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Human studies of sleep and cognition have established that different sleep stages contribute to distinct
aspects of cognitive and emotional processing. However, since the majority of these findings are based
on single-night studies, it is difficult to determine whether such effects arise due to individual,
between-subject differences in sleep patterns, or from within-subject variations in sleep over time. In
the current study, we investigated the longitudinal relationship between sleep patterns and cognitive
performance by monitoring both in parallel, daily, for a week. Using two cognitive tasks — one assessing
emotional reactivity to facial expressions and the other evaluating learning abilities in a probabilistic cat-
egorization task - we found that between-subject differences in the average time spent in particular
sleep stages predicted performance in these tasks far more than within-subject daily variations.
Specifically, the typical time individuals spent in Rapid-Eye Movement (REM) sleep and Slow-Wave
Sleep (SWS) was correlated to their characteristic measures of emotional reactivity, whereas the typical
time spent in SWS and non-REM stages 1 and 2 was correlated to their success in category learning. These
effects were maintained even when sleep properties were based on baseline measures taken prior to the
experimental week. In contrast, within-subject daily variations in sleep patterns only contributed to
overnight difference in one particular measure of emotional reactivity. Thus, we conclude that the effects
of natural sleep on emotional cognition and category learning are more trait-dependent than state-

dependent, and suggest ways to reconcile these results with previous findings in the literature.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the last two decades, sleep has been repeatedly shown to
play a central role in memory consolidation and emotional
cognition. Using polysomnography (PSG) measures, human studies
demonstrated that specific sleep stages tend to affect specific
cognitive abilities. Generally, Rapid-Eye-Movement sleep (REM)
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has been linked to procedural memory, high-level linguistic
processes and the processing of emotional stimuli, whereas
non-REM sleep (NREM) - and Slow-Wave Sleep (SWS) in
particular - have been implicated in processes such as declarative
memory, context sensitivity and relational learning (e.g., Groch,
Wilhelm, Diekelmann, & Born, 2013; Gujar, McDonald, Nishida, &
Walker, 2010; Plihal & Born, 1997; for reviews, see Rasch & Born,
2013; Walker, 2009).

In human studies, the standard methodology for examining the
effects of sleep on cognitive function involves participants learning
a cognitive task, spending a night (or, in case of nap studies, an
afternoon) in a sleep laboratory during which their sleep is moni-
tored with PSG, and in some studies manipulated, and then being
retested. Results from these individuals are then compared to a
control group in which no sleep period is interposed between the
two sessions, or no sleep manipulation is exercised. Any perfor-
mance benefits in the experimental group over the control group
are attributed to sleep and compared to specific sleep parameters
that were measured during the night (or the afternoon nap).
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One key limitation of this single-night methodology is that it is
difficult to determine whether correlations between sleep and
cognitive performance are due to specific “state-dependent” prop-
erties of sleep that each participant happened to experience in the
studied night, or, conversely, result from “trait-dependent”
individual differences in participants’ general sleep patterns. Often,
single-night studies implicitly assume the former, failing to take
into account individuals’ baseline patterns. However, given that
there is evidence suggesting that both sleep architecture (e.g., De
Gennaro et al., 2008; Linkowski, 1999) and various cognitive and
affective processes (e.g.,, Neta, Norris, & Whalen, 2009; Volk,
McDermott, Roediger, & Todd, 2006) are in fact stable traits whose
variability is lower within-subjects than between-subjects, it is
possible that the interaction between sleep and these processes
also follows a trait-like pattern.

Traditional human sleep studies suffer from several other limi-
tations. First, due to their reliance on data from a single night, they
are insufficient to address the effects of sleep on the learning of
complex tasks that require multiple days to master (e.g.,
Shohamy, Myers, Onlaor, & Gluck, 2004). Second, the use of PSG
is known to precipitate several sleep disturbances that contribute
to poor sleep quality (e.g., increased awakenings and a decreased
percentage of REM sleep; Agnew, Webb, & Williams, 1966). These
effects have been shown to persist for up to three nights (the so
called “First -night effects”), even when the PSG system is
employed in participants’ homes (Le Bon et al.,, 2001). Conse-
quently, the ecological validity of such studies may be jeopardized,
as exemplified by studies showing effects of sleep on cognition that
appear only when sleep occurs without the use of PSG, but not
when repeated in a laboratory (e.g., Djonlagic et al., 2009). While
many of these limitations may be addressed by observing partici-
pants for extended periods of time, the nature of PSG studies typ-
ically renders long-term investigations both cost-prohibitive and
logistically unfeasible. As a result, few controlled longitudinal
studies that measure sleep and cognition in parallel have been per-
formed to date (cf., Burke, Scheer, Ronda, Czeisler, & Wright, 2015).

In the present study we sought to address the limitations of tra-
ditional single-night studies by examining the longitudinal effects
of sleep on behavioral performance. To that end, we utilized a com-
bination of easy-to-use mobile devices that allowed participants to
both monitor their sleep and administer cognitive tasks for multi-
ple days, by themselves and in their own homes. We examined the
effect of sleep on two behavioral tasks; one that tested emotional
cognition, specifically reactivity to emotional facial expressions,
and a second examining memory consolidation during category
learning. Thus, our study tapped into both cognitive and affective
processing, two central themes in the human sleep-cognition liter-
ature. The specific tasks were chosen for several reasons. First, both
were compatible with (or could be adapted to) a long-term study
that requires repeated administration over multiple days. Second,
it was previously shown in single-night studies that performance
in these and similar tasks is influenced by sleep (Barsky, Tucker,
& Stickgold, 2015; Djonlagic et al., 2009; Gujar et al., 2010;
Lara-Carrasco, Nielsen, Solomonova, Levrier, & Popova, 2009; Van
Der Helm, Gujar, & Walker, 2010). Lastly, results regarding the pre-
cise role of sleep—and specific sleep stages—on performance in
these previous studies have been inconsistent at best, raising the
possibility that investigating these relations over a single night is
insufficient.

Overall, we aimed to answer two fundamental questions: First,
what are the relative contributions of daily and baseline sleep
patterns on cognitive performance. If the state-like hypothesis is
correct, we expected to see daily fluctuations in performance in
accordance with properties of sleep during the preceding night.
If, however, the nature of the relationship were more trait-like,
we would expect an effect when comparing average performance

and sleep levels between-subjects. Second, we sought to determine
whether new relationships between sleep stages and performance
emerge when taking under consideration multiple nights of sleep,
and whether these can shed light on inconsistencies in previous
studies.

