also
simulates performance in various neurological and psychiatric pa-
tient groups. Most existing models focus on simulating behavioral
performance in various tasks in one patient group (Cohen, Braver,
& O'Reilly, 1996; Frank, 2005; Moustafa & Gluck, 2010). One excep-
tion, however, is a computational model by Amos (2000) which
simulates performance in the Wisconsin Card Sorting Task in Par-
kinson’s disease, Huntington’s disease, and schizophrenic patients.
We believe that both classes of models are important. Accounting
for performance in various tasks in one patient group explains sim-
ilar neural mechanisms for seemingly different behavioral tasks.
An example is a basal ganglia model proposed by Frank (Frank,
2005; Frank, Loughry, & O’Reilly, 2001) which shows how the basal
ganglia and prefrontal cortex interact during the performance of
both working memory and decision making tasks (also see Mous-
tafa & Maida, 2007). Simulating performance in one behavioral
task in various patient groups helps explain how Parkinson’s dis-
ease and ACoA aneurysm—which affect different brain struc-
tures—are associated with similar behavioral performance (as we
show in our simulation results).

3.4. Models of brain disorders

Below, we present a summary of existing models of Parkinson’s
disease, schizophrenia, and Alzheimer’s disease, and discuss the
similarities and differences between these models and ours.

3.4.1. Parkinson’s disease

Most, if not all, existing models of Parkinson’s disease focus on
simulating the functional contribution of the basal ganglia and/or
prefrontal cortex to motor and cognitive processes (Amos, 2000;
Frank, 2005; Guthrie et al., 2009; Moustafa & Gluck, 2010; Moustafa
et al., 2009). These models are consistent with our model in that
nigrostriatal dopamine is important for stimulus-response
learning. For a review of existing models of Parkinson’s disease,
see Section 3 of Moustafa and Gluck (2010).

3.4.2. Schizophrenia

As for schizophrenia, most existing models focus on simulating
the contribution of a single brain area to behavioral performance
(Cohen & Servan-Schreiber, 1992; Rolls et al., 2008; Talamini &
Meeter, 2009). However, it is experimentally known that various
brain structures are affected in schizophrenia (Keri, 2008; Perl-
stein, Carter, Noll, & Cohen, 2001; Snitz et al., 2005), including pre-
frontal cortex (Perlstein et al., 2001; Snitz et al., 2005),
mediotemporal lobe (Keri, 2008), and basal ganglia (Waltz et al.,
2007). Most computational models of schizophrenia focus on sim-
ulating the role of prefrontal cortex in cognitive performance
(Cohen & Servan-Schreiber, 1992; Rolls et al., 2008). Some other
models focus on simulating dopaminergic (Schmajuk, 2005) or
mediotemporal lobe (Talamini & Meeter, 2009) dysfunction. Chen
(1995) proposed a one-layer attractor network which addresses
how hippocampal dysfunction in schizophrenia leads to psychotic
symptoms. This model assumes that psychosis is related to aber-
rant retrieval of information from memory. This model shows that
an increase of correlation of encoding inputs in the hippocampus
does interferes with retrieval processes, such that the model will
retrieve wrong information at wrong time (which arguably corre-
sponds to psychotic symptoms).

The Amos model mentioned above simulates performance in
Parkinson’s disease and schizophrenia, using mathematical tech-
niques similar to those used by Moustafa and Gluck (2010). The
Amos model showed that decreasing activity of the prefrontal cor-
tex explains working memory deficits in schizophrenia, and it also
shows that decreasing activity in basal ganglia and prefrontal cor-
tex modules simulates impaired performance in Parkinson’s dis-
ease patients. Unlike our model, the Amos model is not a
learning model and does not simulate stimulus-stimulus or stim-
ulus-response learning processes.

