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Accumulating evidence suggests that sleep, and particularly Slow-Wave-Sleep (SWS),
helps the implicit and explicit extraction of regularities within memories that were
encoded in a previous wake period. Sleep following training on virtual navigation
was also shown to improve performance in subsequent navigation tests. Some
studies propose that this sleep-effect on navigation is based on explicit recognition
of landmarks; however, it is possible that SWS-dependent extraction of implicit
spatiotemporal regularities contributes as well. To examine this possibility, we
administered a novel virtual navigation task in which participants were required to walk
through a winding corridor and then choose one of five marked doors to exit. Unknown
to participants, the markings on the correct door reflected the corridor’s shape (from a
bird’s eye view). Detecting this regularity negates the need to find the exit by trial and
error. Participants performed the task twice a day for a week, while their overnight sleep
was monitored. We found that the more time participants spent in SWS across the
week, the better they were able to implicitly extract the hidden regularity. In contrast,
the few participants that explicitly realized the regularity did not rely on SWS to do so.
Moreover, the SWS effect was strictly at the trait-level: Baseline levels of SWS prior to the
experimental week could predict success just as well, but day-to-day variations in SWS
did not predict day-to-day improvements. We propose that our findings indicate SWS
facilitates implicit integration of new information into cognitive maps, possibly through
compressed memory replay.
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INTRODUCTION

Considerable evidence from the past two decades suggests that sleep, particularly Slow-Wave-Sleep
(SWS), facilitates a variety of hippocampal-dependent cognitive processes (Rasch and Born, 2013).
One example of such effect is the development of cognitive maps in humans. Studies show that
sleep following practice on a virtual navigation task improves performance on the same task the
next waking period (e.g., Peigneux et al., 2004; Wamsley et al., 2010; Nguyen et al., 2013) and that
activity patterns in the hippocampus during practice are repeated during SWS and predict later
improvement (Peigneux et al., 2004). Moreover, artificially eliciting brain-activity patterns from
the practice period during sleep stages N2 and SWS using targeted memory reactivation (TMR)
techniques improve next-morning performance even further (Shimizu et al., 2018).

The mechanisms by which SWS contributes to navigation performance are not entirely clear.
Previous experiments have often included conspicuous landmarks along the navigated route
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and, indeed, there is evidence to suggest that the sleep effect
depends on explicit recognition of those landmarks rather
than on implicit development of a full cognitive map (Noack
et al., 2017). This possibility corresponds with contemporary
understanding of SWS as a state in which previously encoded
memories are reactivated in the hippocampus (“memory replay”)
to support memory consolidation (Diekelmann and Born, 2010).
In the case of navigation tasks, such replay may help to
consolidate landmark memories within their spatial context
and thus yield sleep-dependent facilitation in performance.
Nevertheless, it is well recognized that navigation behavior
depends on various cognitive abilities, some of which are implicit
(Wolbers and Hegarty, 2010), and therefore the actual effect
of sleep may be multifaceted. There is considerable evidence
from other paradigms that memory replay during SWS does
not only support the simple strengthening of memories, but
also helps extracting regularities embedded in those memories,
including implicit and explicit detection of sequential patterns
(Fischer et al., 2006; Durrant et al., 2011; Wilhelm et al., 2013),
identifying linguistic regularities in words and sentences (Gomez
et al., 2006; Batterink and Paller, 2017), and gaining insight
into temporal contingencies (Wagner et al., 2004; Yordanova
et al., 2012). Such sleep-dependent extraction of regularities could
potentially underlie improvement in navigation performance as
well, possibly because it can facilitate the integration of new
information pertaining to a spatial environment into a cognitive
map.

Here, we hypothesized that sleep may facilitate implicit and
explicit development of a full cognitive map during navigation in
a virtual 3D environment that does not contain any conspicuous
landmarks en route (and thus does not rely on simple memory
recall). To that end, we developed a novel virtual navigation
task in which performance improvement crucially depends on
(implicit or explicit) understanding of the whole traveled route
rather than memorization of any specific highlighted spots. In
addition, following our previous study showing that effects of
sleep on learning might be more trait- than state-dependent
(Lerner et al., 2016), we employed a multiple-night paradigm that
differentiated effects to those depending on daily sleep patterns
and those depending on average sleep patterns characterizing the
individual as a whole.