2. General methods
2.1. Participants

Twenty-three healthy students (n=11 females) from Rutgers
University and the New Jersey Institute of Technology participated
in this study for monetary compensation (Table 1). Exclusion crite-
ria included personal or family history of sleep, neurological or
psychiatric disorders, drug or alcohol abuse, and/or intake of
medications that have any effect on sleep. Three participants were
discarded from the study due to a lack of reliable use of equipment,
resulting in three or more experimental days of unusable sleep
and/or behavioral data (see Section 1.2.1 in the Supplemental
Materials). Throughout the experiment participants were asked to
not increase their daily caffeine intake, to maintain their regular
sleep schedule, and to refrain from alcohol consumption and day-
time napping. All participants provided informed consent in line
with the procedures approved by the Institutional Review Board
of Rutgers University.

2.2. Sleep monitoring and cognitive testing devices

2.2.1. Mobile sleep monitoring system

The mobile sleep monitoring system included an automated
wireless sleep-monitoring headband (Zeo Inc., Newton, MA), an
actigraphy bracelet (Micro-MotionLogger Sleep watch, Ambulatory
Monitoring, Inc., Ardsley, NY), and an Android tablet (Amazon.com,
Inc., Seattle, WA).

The sleep-monitoring headband is equipped with a single
bi-polar fabric sensor that transmits data wirelessly to the Android
tablet, which acts as a base station. The sensor is fitted with three
silver-coated electrodes used to detect brain waves (EEG), eye
movements (EOG), and the movement of the frontalis muscle
(EMG). The signals from these electrodes are analyzed in real time
to produce sleep staging in 30-s epochs. This sleep staging, the
accuracy of which was validated for nocturnal sleep compared
to PSG in multiple studies (e.g., Griessenberger, Heib, Kunz,
Hoedlmoser, & Schabus, 2013; Shambroom, Fabregas, &
Johnstone, 2012), is a reduced version of the official staging criteria
by the American Association of Sleep Medicine (Iber, Ancoli-Israel,
Chesson, & Quan, 2007) and differentiates between four stages
rather than five - wake, N1/N2 (combined N1 and N2 stages,
termed ‘Light sleep’), SWS (‘Deep sleep’), and REM sleep.

The actigraphy bracelet is a research-grade device that contains
a built-in accelerometer used to infer sleep/wake decisions in
one-minute epochs based on participants’ arm movements
(Ancoli-Israel et al., 2003; de Souza et al., 2003). Participants wore
the actigraph on the non-dominant wrist throughout the entire
study. Data was extracted from the devices at the end of the
experiment, and was used to assess the sleep/wake validity of
the sleep-monitoring headband (see detailed description in
Section 1.2 of the Supplemental Materials).

2.2.2. Mobile cognitive assessment

The cognitive tasks were delivered using a separate application
on the same Android tablet used to collect and transmit data from
the sleep-monitoring headband. In each experimental session,
participants completed an emotional reactivity task followed by
a probabilistic category-learning task, described in detail below.
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2.3. General procedure

Prior to commencing the cognitive experiments, participants
monitored their sleep at home for a period of 4-7 days (‘habitua-
tion phase;’ see Table S1). In addition to receiving training on
how to use the sleep monitoring devices, they were instructed to
keep a sleep log noting their sleep/wake times and any nocturnal
awakenings, as well as to send both the data from the monitoring
devices and a picture of their log to a secure email that was mon-
itored daily by experimenters. This period allowed participants to
adapt to the use and operation of the devices and allowed experi-
menters to collect participants’ baseline sleep measurements and
assess participants’ reliability in following the sleep-monitoring
protocols (i.e., consistently emailing data, ensuring that no data
was missing because of the sleep-monitoring headband falling off
at night, etc.).

Following the habituation phase, participants began cognitive
testing while continuing to monitor their sleep, for seven addi-
tional days (‘experimental phase’). Testing occurred twice daily
at home, once in the morning (between 8 am and 10 am, at least
half an hour after waking to prevent the effects of sleep inertia)
and once in the evening (between 8 pm and 10 pm, at least half
an hour before going to sleep to reduce the effects of tiredness),
for a total of 14 sessions. Each session included both cognitive
tasks. The first session was conducted in the lab and included a
short training period prior to testing. Training stimuli were differ-
ent than the ones used in the actual experiment. Fig. 1 illustrates
the general experimental design.

2.4. Data analysis

Data from the sleep-monitoring headband and the actigraphy
bracelet were integrated for each subject to yield measures of total
time spent in each sleep stage (see details in Supplementary Mate-
rial Section 1.3). These measures were then used in a mixed-model
Analysis of Variance (ANOVA) to predict the daily behavioral mea-
sures. Comparisons of within- and between-subjects effects were
carried out in SAS 9.3 (SAS Institute) using the Mixed procedure
with a covariance structure for error defined by Kronecker prod-
ucts, specifying unstructured covariances for the Time-of-day
(mornings vs. evening) factor and a first-order autoregressive AR
(1) structure for Day. Other analyses, including multiple regression,
Principle Components Analysis (PCA), and curve-fitting were
carried out in Matlab R2015a (MathWorks). Specific details for
each analysis are described in the corresponding sections in the
main text.

3. Experiment 1: Emotional Face Valence Rating Task
3.1. Task description

The Emotional Face Valence Rating Task assesses participants’
emotional reactivity to images portraying different emotional
expressions (cf. Gujar et al., 2010). Stimuli were comprised of
392 photographed faces obtained from the Radboud Faces
Database (RaFD; Langner et al., 2010). The images used were of
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57 individuals, each portraying seven different emotions (sad,
angry, disgusted, fearful, neutral, surprised and happy). The images
were converted to grayscale, equalized on luminance, and counter-
balanced for average and standard deviation contrast using the
image processing toolbox in Matlab (Willenbockel et al., 2010).
In each of the 14 testing sessions, participants were presented with
four different individuals, each portraying one of the seven emo-
tions, followed by another four portraying a different emotion,
and so on, until each participant had seen four instances for each
of the seven emotions (a total of 28 images). Images appeared on
screen for two seconds, after which participants were asked to rate
the valence of the image on a scale of 1-5, where 1 is negative and
5 is positive (Fig. 2A). No time constraint was imposed on decision-
making. After a response was made, the scale remained on the
screen for 1 s, after which a new trial began. Different images were
used in each session such that no image was repeated over the
course of the experiment. The order of the images was randomized
across all sessions for each participant.

