Motor-symptom Laterality Affects Acquisition in Parkinson's disease: a Cognitive and fMRI study

Journal:	Movement Disorders
Manuscript ID	MDS-16-0758.R2
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Huang, Pei; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Neurology and Institute of Neurology Tan, Yu-Yan; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Neurology and Institute of Neurology Liu, Dong-Qiang; Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China Herzallah, Mohammad; Center for Molecular and Behavioral Neuroscience, Rutgers University; Palestinian Neuroscience Initiative, Faculty of Medicine Al-Quds University Lapidow, Elizabeth; Center for Molecular and Behavioral Neuroscience, Rutgers University Wang, Ying; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Neurology and Institute of Neurology Zang, Yu-Feng; Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University Gluck, Mark; Center for Molecular and Behavioral Neuroscience, Rutgers University
Keywords:	Parkinson's disease, Hemispheric asymmetry, Dopamine, Association learning, Resting-state functional MRI

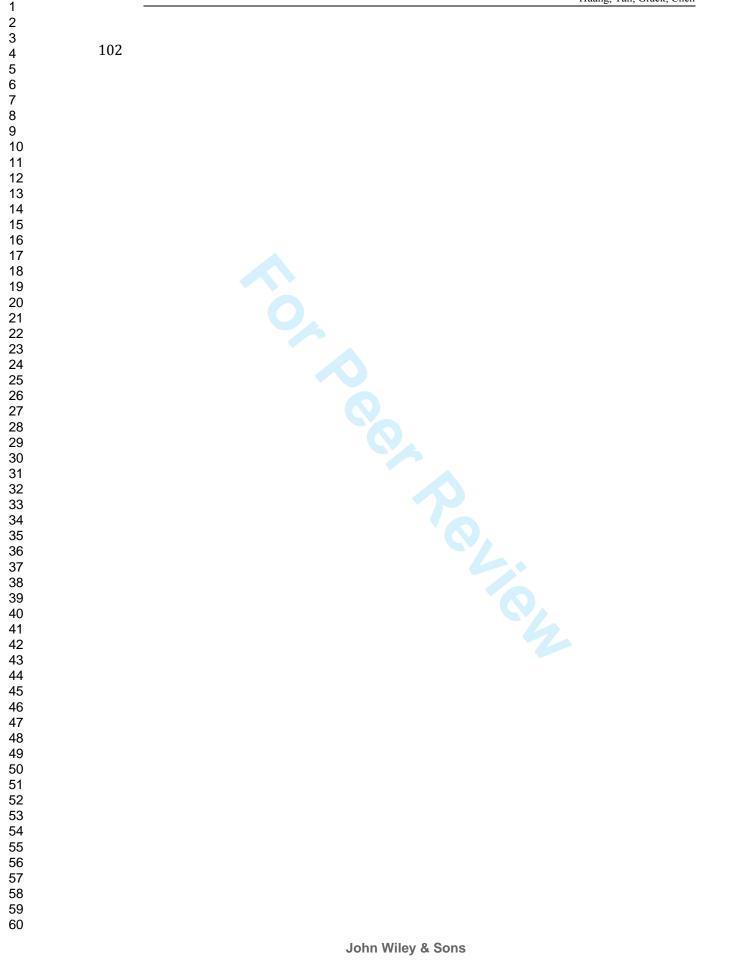
SCHOLARONE[™] Manuscripts

1	Title Page
2	Motor-symptom Laterality Affects Acquisition in Parkinson's disease: a
3	Cognitive and fMRI study
4	
5	Pei Huang, M.D. ^{1*} , Yu-Yan Tan, M.D., Ph.D. ^{1*} , Dong-Qiang Liu, Ph.D. ² , Mohammad
6	M. Herzallah, M.D., Ph.D. ^{3,4} , Elizabeth Lapidow, B.A. ³ , Ying Wang M.D. ¹ , Yu-Feng
7	Zang, M.D. ⁵ , Mark Gluck, Ph.D. ^{3§} , Sheng-Di Chen, M.D., Ph.D. ^{1§}
8	
9	¹ Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao
10	Tong University School of Medicine, Shanghai 200025, China.
11	² Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University,
12	Dalian, China.
13	³ Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New
14	Jersey 07102, USA.
15	⁴ Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University,
16	Jerusalem, Palestine.
17	⁵ Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou
18	Normal University, Hangzhou, Zhejiang 310036, China.
19	
20	*These authors contributed equally to this work.
21	