3.4.3. Alzheimer’s disease

Unlike Parkinson’s disease and schizophrenia, there are fewer
models of Alzheimer’s disease in the literature. For example, Has-
selmo (1994, 1997) provided a model of Alzheimer’s disease which
shows how damage to the hippocampus can affect functional pro-
cessing in efferent cortical structures. This model argues that
memory symptoms in Alzheimer’s disease are related to impaired
encoding of new information in the hippocampus, such that new
and existing information share similar representations. This conse-
quently makes it difficult to retrieve information from memory,
which arguably equivalent to amnesic symptoms. McAuley et al.
(2009) built a computational model that addresses how changes
in cortisol levels affects hippocampal functioning, which conse-
quently leads to Alzheimer’s disease symptoms. The model shows
that increase in cortisol levels inhibits hippocampal function and
leads to amnesia, as found with Alzheimer’s disease patients.
Meeter and Murre (2005) built a model showing that damage to
the hippocampus can lead to anterograde amnesia, a main symp-
tom of Alzheimer’s disease. As in our current model, the Meeter
and Murre model simulates amnesia by disabling hippocampal
neurons. This model argues that consolidation of declarative mem-
ories takes place in the cortex, and thus damaging the hippocam-
pus leads to anterograde amnesia. It is not clear if these models
can simulate performance in the acquired equivalence task. In
Gluck, Myers, Nicolle, and Johnson (2006), we provided a computa-
tional analysis (though not a simulation model) of how Alzheimer’s
disease might affect hippocampal functioning and behavioral per-
formance, especially in learning and transfer. The model presented
here in this paper partially builds on ideas proposed by Gluck et al.,
including how damaging the hippocampal region might affect
transfer generalization performance. For a recent review of models
of Alzheimer’s disease, see Duch (2007).

3.5. Model limitations

Even though our current integrated model simulates functional
roles of the hippocampal region and basal ganglia in various pa-
tient populations, it has some limitations.

For example, the model does not simulate the different symp-
toms in patients with hippocampal damage (e.g., hypoxia, mild
Alzheimer’s disease, and hippocampal atrophy patients). The mod-
el simply assumes that these disorders interfere with computa-
tional processes of the hippocampal region, and we simulated
these disorders by running the simulations without the hippocam-
pal module. It is likely that these disorders affect the hippocampal
structure in different ways, such that hippocampal structural
changes in these brain disorders lead to different behavioral
changes that were not captured by the acquired equivalence task.
Such speculations are beyond the scope of our model. Future work
should explain how damage to the hippocampal region can lead to
either amnesia or psychosis in one integrated model, as reported in
different models of these symptoms (Chen, 1995; Hoffman &
McGlashan, 2001, 2006; Meeter & Murre, 2005).

Another limitation of the current model are the findings that in
addition to the hippocampal region and basal ganglia, other brain
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structures may be key for acquired equivalence including the pre-
frontal cortex (lordanova, Killcross, & Honey, 2007). Further, Shoh-
amy and Wagner (2008) found that dopaminergic projections to
the hippocampus are involved in acquired equivalence. They found
that correlated hippocampal and ventral tegmental area activity
during the acquisition phase of the acquired equivalence task pre-
dicts subject’s performance in the transfer phase. Shohamy and
Wagner argue that the correlated activity between these structures
suggests that dopamine projected to the hippocampus is key for
learning the acquired equivalence task. Similarly, Lisman and
Grace (2005) argued that dopamine is key for learning in the hip-
pocampus. As in the Rokers et al. model, Lisman and Grace argue
that the hippocampus is key for novelty detection. However, unlike
Rokers et al., Lisman and Grace assume that hippocampal projec-
tion to the ventral tegmental area is important for driving dopa-
mine responses for novel stimuli, and dopamine projection to the
hippocampus is important for encoding of novel stimuli. The model
presented here does not include this dopamine-hippocampus
pathway. It is possibly the case that both dopamine and acetylcho-
line interact during learning in the hippocampal region. Similarly,
acetylcholine may be key for attentional processes (Cox & Krich-
mar, 2009) where the role of the acetylcholine in attention may
be mediated by cholinergic projections to the cortex (Bucci, Hol-
land, & Gallagher, 1998). Further modeling work to address these
data needs to include a cholinergic projection to the cortex, and
to address how attention affects cognitive performance in the ac-
quired equivalence task.