3.2. Results

Raw scores for each picture were standardized using the mean
ratings and the standard deviation obtained from the RaFD
database such that participants’ answers reflected standardized
deviations from the mean “population” responses to that particular
picture. In order to decrease the number of multiple comparisons
and focus on the main contributors to variance in performance,
the standardized scores were subject to dimensionality reduction
using PCA. For each participant, the scores given to each emotion
were averaged across the 14 sessions, resulting in a
7-dimensional vector for each participant. We then obtained the
7 eigenvectors and eigenvalues comprising the PCA components.
The results showed two main components (‘factors’) responsible
for the variation in the normalized ratings (Fig. 2B). Inspecting
the component loadings of the original facial expressions compos-
ing these two dimensions (that is, the degree to which the original
dimensions contribute to the new ones; Fig. 2C) we found that the
loadings on the first component were dominated by the Surprised
expression and, to a lesser extent, by Disgust and Fearful expres-
sions (all with positive loadings). Because Surprised, Disgust and
Fearful are often perceived as relatively complex and ambiguous
facial expressions (Kim, Somerville, Johnstone, Alexander, &
Whalen, 2003; Neta et al., 2009; Pantic & Rothkrantz, 2000;
Widen, 2013), we denote the first component as “Ambiguity”,
reflecting the tendency to evaluate ambiguity/complexity in faces
as having a more positive or negative valence (see Section 3.3, Dis-
cussion, regarding other interpretations). The loadings of the sec-
ond component had positive values for the Angry, Disgust, Fearful
and Sad expressions, and negative values the Happy and Neutral
expressions, all with similar absolute values. This means that high
valence ratings given to expressions associated with negative emo-
tions (angry, etc.) increased the value on this dimension, whereas
low valence values decreased it, and the opposite was true
for valence values given to expressions associated with emotions
that are not negative (happy, neutral). Therefore, this component
can approximately be interpreted as a tendency for ‘Emotional
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Fig. 1. Experimental design of the study. A habituation phase, in which participants monitored their sleep each night, was followed by a 7-day experimental phase in which
participants continued to monitor their sleep and also had bi-daily assessments of cognitive and affective performance, in the mornings and evenings (for a total of 14

sessions, marked by s1, s2... in the figure). See text for details.
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Blunting’ (please see Supplementary Material for further discus-
sion). To summarize, the PCA indicated that participants’ evalua-
tions of the stimuli differed primarily according to how
ambiguous/complex they viewed a facial expression, and the
degree to which they tend to blunt the emotion in that expression.
The remaining statistical analyses examined the relations between
sleep and each of these two components.

Previous studies have shown the evaluation of emotional faces
to correlate with the total amount of REM sleep (or the percentage
of REM sleep out of total sleep time) during the preceding night
(Wagner, Fischer, & Born, 2002; Walker, 2009). We aimed at
exploring whether such relations are driven by daily fluctuations
in sleep and behavior within-subjects or by individual differences
between-subjects, and whether other sleep stages may contribute
to the evaluation when multiple nights of sleep are taken under
consideration. To investigate these questions, we ran mixed-
model ANOVAs examining the correlations between the daily
amounts of time spent in REM, SWS and N1/N2 sleep with the
Ambiguity and the Emotional Blunting factors underlying the face
ratings (separately for each component). The dependent variables
for the two models were the average scores for each session, for
each participant, for each of the two PCA-derived factors, Ambigu-
ity and Emotional Blunting, across all 14 sessions (7 days x 2 ses-
sions/day). In order to assess if each rating factor was affected by
stable, individual differences in sleep parameters, the ANOVA
model included the average time spent in REM, SWS and N1/N2
(across all experimental nights) as “between-subjects” factors. To
assess whether “within-subject” fluctuations in sleep patterns
from one night to another affected the dependent variables, the
daily deviations of REM, SWS and N1/N2 of each participant from
his/her corresponding averages were entered as continuous (cen-
tered) covariates crossed with blocks (i.e., participants). The sleep
variables of each night (termed REMcovdev, SWScovdev and N1/
N2covdev in Table S2) were compared with the performance vari-
ables of the following day. Additional within-subject factors
included Day (1-7) and Time of day (morning vs. evening). Finally,
the Day x Time interaction was also included.

The statistical analysis showed (see Table S2 in the Supplemen-
tary Materials for the full results) that values of the Ambiguity
component were significantly correlated with the REM factor (F
(1,16) = 18.84, p = 0.0005) - the average time across all seven days
that each participant spent in REM sleep. In contrast, values of the
second component, Emotional Blunting, were significantly corre-
lated with the average time spent in SWS (F(1,16)=18.20,
p =0.0006). None of the day-to-day fluctuations in sleep measures
contributed significantly to the prediction of either component, nor
did Time of day (morning versus evening) appear to affect these

aspects of the ratings. Emotional Blunting scores, however, did
vary by Day (F(6,105) = 2.60; see Discussion for details). Fig. 3
illustrates the relations between REM and Ambiguity, and SWS
and Emotional Blunting. Whereas no consistent effect exists
within-subjects (comparing dots of the same color), across partic-
ipants these relations are clearly evident, with each score increas-
ing with its respective sleep stage modulator.’

Since raw amount of time in a sleep stage is necessarily con-
founded by total sleep time, it is common to corroborate such
effects using the proportion of time spent in a sleep stage. Examin-
ing the effects of total sleep time on each component (separating,
as before, within and between subject effects), we found a signifi-
cant between-subject effect of total sleep time on Ambiguity
(F(1,18)=5.62, p = 0.0291) though not for emotional Blunting. To
ensure that our stage-specific results did not stem from variations
in total sleep time, we ran separate mixed-model ANOVAs examin-
ing the effect of REM on Ambiguity scores and SWS on Emotional
Blunting scores using relative measures of sleep, namely, the pro-
portion of time spent in REM and SWS out of total sleep time, with
similar between- and within-subject factors. These analyses
yielded similar results to the ones using raw time in each sleep
stage: A significant effect of mean proportional REM sleep on
Ambiguity scores (F(1,18) = 16.31, p = 0.0008) and of mean propor-
tional SWS on Emotional Blunting scores (F(1,18)=19.82,
p =0.0003; Table S3, Supplementary).

If, indeed, the relationship between the amount of time spent in
specific sleep stages and emotional reactivity to facial expressions
is a stable trait, our results should remain unchanged even when
these measures are decoupled in time. To verify this, we next
examined whether the same correlations were replicable using
data from the baseline measures of sleep (i.e., from the habituation
phase) in place of data from the experimental period. For each par-
ticipant, the average amount of time spent in each sleep stage, over
the whole habituation phase, was used as a between-subject factor
in the model (including also Time, Day and Time = Day interaction
as within-subject factors). This analysis yielded, again, a significant
effect between REM and Ambiguity, F(1,16) = 5.26, p = 0.0357, and
between SWS and Emotional Blunting, F(1,16) = 15.13, p = 0.0013.