22	§ Correspondence to: Sheng-Di Chen, Department of Neurology and Institute of
23	Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
24	Shanghai 200025, China; Tel: +86-021-64457249, Fax: +86-021-64457249; E-mail:
25	chen_sd@medmail.com.cn.
26	
27	Correspondence may also be addressed to: Mark Gluck, Ph.D., Tel: +1 (973) 353-3298,
28	Fax: +1 (973) 353-1760, E-mail: gluck@pavlov.rutgers.edu.
29	
30	Email Address of Co-authors:
31	Pei Huang, huangpei699@126.com
32	Yu-Yan Tan, rabbit82@gmail.com
33	Dong-Qiang Liu, charlesliu116@gmail.com
34	Mohammad M. Herzallah, mohammad.m.herzallah@gmail.com
35	Elizabeth Lapidow, elapidow@gm.slc.edu
36	Ying Wang, wang-ying@medmail.com.cn
37	Yu-Feng Zang, zangyf@hznu.edu.cn
38	
39	Word Count for Manuscript: 3856; Word Count for Abstract: 244; Character
40	Count for Title: 96.
41	
42	Keywords

43	Parkinson's disease; hemispheric asymmetry; dopamine; association learning;
44	resting-state functional MRI
45	
46	Running title: Lateral Parkinsonism affects acquisition
47	
48	Funding sources:
49	Dr. Tan is in charge of National Natural Science Foundation of China (81100952). Dr.
50	Liu is in charge of National Natural Science Foundation of China (81201083). Prof.
51	Zang is in charge of National Natural Science Foundation of China (81520108016).
52	Prof. Chen is in charge of National Natural Science Foundation of China (30872729,
53	30971031). Prof. Gluck received grants from Program for Outstanding Medical
54	Academic Leader (LJ 06003), and the National Institute of Neurological Disorders and
55	Stroke (NINDS) at the National Institutes of Health (1 P50 NS 071675-02). The other
56	co-authors report no disclosures relevant to the manuscript.
57	
58	Conflict of interests: None.
59	

60 Abstract


61 Objective: Asymmetric onset of motor symptoms in PD can affect cognitive function.
62 We examined whether motor-symptom laterality could affect feedback-based
63 associative learning and explored its underlying neural mechanism by fMRI in PD
64 patients.

Methods: We recruited 63 early-stage medication-naïve PD patients (29 left-onset medication-naïve patients, 34 right-onset medication-naïve patients) and 38 matched normal controls. Subjects completed an acquired equivalence task (including acquisition, retention and generalization) and resting-state fMRI scans. Learning accuracy and response time in each phase of the task was recorded for behavioral measures. Regional homogeneity was used to analyze resting-state fMRI data, with regional homogeneity lateralization to evaluate hemispheric functional asymmetry in the striatum.

Results: Left-onset patients made significantly more errors in acquisition (feedback-based associative learning) than right-onset patients and normal controls, while right-onset patients performed as well as normal controls. There was no significant difference among these three groups in the accuracy of either retention or generalization phase. The three groups did not show significant differences in response time. In the left-onset group, there was an inverse relationship between acquisition

0111		Movement Disorders
		5 Huang, Tan, Gluck, Chen
	81	errors and regional homogeneity in the right dorsal rostral putamen. There were no
	82	significant regional homogeneity changes in either the left or the right dorsal rostral
	83	putamen in right-onset patients when compared to controls.
	84	
	85	Conclusions: Motor-symptom laterality could affect feedback-based associative
	86	learning in PD, with left-onset medication-naïve patients being selectively impaired.
	87	Dysfunction in the right dorsal rostral putamen may underlie the observed deficit in
	88	associative learning in patients with left-sided onset.
	89	
	90	
	91	
	92	
	93	
	94	
	95	
	96	
	97	
	98	
	99	
	100	
	101	
		John Wiley & Sons