In a recent study from our lab, we have shown that subjects
with cocaine addiction exhibit a specific deficit on performing
the new consequents phase (the third phase of acquisition, see Ta-
ble 2) of the acquired equivalence task (Vadhan et al., 2008). It is
possible that they are specifically impaired in this phase due to in-
creased memory load. The new consequents phase has more trial
types than those of the previous phases (see Table 2), and it is pos-
sibly the case that subjects with cocaine addiction are impaired at
maintaining the various trials types in that phase in working mem-
ory. Our model does not account for this finding because it does
not have a working memory mechanism. Further modeling to ad-
dress these data needs to include a working memory mechanism
that maintains representation of trial types, and also should ex-
plain how cocaine addiction impairs working memory, as reported
in experimental studies (George, Mandyam, et al., 2008).

Furthermore, experimental data show that the hippocampal re-
gion also receives dopaminergic projections, and that the basal
ganglia receives cholinergic input. Experimental data show that
dopamine is also key for learning in the hippocampus (Lisman &
Grace, 2005; Rossato, Bevilaqua, et al., 2009), but this was shown
to be related to long-term memory and novelty detection pro-
cesses. Our model did not simulate performance in these tasks.

Table 2

Acquired Equivalence task. The task has 2 phases: acquisition and transfer. In the
transfer phase, trials that have “?” are trials that were not previously presented to the
subjects (Transfer Trials); the rest are trials that were previously presented to the
subjects (Retention Trials). In data presented, we will look at performance in each
type separately. A’s and B’s are called stimuli (cues), while X’s and Y’s are outcomes
(or consequents).

Acquisition: Acquisition: Acquisition: new Transfer
shaping equivalence training consequents
Al - X1 Al - X1 Al - X1 Al - X1
A2 > X1 A2 > X1 A2 - X1
Al - X2 Al - X2
A2 - X27?
B1 - Y1 B1 - Y1 B1 - Y1
B2 - Y1 B2 - Y1 B1 - Y1
B1 - Y2 B2 - Y1
B1 - Y2
B2 - Y2?

Further, it was found that acetylcholine in the basal ganglia is
key for controlling motor processes (Graybiel, 1998). In our model,
we incorporate a simple module of motor learning. A more com-
plex model of initiating and sequencing motor plans will definitely
requires the simulating of both acetylcholine an dopamine in the
basal ganglia. This is beyond the scope of our current model.

Our model makes several testable predictions. For example, our
model predicts that decreasing acetylcholine (using scopolamine)
or dopamine (using 6-OHDA) will equally impair acquisition of the
acquired equivalence task. Lesioning the hippocampal region should
lead to impaired transfer performance (for similar ideas, see Coutu-
reau et al., 2002). As mentioned above, the model also predicts that
the acquired equivalence effect is related to the number of training
trials of the acquisition phase: The larger the number of trials, the
greater the acquired equivalence effect. Future experimental studies
are needed to test these predictions in either rodents or humans.

Overall, our model provides a mechanistic account for behav-
ioral performance in the acquired equivalence task in various pa-
tient populations, including Alzheimer’s disease, Parkinson’s
disease, hypoxia, ACoA aneurysm, and schizophrenia, and through
this suggests how the basal ganglia (and dopamine) interact with
the hippocampal region (and acetylcholine) in both learning and
transfer generalization.
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Appendix A

Below, we describe details of the acquired equivalence task used
in the simulation. We then describe details of the model simulation.