2 The mixed-model ANOVAs shown in Table S2 contain only main effects of sleep
stages. We also ran more complex mixed models analyses for each component that
included interactions of Day or Time-of-day with SWS, REM, and N1/N2 (both the
between- and within-subjects components). None of these interactions were
significant and, consistent with the simpler model, the estimates in these models
reconfirmed that there is a main effect of REM sleep on Ambiguity scores and that
Emotional Blunting scores are affected by both mean SWS and Day (results not
shown). All of the alternative models that included the additional interactions were
found to be inferior to the additive model based on goodness of fit measures.
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In this last analysis the effect of Day also remained significant. Like
before, these analyses were re-run using the proportional
measures of sleep to ensure that the noted effects did not stem
from variations in total sleep time. This analysis, too, yielded
significant effects (F(1,18)=7.93, p=0.0115); F(1,18)=10.14,
p=0.0051, for average REM/Ambiguity and SWS/Emotional
Blunting, respectively).

Next, to make a more direct comparison between the results of
our study and those of previous studies examining the effect of a
single night of sleep on the evaluation of facial expressions, the
data was re-analyzed, this time computing correlations between
Ambiguity and REM, and Emotional Blunting and SWS, separately
for each of the seven days of the experiment. Only the morning
scores were used for this analysis, comparable to the typical proce-
dures in single-night studies (e.g., Gujar et al., 2010). Results are
presented in Fig. 4, alongside a correlation computed over the aver-
age sleep and performance values across morning sessions. In three
out of seven days there were significant correlations between the
daily amount of REM sleep and the valence scores for Ambiguity
at the following morning, with two additional days showing trend
level effects. With regards to SWS and the scores for Emotional
Blunting, only two days had significant correlations and one addi-
tional day showed results at a marginal level. With scores averaged
over sessions, the correlations were evident and stronger for both
factors, corresponding to our results using the mixed-model
analysis.

Finally, to conclude this analysis, rather than examining
whether sleep modulated the raw scores of Ambiguity and Emo-
tional blunting, we examined whether sleep affected the difference
between their morning scores and the preceding evening’s scores.
This before-after comparison is often used in single nights studies
to investigate overnight changes in emotional reactivity. For each
participant, we calculated the difference scores of each component
(since there was no evening score taken before the first night, only
6 nights were used in this analysis; see Fig. 1). These scores were
then subject to a mixed-model ANOVAs with all within and
between subject sleep factors, as well as Day, as predictors. Results
are presented in Table S4. Whereas Ambiguity difference scores
were not affected by any sleep measure, difference scores of

3 In a separate analysis (not shown), we also computed similar correlations for each
of the original 7 emotional expressions, correcting for multiple comparisons. Results
showed significant correlations between REM and valence ratings for surprised faces
for four out of the seven days, as well as a highly significant correlation between the
average amount of REM and the average rating of surprised faces across days. No
other correlation was significant.

Emotional Blunting were significantly correlated with the
within-subject SWS  factor, SWScovdev  (F(1,84)=6.67,
p=0.0116). Parameter estimates suggested that this effect was
opposite to the one found for between-subject SWS effects: the
more SWS a participant had during a night, the lower the tendency
for emotional blunting was at the following morning compared to
the previous evening. This within-subject effect remained signifi-
cant also when re-analyzing using the proportion of SWS out of
total sleep time (F(1,86) = 5.25, p = 0.0244).

3.3. Discussion

Our findings suggest that individual differences between global
sleep patterns are the main contributors to the effects of sleep on
reactivity to emotional faces. Specifically, the average time spent
in REM and SWS significantly predicted valence ratings of ambigu-
ous and negative facial expressions, respectively. These strong
correlations were evident irrespective of whether the sleep data
was taken during the experimental phase or during the earlier
(habituation) phase; nor did they change when using proportional
amount of time instead of raw time spent in each slept stage. Over-
all, these results support the notion that trait-like properties of
sleep, characterizing each participant as a whole, are strongly
linked to emotional reactivity. In contrast, with the exception of
difference scores of emotional blunting, no significant effects of
day-to-day fluctuations in sleep patterns were evident in our
results, suggesting that state-like properties of sleep are less
indicative of emotional reactivity to facial expressions, at least as
long as natural sleep variability (as opposed to extreme variations)
is involved.

The effect of REM on Ambiguity ratings is interesting for two
reasons. First, the trait-like characteristic of our results corrobo-
rates findings by others suggesting that the ratings of ambiguous
faces is a stable property that does not change significantly over
time (Neta et al.,, 2009), much like sleep patterns (De Gennaro
et al., 2008; Linkowski, 1999). Second, prior investigations showing
an effect of REM on ratings of emotional stimuli have not been con-
sistent. Some studies have found REM to blunt valence ratings,
whereas others have found it to intensify such ratings (Gujar
et al., 2010; Lara-Carrasco et al., 2009; Rosales-Lagarde et al.,
2012; Wagner et al., 2002). Our findings suggest that the
discrepancy between these studies may be the result of the rigid
classification of emotional stimuli into positive, negative, or neu-
tral, failing to take into account the degree of ambiguity associated
with their valence. For example, Gujar et al. (2010) found REM
sleep to decrease the degree of negativity with which fearful
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expressions are perceived. In contrast, Wagner et al. (2002) found
REM sleep to intensify the perceived negativity of negative stimuli.
Whereas these results seem contradictory, we suggest that the
“negative” value of the stimuli in the two studies cannot be treated
equally. The findings by Gujar and colleagues were based on aver-
aging stimuli varying from neutral to fearful rather than using
strictly fearful expressions, whereas Wagner and colleagues’ nega-
tive stimuli were purely negative. Our study suggests that fearful
expressions contribute to an ambiguity dimension and may be per-
ceived as less negative following REM sleep only as part of such
dimension (indeed, we did not find a correlation between REM
and valence ratings of strictly fearful expressions; see footnote
2). It may therefore be that by averaging over fearful and neutral
dimensions, as was done in the study by Gujar and colleagues,
the intensity of the expressions were inadvertently dampened,
making them more ambiguous and consequently rendering them
more susceptible to correlations with REM sleep. This interpreta-
tion is consistent with another study (Van Der Helm et al., 2010)
showing the effect of sleep on valence ratings to be particularly
pronounced when the stimuli in question are more ambiguous.