6 Huang, Tan, Gluck, Chen

104	Parkinson's disease (PD) is the second most common neurodegenerative disorder,
105	characterized by resting tremor, rigidity, bradykinesia and postural instability. The
106	onset and progression of motor symptoms in PD are usually asymmetric, reflecting
107	asymmetric contralateral dopamine depletion in the basal ganglia. ¹⁻⁴ Relationships
108	between cognitive performance and symptom asymmetry have been revealed that
109	left-onset PD patients performed worse on cognitive measures, such as spatial attention
110	and tasks of orientation and mental imagery, than right-onset PD patients. ⁵⁻⁷ Cognitive
111	processes that are closely related with dopamine, such as cognitive flexibility and
112	motivation, showed different deficits between right-onset and left-onset PD patients. ⁸
113	For example, left-onset PD patients with greater loss of dopamine in the right
114	hemisphere had impaired cognitive flexibility. ^{5, 8}
114 115	hemisphere had impaired cognitive flexibility. ^{5, 8} Feedback-based associative learning, which involves learning through corrective
115	Feedback-based associative learning, which involves learning through corrective
115 116	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and
115 116 117	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that
 115 116 117 118 	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that feedback-based associative learning was impaired in PD patients. ^{12, 13} However, the
 115 116 117 118 119 	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that feedback-based associative learning was impaired in PD patients. ^{12, 13} However, the impairment in feedback-based learning in PD is not a universal finding, and many
 115 116 117 118 119 120 	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that feedback-based associative learning was impaired in PD patients. ^{12, 13} However, the impairment in feedback-based learning in PD is not a universal finding, and many factors could contribute to this variability. Wilkinson L et al. did not find a selective
 115 116 117 118 119 120 121 	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that feedback-based associative learning was impaired in PD patients. ^{12, 13} However, the impairment in feedback-based learning in PD is not a universal finding, and many factors could contribute to this variability. Wilkinson L et al. did not find a selective impairment in PD in probabilistic feedback-based learning, but reported that there was

2
3
4
2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 8 9 20 21 22 32 4 25 26 7 8 9 30 1 32 33 34 35 36 37 8 39 0 1
6
7
8
0
3
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
48 49
50
50 51
51 52
52
53
54
55
56
57
53 54 55 56 57 58 59
50
09
60

learned stimulus-response associations equally well compared to healthy controls but
learning was impaired by dopaminergic medication.¹³ Thus, in the underlying disease
process, disease severity and dopaminergic medication might be all involved in
modulating feedback-based learning. However, it is still not clear how the dopamine
asymmetry affects feedback-based associative learning in PD patients.

129 To control and minimize the effects of medication involvement and disease 130 severity, we recruited early-stage medication-naïve right-handed PD patients including 131 Left-onset medication-naïve patients (L-naïve) and Right-onset medication-naïve 132 patients (R-naïve). We used a computer-based cognitive task of learning and 133 generalization based on the acquired equivalence paradigm to test the effects of 134 dopamine asymmetry on feedback-based associative learning. The acquired 135 equivalence task, which includes tests of acquisition, retention and generalization, was 136 repetitively used to evaluate feedback-based associative learning in patients with PD and other neurodegenerative disorders.^{10, 11} In the acquisition phase, learning through 137 138 trial-by-trial feedback learning was shown to correlate to striatal function, while 139 generalization without feedback was shown to correlate with hippocampal and medial temporal lobe (MTL) functionality.^{10, 11} Although striatal involvement in associative 140 141 learning has been consistently reported in the previous task-based fMRI studies, such as 142 caudate nucleus, amygdala and ventral striatum, the specific loci are not always the same.¹⁵⁻¹⁷ Thus, which subdivision of the basal ganglia is associated with 143 144 feedback-based associative learning remains unclear, and resting-state fMRI (rs-fMRI)