METHODS

Participants and Design
Twenty healthy students (mean age: 22.15; SD = 2.5; four
females) participated in the study for monetary compensation
(Supplementary Table S1). During the study they maintained
their regular caffeine intake and refrained from alcohol
consumption and daytime napping. Long-term sleep monitoring
and administration of the behavioral task followed an established
protocol previously used by us in a former study (see
Lerner et al., 2016 and Supplementary Material). In short,
participants first monitored their sleep at home using a
wireless sleep-monitoring headband (Zeo Inc., Newton, MA,
United States) and an actigraphy bracelet (Micro Motionlogger

Sleep Watch, AMI, Ardsley, NY, United States) for a habituation
period of at least 5 days (mean: 7.75; SD = 2.5). They then
continued to monitor their sleep for an additional week, during
which they also practiced on a virtual navigation task twice a
day, in the morning (half an hour after waking up) and in the
evening (within an hour before going to sleep) using a Kindle
tablet (Amazon.com Inc., Seattle, WA, United States). Behavioral
data from the task was sent automatically to a secured email after
each session, for a total of 14 sessions (see Figure 1A for task
design).

In each trial of the virtual navigation task, participants were
placed at the beginning of a winding corridor. They needed to
navigate their way to the end of the corridor using four on-screen
buttons (forward, backward, turn right, turn left; Figure 1B).
There, they faced five doors, each marked above with a different
letter or a digit. One door led to the exit, while the others were
locked. Participants needed to find the correct door by trial
and error, and were instructed to try to exit each corridor as
quickly as possible. Once outside, the next trial began with a
new corridor. Unknown to participants, the markings above the
correct door always reflected the shape of the corridor they have
just traversed (from a bird’s eye view). Realizing this consistency,
either implicitly or explicitly, allowed participants to avoid trying
all the doors one by one and thus reduce the number of failed
attempts.

There were four trials in each session, for a total of 56 trials
along the week. Twenty-eight different letters/digits were used as
targets and distractors, with each being the correct answer exactly
twice across the 56 trials. The order of targets, the location of
the correct door and the identity of distractors were randomized
across trials uniquely for each participant, under the constraint
that letters/digits with very different shapes were used in each trial
to avoid confusion (see Supplementary Material for examples).
Following the last session, participants filled in a questionnaire,
asking them if they had realized the significance of the markings
above the doors, and if so – at what point along the experiment
had they realized it.

Data Analysis
We measured behavioral performance as the number of different
incorrect doors participants attempted to open in each trial before
finding the correct one (ranging from 0 to 4). We computed
participant’s “Average Error” for each session as the average
number of incorrect attempts over the four trials for that session,
yielding 14 values for each participant.

Statistical analysis followed our previous long-term sleep
study (Lerner et al., 2016; please see the Supplementary Material
for more details). Data from the two sleep monitoring devices
were integrated for each subject to yield a measure of total time
spent in each sleep stage of each experimental night, as well
as during the habituation phase. These devices were able to
distinguish between three sleep stages: SWS (equivalent to N3
sleep stage in the literature), rapid eye movement (REM) sleep,
and a “Light sleep” stage equivalent to the aggregation of N1
and N2 sleep stages. These measures were then used in a mixed-
model Analysis of Variance (ANVOA) to predict the number of
errors. The basic ANOVA model included the average time spent
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FIGURE 1 | (A) Experimental design. (B) Example of the navigational task. Left: View from the subject’s perspective. Right: Top (“bird’s eye”) view of a full route
during a single trial.

in each sleep stage for each subject as “between-subject” factor
to assess the influence of individual trait-level differences, as well
as the daily deviations of each sleep stage from the individual
average as a “within-subject” factor, to assess the contribution
of state-level fluctuations in sleep patterns from one night to
the other (with each daily sleep deviation value corresponding
to performance the following day). Additional within-subject
factors were Day (1–7) and Time of day (Morning and Evening),
and their interaction. Covariance structure for errors was defined
by Kronecker products with unstructured covariances for Time
and first-order autoregressive AR(1) for Day. Analysis was
performed using SAS Studio 3.71 (SAS Institute). Similar follow-
up analyses are described in Results.

A second analysis focused on examining the relation between
trait-level sleep measures and global variables characterizing
learning in the task as a whole. To that end, we fitted a learning
curve for each participant’s scores, using a decaying exponential
function described by F (t) = Ae−bt , with t = 1...14, and A,
b being positive parameters fitted for each individual. Global
learning performance was characterized for each participant
as the final (i.e., t = 14) value on that curve1. We then ran
a multiple regression model with the individual average time
in each sleep stage as three predictors of the global learning
performance measure. Analysis was performed using Matlab
2017a (MathWorks).

1In Lerner et al. (2016) we also used a second global parameter, the time it took
participants to reach learning plateau. This was not attempted here because very
few participants reached a plateau.

RESULTS

Across subjects, behavioral and sleep data were collected
successfully in 95% and 88% of all sessions and nights,
respectively. Missing values of the learning data were filled in by
linear extrapolation based on the nearest neighboring sessions
for each subject, whereas unrecorded sleep data were treated as
missing values.