One could argue that our first PCA component does not strictly
represent evaluation of ambiguous emotions. Rather, while the
main expression that contributes to this component is Surprise —
which is widely considered ambiguous (Neta et al., 2009) - it
was also influenced by expressions such as Disgust and, to a lesser
extent, Fear, which are not ambiguous per se. An alternative inter-
pretation of the components contributing to this dimension is that
they represent expressions that are more complex and that often
involve orientation to external stimuli, making them more difficult
to learn. According to Widen (2013; see also Jack, Garrod, & Schyns,
2014), different facial expressions are learned at different rates
throughout development. Whereas Happy, Sad and Angry are
already learned at an early age as part of a basic emotional dichot-
omy between what “feels good” and what “does not feel good”,
Surprised, Disgust and Fearful, being emotions that depend not only
on internal states but also on external stimuli, require more expe-
rience and are therefore learned later in life. According to this
interpretation, our results indicate that REM sleep influences
how positively/negatively we conceive complex emotions rather
than ambiguous ones. Nevertheless, given that ambiguity and
complexity are related to each other, both being characteristics
of facial expressions that are multi-faceted, our analysis of how
REM influences this component holds regardless of whether it is
interpreted as one or the other.

Unlike the relationship between REM sleep and emotional
reactivity to faces, previous findings in the literature have rarely
implicated SWS in this processing. There are several possible

reasons for this discrepancy. First, our use of PCA to extract the
most significant dimensions influencing valence scores of emo-
tional faces may have increased the sensitivity of our measures
in detecting pure emotional components (by reducing, for exam-
ple, noise stemming from less relevant processes occurring in par-
allel, such as face recognition). Indeed, no SWS effect was detected
when we examined each of the original facial expressions at each
night, independently (see footnote 2). Second, the use of multiple
nights may have been, by itself, crucial in detecting SWS effects;
as is evident in Fig. 5, when examining the correlations between
SWS and Emotional Blunting scores separately for each night, sig-
nificant or trend-level effects were reached in only three out of the
seven nights (compared to five out of seven nights when examin-
ing REM and Ambiguity scores). This suggests that such an effect
may be missed when conducting single night studies. Finally, and
most important, our finding of opposite effects of between- and
within-subject SWS on emotional blunting, depending on whether
raw or difference scores are used, suggests that previous studies
could have missed such effects by either choosing an improper
design, or possibly even due to the opposing effects canceling each
other. For example, Van Der Helm et al. (2010) have examined sen-
sitivity to facial expressions following sleep versus sleep depriva-
tion, without comparing it to a baseline measure in the previous
evening. They found sleep enhances blunting of positive and nega-
tive emotions, very much like the between-subject effect we found
for SWS on raw Emotional Blunting scores (in their study no sleep-
staging measures were taken, so there was no way of attributing
the effect to a specific sleep stage). On the other hand, two other
studies (Gujar et al., 2010; Wagner et al., 2002) have found some
evidence of SWS contributing to blunting of negative emotions
when comparing scores before and after sleep to a control group
that stayed awake, but the effect was marginal. These results might
reflect a mixture of conflicting between- and within- subject influ-
ences, summing up to a weak effect. If, indeed, effects of SWS on
emotional processing are repeatedly missed in single night studies
due to lack of reliable measures of baseline sleep patterns, this calls
for significant modifications in the standard procedures when
investigating the effects of sleep on various aspects of cognition.
Finally, with regard to the effect of Day on Emotional Blunting
scores, visual inspection of the average valence scores across par-
ticipants suggested that this might have stemmed from a mild
decrease in the scores along the experimental sessions. One possi-
bility to explain this pattern is that participants have gotten better
over time in distinguishing between negative and more ambiguous
faces (such as surprised), increasing their confidence in giving
lower scores to the negative expressions and resulting in reduced
ratings. However, since this effect did not interact with sleep, we
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did not consider it to be central to our investigations and thus did
not pursue it further.

4. Experiment 2: Weather Prediction Task
4.1. Task description

The Weather Prediction Task (Gluck, Shohamy, & Myers, 2002;
Knowlton, Squire, & Gluck, 1994) assesses participants’ ability to
learn stimulus-outcome pairings in a feedback-driven, probabilis-
tic, category-learning paradigm. The task utilizes four cards, each
containing a single, colored, geometric shape (red square, green tri-
angle, blue circle, purple diamond). In each trial, a combination of
one, two, or three of the cards is presented (14 possible combina-
tions). Participants are required to determine whether the cards
predicted one of two outcomes, ‘rain’ or ‘sun’. Each of the 14 com-
binations is associated with a probability of predicting the two out-
comes (e.g., the probability of rain being the “correct” response
given that the red* square and the blue circle are present, as pic-
tured in Fig. 2, is 16.7%; for a full list of outcomes and associated
probabilities see Gluck et al., 2002). The correct mapping between
the card combinations and the required responses was fixed for all
sessions throughout the experiment, although the order of the trials
was randomized. Participants were informed about the probabilistic
nature of the task and, as such, were instructed to select the answer
that was correct “most of the time”. Once participants selected one
of the two possible outcomes (see Fig. 5A) they were given immedi-
ate feedback as to whether or not they were correct. Subsequent tri-
als began one second after participants made their selection.
Participants experienced 100 trials during each of the 14 testing
sessions.

4.2. Results

4.2.1. Sleep and daily scores

Participants’ accuracy rates in each session were calculated as
the total number of optimal responses (divided by 100), with an
optimal response for a given combination of cards being the one
that offers the higher probability of correct response for that com-
bination. In other words, if a certain combination predicts ‘rain’
85% of the time and ‘sun’ 15% of the time, the optimal answer for

4 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.

such a combination was considered ‘rain’ even for trials where
the feedback given indicated that ‘sun’ was correct.

In order to assess how sleep affects daily learning, we ran
mixed-model ANOVAs, with mean percentage of correct responses
(PC) for each session as the predicted variable. Within- and
between-subjects factors were defined as in the first experiment.
Tests of covariates and fixed effects for this model are presented
in Table S4. As expected, there was a significant effect of Day
(F(6,105) = 6.06, p < 0.0001), signifying an improvement in perfor-
mance as participants learned the task; however, this effect was
qualified by a Time x Day interaction, indicating that morning
and evening performance improved at different rates (F(6,105)
=2.86, p=0.0128). The main trends in performance are illustrated
in Fig. 5B. Whereas during the first two experimental days the eve-
ning testing sessions were better than morning sessions due to
rapid increase in performance, around day 3, after learning reached
a plateau, this ordering was reversed, with performance during
morning sessions becoming better than the evenings. Importantly,
the analysis also showed a significant between-subjects effect of
N1/N2 across sessions (F(1,16)=11.76, p = 0.0034; Table S5). No
other sleep effect was significant.”