145	data were collected to explore the underlying neural mechanism of feedback-based
146	learning.
147	In the present study, we examined whether motor-symptom laterality could affect
148	feedback-based associative learning and explored its underlying neural mechanism
149	using rs-fMRI in PD patients.
150	
151	Subjects and Methods
152	Subjects. We recruited 63 right-handed, early stage (H-Y scores between 1 and 2),
153	medication-naïve PD patients and 38 right-handed normal controls (NC) during
154	2012-2015. Subjects in the PD and NC groups were matched for age, gender, education
155	and general cognitive status. ¹⁸ According to the motor-symptom laterality, PD patients
156	were divided into L-naïve (N = 29) and R-naïve (N = 34) subgroups. All participants
157	were non-demented (Mini Mental State Examination, $MMSE \ge 24$) and scored less
158	than 15 on the Beck Depression Inventory II (BDI-II). ^{19, 20} Participants were also
159	screened for history of cerebral trauma, cerebrovascular diseases, head surgery, severe
160	sleep disorders, hyperthyroidism, insulin-dependent diabetes, psychiatric or
161	neurological disorders, abuse of alcohol, tobacco use, use of hormonal contraceptives,
162	anticholinergic drugs, or antidepressants. For subjects with PD, only patients with
163	unilateral side of onset and asymmetrical motor symptoms were involved and diagnosis
164	was confirmed by two movement disorder specialists according to the UK Brain Bank
165	criteria for the diagnosis of PD. ²¹ The side of onset was determined by medical history

166	and physical examination. The severity of motor symptoms was evaluated by Unified
167	Parkinson's Disease Rating Scale III (UPDRS-III). ²² Motor asymmetry index (MAI)
168	was calculated as (right side symptoms - left side symptoms) / (right side symptoms +
169	left side symptoms).
170	
171	Standard protocol approvals, registrations, and patient consents. We received
172	approval from the Ethics Committee of Ruijin Hospital affiliated with Shanghai Jiao
173	Tong University School of Medicine. We obtained written informed consents from all
174	patients and controls prior to their participation in the study.
175	
176	Behavioral data acquisition and evaluation. We used an Apple MacBook to run the
176 177	Behavioral data acquisition and evaluation. We used an Apple MacBook to run the Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and
177	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and
177 178	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and
177 178 179	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the
177 178 179 180	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the transfer phase includes two types of trials: tests of previously learned associations
177 178 179 180 181	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the transfer phase includes two types of trials: tests of previously learned associations (retention) and tests of new associations that are presented without feedback
177 178 179 180 181 182	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the transfer phase includes two types of trials: tests of previously learned associations (retention) and tests of new associations that are presented without feedback (generalization). The mean number of incorrect choices and the mean response time in

186 MRI data acquisition and processing. MRI scan was performed after the acquired

187	equivalence test with an interval of 8.6 ± 1.5 days. A subgroup of 70 subjects (23
188	L-naïve, 25 R-naïve and 22 NC) participated in resting-state fMRI on a 3.0 T GE
189	Medical System scanner based on the subjects' willingness. During the scan, the
190	subjects were asked to remain motionless and awake with their eyes closed. For each
191	participant, 210 functional images were collected using echo planar imaging
192	T2*-weighted sequence (repetition time = 2000 ms , echo time = 30 ms , flip angle = 90
193	°, 33/35/37 slices, matrix = 64 × 64, voxel size = $3.75 \times 3.75 \times 4 \text{ mm}^3$). Then the
194	high-resolution, three-dimensional T1-weighted structural images (repetition time =
195	5.78 ms, echo time = 1.77 ms, flip angle = 12 °, 196 slices, matrix = 256×256 , voxel
196	size = $1 \times 1 \times 1$ mm ³) were acquired for registration and normalization of the functional
197	images.
198	After exclusion due to vascular diseases (1 L-naïve, 2 R-naïve and 3 NC) and
199	obvious head motion (2 L-naïve and 2 R-naïve, with the translation and rotation head
200	motion parameters larger than 2 mm or 2°), MRI data from 60 subjects (20 L-naïve, 21
201	R-naïve, and 19 NC) qualified for analysis. MRI data were processed with Data
202	Processing Assistant for Resting-State fMRI (DPARSF) programs. ²³ Regional
203	homogeneity (ReHo), as a commonly used method to analyze rs-fMRI data, was used
204	with the rs-fMRI Data Analysis Toolkit (REST, http://www.restfmri.net) by calculating
205	the Kendall's coefficient of concordance (KCC) of the time series of a given voxel with
206	its 26 nearest neighboring voxels. ^{24, 25} With the assumption that PD patients with
207	unilateral onset of motor symptoms had asymmetric functional impairments in the