A.1. Acquired equivalence task

The acquired equivalence task has two phases: acquisition and
transfer (see Table 2). Phase 1 has three sub-phases, in which sub-
jects learn to associate different stimuli with consequents (re-
sponses). In this task, four drawings of faces (man, woman, girl,
boy) served as the antecedent stimuli. In the model, we represent
stimuli using an input of binary values. In the original task, the con-
sequents were four drawings of colored fish, which we also represent
using binary values. Subjects (and the model) learn to associate ante-
cedents with consequents, as explained in Table 1. For more details
on task description see Myers et al. (2003). The number of trials in
the acquisition phase in both the original and simulated task s as fol-
lows: 32 (Shaping phase), 64 (Equivalence Training phase), 96 (New
Consequents phase). The transfer phase has 16 trials.

A.2. Simulation details

As described above, the model has two modules: basal ganglia
and hippocampal modules (Fig. 1). Below, we describe simulations
details for each module.

A.3. Basal ganglia module

We model the basal ganglia using the actor-critic architecture,
as previously proposed in various models (Berns & Sejnowski,
1995; Houk, 1995b; Moustafa & Gluck, 2010; Moustafa & Maida,
2007; Suri & Schultz, 1998, 1999). The critic is key for reward
and feedback-based learning and the actor is key for action selec-
tion (motor) learning.
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Learning in the striatal module relies on phasic dopamine sig-
nals projected from the midbrain (for similar ideas see Suri &
Schultz, 1998, 1999). In this model, phasic dopamine signals are
important for motor learning. Learning in the basal ganglia module
is based on the TD algorithm, which simulates various characteris-
tics of phasic dopamine firing (Schultz et al., 1997; Sutton & Barto,
1987, 1990). Let TD(t) be the temporal difference error signal at
time t (also known as the effective reinforcement); R(t) be the re-
ward presented at time t (reward is 1 when reward is presented
after correct feedback and is 0 otherwise); P(t) be the reward pre-
diction at time t; y be the discount factor (which determines how
future reward affect reward predictions; is set to 0.99 in all simu-
lation runs presented here). The TD error is computed as follows:

TD(t) = R(t) + yP(t) — P(t — 1)

Let w; be the weight connecting unit i to the critic node; n be the
number of Input nodes; and x; be activation of input units (which
take binary (0,1) values). Reward prediction P(t) is computed by
the critic node as follows:

P(t) = > wi(t)xi(t)
i=1

Now, we describe the equations of the actor module. Let w;; be the
weight connecting unit i to unit j; J;(t) be the Gaussian noise asso-
ciated with the weight wj;. All weights are perturbed using Gaussian
noise, which is included to induce exploration in the system. Let u
be the perturbed weight connecting unit i to unit j. Perturbed
weight values are computed as follows:

u;i(t) = w;i(t) + ;i (t)

Activations of all units in the network are computed using a sigmoi-
dal function:

1

f(x):m

where g is the gain parameter. Let n be the number of Input units.
The input units take binary (0,1) values. The activation of a unit j is
computed as:

At) f(Z u,-f(t>x,-(t>>
i=1

In the model, a winner-take all network computes the unit with
the highest activation in the basal ganglia module. In other words,
we assume that winner-take all competition among striatal neu-
rons is assumed to be the mechanism underlying the choice of mo-
tor responses.

T 1if A >p&A>A forallij
I 0 otherwise

where § is a threshold; 4; is the activation of unit j; Af is the activa-
tion of unit j resulting from winner-take all computations (for sim-
ilar ideas see Barto, 1995; Berns & Sejnowski, 1995; Schultz et al.,
1997; Suri & Schultz, 1998, 1999).

Learning in the basal ganglia model is based on the three-factor
rule of learning—also known as the dopamine-based Hebbian
learning rule (for similar ideas, see Guthrie et al., 2009). According
to this rule, the phasic dopamine signal is important for strength-
ening weights linking active nodes. Dopamine phasic signal is also
important for weakening weights linking an active node and an-
other inactive node. Also, different computational models incorpo-
rate this learning rule (Braver & Cohen, 2000; Guthrie et al., 2009;
Suri & Schultz, 1998, 1999).