Because of the Time x Day interaction on session accuracy, we
proceeded to analyze morning and evening sessions separately to
achieve a clearer picture of participants’ learning. Separate
mixed-model ANOVAs were run on the morning and evening PC
scores across days, with Day and N1/N2 (including both
between- and within-subjects effects) as predictors. A first-order
autoregressive AR(1) error structure was used across the levels of
Day. The results are presented in Table S6. For morning sessions,
mean accuracy increased across days, as indicated by a significant
Day effect (F(6,104) = 8.98, p < 0.0001). N1/N2 was also a predictor
of accuracy, although this effect was only marginally significant
(F(1,18)=3.65, p=0.0720). For evening session accuracy, the
effect of Day was again significant (F(6,104)=2.22, p =0.0471).
The effect of mean total N1/N2 was significant, with parameter

5 As in the first experiment, we also examined models that included interactions of
the sleep factors with Day and Time-of-day. These models were inferior to the one
reported based on goodness of fit measures. These models did, however, reveal a
significant SWScovdev x Time-of-day interaction. Investigating this effect further by
separating analysis to mornings and evenings revealed a marginally significant effect
of SWScovdev on evening PC scores. This effect, however, was not replicated when
using proportional measures of SWS. Given that the effect appeared only with raw
scores, was only marginally significant, and was based on an inferior model in terms
of goodness-of-fit measures, we did not pursue it further.
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estimations showing accuracy increasing as the average amount of
N1/N2 increases (F(1,16) = 7.58, p = 0.0131).

As in the first experiment, we next examined whether total
sleep time (both within and between-subject) was predictive of
the behavioral measures. We found a marginally significant effect
of between-subject total sleep time on evening scores (F(1,18)
=2.89, p=0.0641), but no effect on morning scores. To ensure that
our stage-specific results did not stem from variations in total
sleep time, we then examined how the accuracy scores were influ-
enced by the proportion of time spent in N1/N2 out of total sleep
time. Results are presented in Table S7. For morning session accu-
racy, the effect of Day was significant (F(6,104) =9.39, p < 0.0001),
while the effect of mean proportional N1/N2 was marginally
significant (F(1,18) =3.01, p = 0.0999). Interestingly, the effect of
nightly fluctuations in proportional N1/N2 (pN1/N2covdev in
Table S6), previously null, also became marginally significant
(F(1,104) = 2.97, p=0.0877). For evening session accuracy, the
effect of N1/N2 was significant (F(1,18)=6.55, p=0.0197), as
was the effect of Day (F(6,104)=2.29, p=0.0403). Accuracy
improved as the proportional amount of N1/N2 increased.

To conclude this part of the analysis, we examined, as before,
whether the between-subject effect of N1/N2 is maintained when
using the mean values from the habituation phase rather than the
experimental phase. To that end, we ran a model using the average
amount of time spent in each sleep stage over the whole habitua-
tion phase as between-subject factors, and Day as a within-subject
factor, separately for mornings and evenings. This analysis yielded
a significant effect of N1/N2 on PC scores on both times (F(1,16) =
6.85, p=0.0186; F(1,16)=9.29, p=0.0077; respectively). Once
again, the effect was maintained when using the proportional mea-
sure of N1/N2 as the between-subject factor (F(1,16)=5.42,
p=0.0317; F(1,18)=8.61, p = 0.0312; for mornings and evenings,
respectively).

Finally, as in the first experiment, rather than examining
whether sleep modulated the raw PC scores, we examined if it
modulated day-to-day improvements in those scores. For each
participant, we calculated the difference in accuracy between each
morning session and the preceding evening session (for the morn-
ing of Day 1, we assumed a 0.5 success rate as the baseline, repre-
senting random chance, allowing us to use data from all 7 nights).
These scores were then subject to a mixed-model ANOVAs with all
within and between-subject sleep factors, as well as Day, as predic-
tors. Results (see Table S8) showed no effects of sleep. Only the
effect of Day was significant (F(6,102)=5.10, p=0.0001), an
expected result signifying improvements in learning were slowed
down as the experiment progressed (see Fig. 7).

4.2.2. Sleep and overall learning trends

In addition to success rates in each session, we investigated
whether average sleep predicts overall learning trends. To accom-
plish this, the success rates across the 14 sessions of each partici-
pant were fitted with a sigmoid learning curve unique to that
participant. Each participant’s performance was then characterized
by two measures based on these curves: Maximum performance
level (defined as the accuracy when learning reached a plateau),
and learning time (defined as the time it took to reach accuracy
level of 95% of the maximum performance level).® Examples of

6 Each learning curve, representing the participant’s accuracy level along time, was
hypothesized to initiate when t =0 at an accuracy level of 0.5 (random chance) and
described by the sigmoid equation F(t) = c/(1 + exp(—a(t — b))) + 0.5 — c/(1 + exp(ab)).
For each participant, we then fitted a,b and c by search through the parameter space
to find the minimum mean squared error between the curve at time points
t=1,2,...0.14 and the data from the 14 experimental sessions. One subject did not
show a good fit to a sigmoid curve (and also had atypical learning based on strategy
analysis as presented in Gluck et al., 2002, not detailed here for lack of space),
therefore this subjects’ learning plateau was determined manually.

the fitted curves are presented in Fig. 6, showing that all but three
participants learned the task well.

A multiple regression model with average total time in N1/N2,
SWS and REM sleep as predictor variables was run separately for
the two performance measures, maximum learning level at plateau
and speed of learning. There was only a weak trend on the maxi-
mum performance level measure, F(3,16)=2.38, p=0.1077, with
N1/N2 being the sole predictor to significantly contribute to that
trend (p = 0.0355; see Fig. 7A). In contrast, there was a significant
effect of sleep on learning time (F(3,16) = 4.04, p = 0.0257), driven
by a positive correlation with SWS (p = 0.0056). The higher their
average SWS, the quicker participants reached their learning pla-
teau (Fig. 7B). This effect also held when examining the correlation
between the average proportional time spent in SWS and speed of
learning (r=-0.50, p=0.0244. Like before, we also examined
correlations between total sleep time and each of the two perfor-
mance measures but no significant effects were found). Finally,
when using sleep-stage measures taken from the habituation phase
rather than the experimental phase, we found, again, a significant
effect of sleep on learning time, F(3,16) =5.38, p=0.0113, which
was driven by both N1/N2 and SWS (p = 0.0209, p = 0.0032, respec-
tively). This last effect did not hold, however, when using the pro-
portional measures of sleep during habituation.

4.3. Discussion

The main results from our second experiment echo those from
the valence-rating task: Sleep affects performance in the Weather
Prediction Task in a between-subject, trait-like manner. Individual
differences in average N1/N2 predicted individual differences in
accuracy, with a positive correlation between the two. On the other
hand, individual differences in average SWS predicted individual
differences in learning time, with more SWS leading to faster learn-
ing. These effects were evident with both raw and proportional
sleep measures, as well as when using measures from the habitu-
ation phase rather than the experimental phase.