208	brain, ReHo lateralization index was used to evaluate hemisphere asymmetry in neural
209	activity as previously reported. ^{26, 27} Striatum subregions including the putamen, caudate
210	and pallidum were chosen as regions of interest (ROIs). For detailed methods, please
211	refer to eMethod 2 in the Supplement.
212	
213	Statistical analysis. The normality of clinical and demographic data distribution was
214	checked by the Kolmogorov-Smirnov test. One-way ANOVA was used to compare the
215	normally distributed continuous variables (age), and the chi-square test was employed
216	to analyze categorical variables (gender). The continuous variables that were not
217	normally distributed (education, disease duration, H-Y, BDI-II, MMSE, UPDRS-III
218	score, MAI) were analyzed by Kruskal-Wallis test. Mix-model ANOVAs with group as
219	between-subject factor and phase as within-subject factor were used to analyze the
220	behavioral data. Post-hoc analysis was done using Tukey HSD test. In the correlational
221	analysis, Spearman rho was calculated. The alpha level was set at 0.05. All P values less
222	than the alpha level were considered statistically significant. SPSS version 17.0 (IBM,
223	Chicago, IL, USA) was used for statistical analysis.
224	For the fMRI data analysis, comparison of the hemispheric asymmetry among
225	groups was performed using one-way ANCOVA. Age, gender, the mean frame-wise
226	displacement (FD) corresponding to the temporal derivative of the head motion
227	parameters, and mean gray matter (GM) volume of ROI were used as nuisance
228	covariates. ^{28, 29} Post-hoc analysis was performed within the significant regions. To

Movement Disorders

229	control for family-wise error rates, Monte Carlo simulations were performed
230	(3dClustSim; 10,000 iterations) using all brain voxels within the half-striatum ROI. ³⁰
231	The cluster threshold for a corrected alpha level of $P = 0.05$ was 27 voxels for
232	ANCOVA and 7 voxels for post-hoc t-test, respectively.
233	
234	Results
235	Clinical and demographic characteristics of subjects
236	The clinical and demographic characteristics of subjects are presented in Table 1. All
237	the groups were matched for age, gender, education, MMSE, and BDI-II ($P \ge 0.190$).
238	There were no significant differences in disease duration, H-Y score, and UPDRS-III
239	scores (including tremor, rigidity, bradykinesia sub-scores and total scores) between the
240	L-naïve and R-naïve PD groups (P \ge 0.104). MAI was calculated as (right side
241	symptoms - left side symptoms) / (right side symptoms + left side symptoms). The
242	mean value of MAI for L-naïve and R-naïve groups were -0.9 (0.2) vs. 0.9 (0.2)
243	respectively, indicating that motor-symptom asymmetry was also matched. In addition,
244	subjects participating in the MRI examination were also matched across the three
245	groups (see eTable 2 in the Supplement).
246	
247	Behavioral performance
248	Acquisition was impaired in L-naïve but normal in R-naïve patients
249	Mix-model ANOVAs showed that both group [F $(2, 294) = 7.228$, P = 0.001] and phase

250	[F (2, 294) = 52.680, P < 0.001] had significant effects on accuracy. The interaction
251	between group and phase was at a trend-level [F (4, 294) = 2.127 , P = 0.077]. Fig.1A
252	indicated that the group effect is primarily driven by the acquisition phase. Post-hoc
253	analysis showed that accuracy was significantly different among L-naïve, R-naïve and
254	NC. L-naïve patients made significantly more errors than R-naïve patients ($P = 0.003$)
255	and NC ($P = 0.002$), while R-naïve patients performed as well as NC ($P = 0.996$) (Fig.
256	1A). There were no significant differences between groups in retention or
257	generalization phase, indicating that retrieval function and generalization were
258	preserved in both L-naïve and R-naïve patients (retention, $P = 0.201$ vs. generalization,
259	P = 0.331) (Fig. 1A). Thus, L-naïve patients, rather than R-naïve patients, were
260	selectively impaired in feedback-based associative learning, indicating a potential
261	effect of asymmetric dopamine depletion on associative learning.
262	Phase had significant effect on the response time [F $(2, 294) = 12.564$, P < 0.001].
263	However, there was neither an effect of group [F $(2, 294) = 0.733$, P = 0.481] nor an
264	interaction between group and phase [F (4, 294) = 0.782 , P = 0.538] (Fig. 1B).
265	
266	Functional MRI results
267	Dorsal rostral putamen was impaired in the right side in L-naïve but intact in
268	R-naïve patients
269	One-way ANCOVA analysis showed that L-naïve, R-naïve and NC groups were
270	significantly different in ReHo lateralization in the dorsal rostral putamen (voxel level