Let LRy, be the learning rate, which we assume to correspond to
phasic dopamine levels in the model, as previously proposed by

Shohamy et al. (2008). Let x; represents the activation level of
the presynaptic node. The weight update rule is,

Wj,‘(t + 1) = Wﬁ(f) + LRbgTD(t)Xi(f)A;

A.4. Hippocampal module

The hippocampal module is a two-layer network in which the
Input layer is fully connected to the hippocampal layer. The input
pattern specifies the values of stimuli and outcomes (which corre-
sponds to Faces and Fishes in the acquired equivalence task). As in
the basal ganglia module, all weights are perturbed using Gaussian
noise. Activation levels of all units in the model are computed as
follows:

Aj(t) —f<z uji(t)xi(t)>
P

where uj; is the perturbed weight connecting unit i to unit j, n is the
number of units in the input; the input units take binary (0,1) val-
ues (for similar simulation details see Barto, 1995; Schultz et al.,
1997; Suri & Schultz, 1999); t is time step, f is the logistic sigmoid
function.

Weights are updated at every time step. Learning in this module
is Hebbian. The Hebbian learning algorithm is a model of associa-
tive learning, a process ascribed to the hippocampal region func-
tion (Bunsey & Eichenbaum, 1995; Henke, Buck, Weber, &
Wieser, 1997). It is also a simple model for synaptic change
through long-term potentiation (LTP) in the hippocampal region
(Bilkey, 1996; Bliss & Lomo, 1973). The weight update rule here
is as follows:

Wji(t + 1) = Wji(t) + LRh,'pr,'(t)yj(t)

where LRy, is the learning rate for the hippocampal module, and
represents acetylcholine levels in the hippocampal region; x; is
the cortical input unit i; y; is the activation of the unit j in the hip-
pocampal layer. The hippocampal layer consists of many patches of
neurons (10 patches and each patch has 20 nodes), each form a sep-
arate representational code of the input (for details see Moustafa
et al., 2009). Winner-take-all networks are used to simulate lateral
inhibitory connections among neurons in each patch.

A hippocampal representation is projected to the basal ganglia
module. There is one-to-one connection from hippocampal layer
to medial temporal cortex, with non-adaptive, fixed weights.

A.5. Simulations of neurological and psychiatric disorders

We simulated Parkinson’s disease in the model by decreasing
learning rate parameter value in the basal ganglia module (LR,).
Similarly, we simulated ACoA aneurysm by decreasing learning
rate value in the hippocampal module (LRy;,). The model shows
that decreasing the learning rate value in the hippocampal module
affects motor learning in the basal ganglia. This explains how ACoA
aneurysm patients show impaired performance in acquisition
(stimulus-response) performance, a process that has been ascribed
to basal ganglia function. See Table 3 for a summary of parameters
manipulated to simulate various brain disorders presented here.

We simulated lesioning of the hippocampal region in the model
running the simulations without the hippocampal module. Learn-
ing in the model in this case depends only on weight update in
the basal ganglia module. We assume that lesioning the hippocam-
pal region simulates hippocampal dysfunction in hippocampal
atrophy, hypoxic, mild Alzheimer’s disease, and schizophrenic pa-
tients. Lesioning the hippocampal region in the model interferes
with compression processes (see Fig. 2).
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Table 3

Simulation of all disorders in the model. Lesion means taking out all structure. “Yes”
signifies corresponding area is lesioned in the corresponding group. “|”signifies
learning rate (LR) is lower than learning rate used to simulate healthy controls. “~"
signifies parameter values used is not different from controls.

Hippocampal Basal

learning rate  ganglia
learning
rate

Hippocampal Basal
lesion ganglia
lesion

Hippocampal - - Yes -
atrophy/
hypoxic/mild
Alzheimer’s
Parkinson’s patients - ! = =
(medicated)
ACo0A aneurysm
(Basal forebrain
amnesia)
Schizophrenia - - Yes -
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