Performance in the weather prediction task is known to employ
both the hippocampus and the striatum in a competitive way, with
the former being most conspicuous during the very early stages of
learning when initial coding of the stimuli takes place, and then
again later on following training over hundreds of trials
(Poldrack et al., 2001). Since performance in hippocampal-related
tasks is sometimes modulated by SWS (Diekelmann & Born,
2010), one could expect a similar effect in the Weather Prediction
Task. Previous studies from our lab and others examined the effects
of a single night of sleep on performance in several variations of
the Weather Prediction Task (Barsky et al., 2015; Djonlagic et al.,
2009). It was found that sleep (compared to wake) enhances per-
formance in some conditions (see below); however, no correlation
between SWS and performance the following day was found.
Instead, both studies found a correlation with REM sleep (though
of a different kind; whereas one study reported correlations
between REM and performance improvement following sleep, the
other found a correlation between REM and performance in the
preceding night, with a lack of any performance benefits the next
day).

The discrepancy between the aforementioned studies and the
current one may be explained by key methodological differences.
First, participants in the earlier studies did not experience regular
nocturnal sleep; in one study participants experienced a daytime
nap, and in the other, despite the sleep occurring at night, partici-
pants reportedly slept significantly less than their typical sleep
schedule (likely due to frequent awakenings in the unnatural envi-
ronment of a sleep lab; see Supplementary Material in Djonlagic
et al., 2009). Second, the effects in the previous studies were only
obtained in a specific “observational” variation of the task wherein



I. Lerner et al./ Neurobiology of Learning and Memory 134 (2016) 275-286 283
A 1 Subject 2 Subject 5 Subject 8 Subject 16
= B
g 0.8 0.8 0.8 0.8
- 0.95 Py
3 .
Qo6 0.6 0.6 0.6 ool Leoo® )l
3
0.4 0.4 0.4 0.4 8 ossp . 1
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 © »
Session Session Session Session o sl 0o © ]
oy
1 Subject 1 1 Subject 11 1 Subject 20 1 Subject 12 : e
o 0751 g
g
Tos 0.8 0.8 0.8 3 orf 1
hd Q
g = .
gos 0.6 0.6 0.6 oesr 1
e o
0.4 0.4 0.4 0.4 b 1‘1 1I £0 1‘9 3I 1‘4 1‘0 1‘2 4I 5: 1‘5 1‘3 5 1‘6 BI 2I '; 1‘7 SI 18
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 Subject
Session Session Session Session

Fig. 6. Learning trends of participants in the Weather Prediction Task. A: Examples of learning data and their fitted curves. Upper row: Typical subjects. Lower row: Subjects
with poor learning, and an additional subject that showed a non-sigmoid learning curve. B: Accuracy at learning plateau, sorted by subject from worst to best.

Lo07
rg [ ] T T T
g /:r;/'y
dos r]
e ° e
300 @ o 1
£ /.' ) =
=) o
203
[ ]
0.6 0.8 1 ® ° [ ]
250 Accuracy at plateau

200

150

Average amount of Light sleep

100 | =

50 : ; 4
0.6 0.7 0.8 0.9 1
Accuracy at plateau

B

0.2

SWS ratio

Average amount of SWS

0 2 4 6 8
Time to learning plateau (sessions)

Fig. 7. Between-subject correlations of sleep and learning curve properties. A: Average amount of N1/N2 as a function of accuracy at learning plateau. Inset: Same, for
proportional amount of N1/N2 out of total sleep time. B: Average amount of SWS as a function of time to reach learning plateau. Inset: Same, for proportional amount of SWS

out of total sleep time.

subjects were trained by immediately receiving the correct answer
to each card combination instead of learning through trial and
error. This version of the task may be processed and consolidated
differently that the feedback-based version used in the current
work. Results from neuroimaging studies suggest that in the obser-
vational version of the task, hippocampal involvement in learning
does not compete with striatal regions, unlike the feedback-based
version (Poldrack et al., 2001). Moreover, when using the observa-
tional version, there is evidence that the effect of REM sleep on
performance involves a different processing mechanism than the
ones used for initial encoding of the stimuli, presumably within
the hippocampus (Barsky et al., 2015). Taken together, it is tempt-
ing to hypothesize that the effects of REM on performance in these
previous studies were unrelated to hippocampal-dependent con-
solidation. On the other hand, given that in the feedback version
of the task the hippocampus is involved in both early and late
stages of training, the focus of our study on global measures of per-
formance over many trials and days may have been better suited to
tap into hippocampal-based consolidation and thus allowed us to
detect the hypothesized SWS effect.

Alternatively, our SWS results could be explained by the synap-
tic homeostasis hypothesis (Tononi & Cirelli, 2006). According to
this theory, learning during wake causes a net increase in synaptic
strength that is both toxic and energetically costly. In order to
compensate for this increase, during SWS a “renormalization”

process takes place, which restores synaptic homeostasis. As part
of this process, weak synaptic connections are pruned, leading to
an increased signal-to-noise ratio when accessing stored memories
and, consequently, to improved performance following sleep (see
Tononi & Cirelli, 2014 for a more detailed description of this pro-
cess). In light of this hypothesis, one could argue that SWS, rather
than enhancing performance in the weather prediction task
through hippocampal-dependent processes, increases the stability
and accessibility of memories as a whole, a process that is
inherently accumulative and ongoing. As a result, it is mostly pro-
nounced when examining the relations between SWS and perfor-
mance on a trait level rather than direct effects from one day to
another.

The finding that individual differences in N1/N2 predict individ-
ual differences in average accuracy is more surprising. N1/N2
includes sleep stages N1 and N2, with N2 comprising the large
majority (Ohayon, Carskadon, Guilleminault, & Vitiello, 2004).
Therefore, results attributed to N1/N2 are most likely tied to N2.
Previous studies in humans have found correlations between
performance in hippocampal-dependent tasks and time in N2
(Meier-Koll, Bussmann, Schmidt, & Neuschwander, 1999;
Peigneux et al., 2004; Van Der Helm, Gujar, Nishida, & Walker,
2011), as well as between performance in such tasks and sleep
spindles, which occur mostly in N2 (e.g., Gais, Molle, Helms, &
Born, 2002; Schabus et al,, 2004; Van Der Helm et al., 2011).
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However, overall, findings relating performance in hippocampal
tasks to SWS are far more common. It is therefore possible that
the repeated monitoring of sleep over multiple days was crucial
in allowing us to identify the involvement of N1/N2.