Average performance for the 14 sessions is shown in
Figure 2B. A one-way repeated-measure ANOVA with
Session as a single factor showed a significant improvement
[F(13,247) = 1.948, p = 0.026]. Individual performance on
the task was, however, quite variable both between- and
within-subjects (see Figure 2A for typical examples). Only
three participants reported having an insight into the hidden
regularity. Two had the insight on the first and third day,
respectively, and showed markedly improved performance on
the task that corresponded with their estimated time of insight.
The third participant reported having insight only the fifth day,
and did not show a corresponding behavioral improvement. All
other participants did not explicitly discover the regularity, but
most still showed moderate implicit improvement on the task
along the week.

Results of the mixed model ANOVA did not reveal any
within- or between-subject effects of sleep on performance,
with only Day showing a marginal effect [F(6,97) = 1.83,
p = 0.102; Supplementary Table S2]. We subsequently ran a
similar ANOVA but this time examining the effects of sleep on the
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FIGURE 2 | (A) Examples of individual learning curves and exponential fits of six participants, representing different learning abilities (moderate learning without
insight into the maps structure; learning with insight; little or no learning). (B) Average error rates across participants along the experimental sessions. Error bars
represent standard deviation of the mean. (C) Final error rates at the end of learning for all participants as a function of their individual average time in SWS. Blue
dots represent participants that did not gain insight into the maps’ structure. Brown dots represent participants that gained insight. Inset: Same, for average
individual proportion of SWS out of total sleep time.

difference between performance in the morning and performance
in the previous evening (with Day as a single within-subject
factor, in addition to the same within and between-subject sleep
factors. There were only six levels of Day given that the dependent
measure was difference scores). We found a significant effect
of baseline N1/N2 sleep, such that more individual N1/N2 was
associated with higher increase in errors from the evening to the
following morning [F(1,16) = 5.27, p = 0.036; Supplementary
Table S3]. No other effects were significant. To examine whether
this effect is maintained when controlling for total sleep time, we
followed up this analysis by running a second, similar ANOVA
with % N1/N2 (proportion of time in N1/N2 out of total sleep
time) as a single factor (both within and between subjects as
before). However, no effects were significant (Supplementary
Table S4). Finally, we ran a third ANOVA for the difference
scores with total sleep time (within- and between-subjects) as a
single factor. Again, no effects were significant (Supplementary
Table S5).

Moving on to global measures of performance, multiple
regression analysis of the effect of average time in each
sleep stage on the final error rates was not significant.
However, visual inspection revealed that the three participants
that had insight–particularly the two that showed marked
performance improvement–were obscuring a clear effect of
SWS on performance for the other participants. We therefore
reran the multiple regression model with only the 17 non-
insight participants. This time, the model effect was significant
[F(3,13) = 4.29, p = 0.026], driven by a negative correlation with

SWS (p = 0.013; Figure 2C): The more average SWS subjects
had, the less errors they performed. To follow up this analysis, we
computed the Pearson correlation between the percent of time in
SWS with the final error. Again, the effect was highly significant
(r =−0.65, p = 0.0047; Figure 2C, inset). Re-running the analysis
with total sleep time as a single predictor was not significant
(p = 0.931).

Next, to verify that the effects did not depend upon
the exponential fitting, we computed the Pearson correlation
between SWS and % SWS and the average error of each
subject over the last 2 days instead of the final error value
predicted by the exponential fit, and found even stronger
effects (r = −0.748, p < 0.001 and r = 0.698, p = 0.002, for
SWS and % SWS, respectively). Next, we reran the analysis
using the average baseline levels of SWS from the habituation
period, instead of the average amount over the experimental
period. Again, effects remained strongly significant for both
SWS and % SWS (r = −0.684, p = 0.002, and r = −0.639,
p = 0.006, respectively). Finally, we reran the analysis with
all 20 participants, but instead of using the final error for
the three insight participants, we used the values that fit their
performance curves just before they had insight (middle of
days 1,3, and 5, respectively, for each participant). Again, the
SWS effect remained significant (r = −0.488, p = 0.029) while
% SWS was marginally significant (r = −0.392, p = 0.087),
suggesting that the very gain of insight might dramatically
change performance that was affected by SWS until that
time.
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DISCUSSION

Our main finding in the current study is that the more time
individuals spend in SWS on average, the better they are
able to develop implicit cognitive maps of recently traversed
environments. Specifically, unlike previous works, this effect was
found in the absence of any conspicuous landmarks along the
traveled routes, suggesting it did not rely on sleep improving
simple recall of contextual cues (cf. Noack et al., 2017). In
contrast, gaining explicit insight into the structure of these maps
seems to depend on additional mechanisms beyond SWS. This
dichotomy between explicit and implicit effects of SWS in regards
to insightful behavior echoes previous findings in the literature,
in which SWS was shown to encourage implicit detection of
sequential regularities while explicit detection of these regularities
required additional processes (Yordanova et al., 2010).