5. General discussion

Using two very different experimental paradigms, one pertain-
ing to hippocampal-dependent learning and the other to emotional
reactivity, we showed that effects of sleep on performance are, to a
large extent, trait-dependent. Individual differences in sleep char-
acteristics were correlated with individual differences in perfor-
mance in both paradigms, whereas within-subject variations in
sleep were, with one exception, uncorrelated with variations in
subsequent performance (see summary in Table 1). These results
serve as a warning against a simplified interpretation of the
sleep-cognition relationship shown in single-night studies as stem-
ming from a short-term effect of a particular night of natural sleep
on behavior the following morning. Further, our results suggest
that because the effect of sleep on cognition is trait-like, single
night studies may not be sufficient to get a reliable measure of this
trait (even when first-night effects are controlled for) since any
particular night, given the daily sleep fluctuations, is simply too
noisy a measurement (see Fig. 5). Moreover, even when utilizing
daily monitoring of sleep, our results suggest that it is insufficient
to estimate the trait effect of sleep on cognition based only on total
sleep time (for example, using actigraphy) as many of our findings
pertain to specific sleep stages.

Several possibilities exist that may explain this basic pattern in
our results. One technical possibility is that the variability of sleep
measures within-subjects was larger than the one between-
subjects, essentially yielding noisy measurements that blurred cor-
relations of the former with other factors. However, this is unlikely.
First, we did find some within-subject effects in our first experi-
ment. Second, calculating intra and inter variability over the data,
we found lower values for within- than between-subjects ratios
for every sleep measure except Total sleep (see Supplementary
Table S10; also, see Fig. 5 for qualitative impression). Therefore, it
does not seem to have been “easier” to detect between-subjects
effects in our data. Another possibility is that the correlations
between sleep and cognition are not indicative of a causal relation
between the former and the latter; instead, it might be that perfor-
mance on one day affects sleep the following night rather than the
other way around; or, alternatively, that a common factor affects
both sleep and behavior independently, yielding a correlation
between them that does not reflect a direct influence. However,
such relations per se do not seem to be sufficient to account for
the full spectrum of results in our and others’ studies, for several
reasons. First, our finding that sleep patterns in the habituation
phase are predictive of performance a week later cannot be
accounted for by a relationship in which performance affects
subsequent sleep. Second, there is clear and strong evidence in

Table 1
Summary of sleep effects in the two experiments.

the literature, coming from studies employing manipulations of
sleep in both human and animals, that sleep can affect subsequent
behavior directly (see Rasch & Born, 2013, for review). A support for
this effect was also seen in the within-subject influence of SWS on
Emotional Blunting difference scores in our first experiment.

Given this literature, we hypothesize two alternative mecha-
nisms that may explain our results in the context of previous find-
ings. One possible mechanism is that there is a direct causal effect
of sleep on subsequent performance, but this effect has an accumu-
lative nature such that natural variations in sleep from one night to
another are barely enough to significantly influence cognitive
capabilities in the following day; rather, it takes incremental
changes over many days to create a substantial effect. Thus, persis-
tent differences in sleep patterns are generally required to produce
differences in performance. Nevertheless, if large changes in sleep
patterns are introduced, such as when pulling an all-nighter before
an exam or when extreme experimental manipulations of sleep are
implemented; or, alternatively, when increasing the sensitivity of
the behavioral measures by comparing scores before and after
sleep, an effect on behavior can become substantial after a single
night (see illustration in Fig. 8A). Another possible mechanism is
that sleep and performance are correlated indirectly by a third fac-
tor that affects them both (e.g., a genetic tendency for high stress
levels; a developmental factor such as the efficiency of functional
networks in the brain, etc.). However, there is also a minimum
amount of sleep (or a specific sleep stage) that is required to main-
tain daily functioning. Natural variations in sleep are not extreme
enough to go below that minimum level and therefore do not cause
aversive effects on performance; but, if sleep is drastically
disturbed during a specific night, the threshold is crossed and
subsequent cognitive performance may deteriorate as a result
(Fig. 8B). Ultimately, more research is required to determine which
of the two models, if any, is correct, and if these results generalize
to additional paradigms beyond the ones presented in this study.

Our findings have practical implications as well. They suggest
that better cognitive and emotional functioning may not be
achieved by, for example, improving one’s sleep on a certain
important night (e.g., before taking an exam) beyond one’s typical
average; rather, if sleep-related improvement can be achieved at
all, it will likely require general change in sleep hygiene that takes
place over an extended period of time, thus altering average sleep
patterns. This too, however, is uncertain given the possibility that
an independent developmental factor is responsible for the corre-
lations we observed.

Finally, it should be noted that the interest in and demand for
consumer-level sleep-monitoring devices has been constantly
increasing in the last decade, with more and more products avail-
able on the market (for review see Chen et al., 2013). Some of these
devices, being easy to use for multiple nights while maintaining
relative validity, have the potential to not only provide easy access
to quantifiable information regarding one’s own sleep but also
allow the expansion of sleep and cognition research into large, lon-
gitudinal studies in natural environments. Our study provides one

Sleep Stage

Type of Effect Task REM

SWS N1/N2

Between-Subject Effects  Valence Rating Task

Weather Prediction Task

Within-Subject Effects Valence Rating Task I

Weather Prediction Task

A Evaluation of ambiguity as
positive in emotional stimuli

A Tendency towards blunting of emotional stimuli

¥ Time to reach maximum performance A Average performance

¥ Overnight increase in emotional blunting I

Note. Direction of arrow represents the direction of change in performance as the corresponding amount of time in a sleep stage goes up.
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Fig. 8. Two possible causal mechanisms for the effect of sleep on performance. A:
Sleep affects performance directly; however, small daily variations in sleep vs. wake
do not have a significant effect, and only large, accumulated variations are
translated to detectable performance modulation. B: Sleep and performance are

affected by a third factor, but sleep can also affect performance directly if it is
reduced below a certain threshold. See text for details.

of the first pieces of evidence that utilization of such devices in par-
allel to cognitive testing can replicate known results in the field
that were previously obtained in PSG-based, single-night studies,
as well as extend these studies to allow both the discovery of
new sleep-cognition relations that depend on reliable, individual
baselines, and a better appreciation of how these relations progress
over time.

6. Conclusions

We have found that natural day-to-day variations in sleep
architecture do not predict variations in performance in emotional
and cognitive tasks the following morning; rather, individuals’
trait-like characteristics of sleep architecture predict trait-like
performance in these tasks. Our results highlight the necessity of
obtaining reliable baseline sleep measures in future studies
of sleep-cognition relations, as well as the possible advantage of
monitoring sleep and behavior in natural home environments.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.nlm.2016.07.032.
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