One mechanism that could potentially account for our results
is sleep-dependent “temporal scaffolding,” previously suggested
by us to explain the general effect of sleep on extraction
of hidden regularities within newly learned stimuli (Lerner,
2017a,b). Noting that the effects of sleep are often achieved
when the regularities to be extracted are temporal (i.e., when
an event at one time point consistently predicts another event
occurring a few seconds later), we hypothesized that one specific
property of memory replay during SWS could underlie this effect:
its time-compressed nature. Specifically, memory replay during
SWS is known to occur in an accelerated form compared to the
original experience (Rasch and Born, 2013). This acceleration
may allow bridging temporal gaps between events and create
representations of the sequential experiences that are stripped of
their temporal component. Consequently, Hebbian mechanisms,
which typically have a timescale of only 50–100 ms (August and
Levy, 1999), could pick up temporal regularities embedded in
those representations that were previously too distant in time
to be detected. The theory suggests that cortical mechanisms
could then exploit those new hippocampal representations
achieved during sleep to allow gaining explicit insight into
the regularities. Applying the model to the current results, we
suggest that compressed replay of a few-seconds worth of travel
in the virtual environment could have helped form time-free
representations of those (partial) routes. Consequently, these
representations were implicitly elicited during task performance
the next waking period, biasing participants to choose the doors
with the markings corresponding to those representations. The
more SWS participants tend to have on average, the more
opportunities there will be for compressed replay of those routes.
Consistent with this view, previous human and rodent studies
suggested that memory replay (albeit during quiet wake rather
than sleep) plays an active role in flexible learning of cognitive
maps, and not just in their consolidation (e.g., Gupta et al., 2010;
Craig et al., 2016). Nevertheless, inconsistent with our theory,
explicit detection of the regularity in our task seems to have
depended on additional, non-SWS mechanisms, though strong
conclusions cannot be drawn due to the small number of
participants gaining insight.

We also found evidence of an N1/N2 effect on average
performance. This result resembled our previous long-term sleep

study using the same methodology but a different learning
paradigm (Lerner et al., 2016). Others have also implicated N2
in the facilitation of navigational performance (Wamsley et al.,
2010; Shimizu et al., 2018). N2 shares several physiological
characteristics with SWS (e.g., sleep spindles) and both stages are
sometimes grouped together as non-REM sleep; however, it is
currently not clear if the mechanisms contributing to the N2 and
SWS effects on memory are similar. Since in the current study the
N1/N2 effect was evident only for raw average times in N1/N2 but
not when using a relative measure (% N1/N2 out of total sleep
time), we did not pursue it further.

Finally, why didn’t day-to-day sleep affect day-to-day
changes in performance? One possibility is that within-subject
performance was too noisy to allow detecting small sleep
effects. However, other results from our lab suggest otherwise.
Particularly, in a small follow-up experiment (Supplementary
Material), participants performed all of the 56 trials in two
sessions with a 90-min nap (or quiet rest) in between, and
hardly any participant showed any improvement. Therefore, it
seems that a single sleep session is not sufficient to induce
facilitation in this task. This replicates our previous results using
a different learning task (Lerner et al., 2016) and suggests that
sleep, and SWS in particular, might have an accumulated effect
over multiple nights. Together, those earlier and current results
point to the possibility that performance in any task that benefits
from replay could be positively correlated with individual levels
of SWS, especially if the task is not straightforward and requires
long periods of learning.

Our results, however, need to be interpreted with some
caution. First, the implicit measure of performance, error rates,
is an indirect measure of spatial knowledge. In principle, error
rates could have improved by developing abilities that are
not strictly based on navigation (e.g., counting the number
of turns on the route and choosing a symbol with a number
of edges that match it, and so on). Incorporating a second
measure of spatial knowledge, such as pointing toward the
starting point at the end of each trial (e.g., Craig et al., 2016),
may help verify our conclusions in future studies. Second, as
with any correlational finding, one could not naively infer a
causal relationship. Specifically, as discussed in Lerner et al.
(2016), the relation between SWS and task performance could
also be indirect, stemming from a correlation of each of them
with a third variable, such as attention or mindset flexibility.
Moreover, time spent in SWS is a crude measure of the
mechanisms involved in memory consolidation, and does not
directly tap memory replay. Further research, manipulating SWS
over multiple nights and measuring brain activation during
performance, would be needed to establish a direct causal relation
of SWS and performance in our task and provide further
support for the potential involvement of memory replay in the
process.
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