271	P < 0.05, cluster size > 27 voxels, corresponding to cluster-level corrected $P < 0.05$)
272	(Fig. 2A and Table 2). Post-hoc analysis showed that L-naïve patients had higher ReHo
273	lateralization in the dorsal rostral putamen compared with NC group (Fig. 2B and Table
274	2) and R-naïve group (Fig. 2C and Table 2) (voxel level $P < 0.05$, cluster size > 7
275	voxels, corresponding to cluster-level corrected $P < 0.05$). Further graphing using a
276	scatterplot in Fig. 2D indicated that higher ReHo lateralization in L-naïve patients was
277	due to decreased ReHo activity in the right side of the dorsal rostral putamen. There
278	was no significant difference between the left and the right dorsal rostral putamen in
279	R-naïve patients, suggesting neural function of the left dorsal rostral putamen in
280	R-naïve patients was relatively preserved in early stage PD. Our results showed that the
281	right dorsal rostral putamen of L-naïve patients had reduced neural activity compared
282	with the left dorsal rostral putamen in R-naïve patients, indicating that the right side of
283	dorsal rostral putamen might be more sensitive to dopamine depletion than the left side.
284	
285	Dorsal rostral putamen was correlated with feedback-based associative learning
286	Correlational analysis in the L-naïve group showed that the mean number of errors in
287	acquisition was inversely correlated with ReHo activity of the right dorsal rostral
288	putamen (r = -0.535, P = 0.015) (Fig. 2E). This suggests that reduced activity in the
289	right dorsal rostral putamen might be associated with poor feedback-based associative
290	learning in L-naïve patients. In addition, poor performance in acquisition was also
291	inversely correlated with ReHo activity of the left dorsal rostral putamen in L-naïve

292	patients (r = -0.479, $P = 0.033$) (Fig. 2E). However, there was no significant ReHo
293	activity change in the left dorsal rostral putamen of L-naïve patients. Thus, this inverse
294	correlation between acquisition and ReHo activity of the left dorsal rostral putamen has
295	no clinical significance in those early-stage L-naïve PD patients.
296	Since only 60 cases (20 L-naïve, 21 R-naïve and 19 NC) underwent resting-state
297	fMRI examination based on subjects' willingness, performance in the acquired
298	equivalence task was also analyzed in these 60 cases. Results were consistent with the
299	earlier results from all 101 subjects (See eResult 1 and eFigure 1 in the Supplement).
300	Our results showed that the dorsal rostral putamen activity might be specifically
301	implicated in acquisition learning.
302	
502	
303	Function of the dorsal rostral putamen did not correlate with the severity of
	Function of the dorsal rostral putamen did not correlate with the severity of motor symptoms
303	
303 304	motor symptoms
303 304 305	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function,
303 304 305 306	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the
303 304 305 306 307	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the dorsal rostral putamen in L-naïve patients. No significant correlation was found
303 304 305 306 307 308	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the dorsal rostral putamen in L-naïve patients. No significant correlation was found between UPDRS-III score and neural activity of either the right or the left dorsal rostral
 303 304 305 306 307 308 309 	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the dorsal rostral putamen in L-naïve patients. No significant correlation was found between UPDRS-III score and neural activity of either the right or the left dorsal rostral putamen (right r = -0.141, P = 0.554 vs. left r = -0.092, P = 0.701) (Fig. 3). In addition,
 303 304 305 306 307 308 309 310 	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the dorsal rostral putamen in L-naïve patients. No significant correlation was found between UPDRS-III score and neural activity of either the right or the left dorsal rostral putamen (right $r = -0.141$, $P = 0.554$ vs. left $r = -0.092$, $P = 0.701$) (Fig. 3). In addition, neither the right nor the left dorsal rostral putamen was significantly associated with

313	dorsal rostral putamen did not correspond consistently with motor-symptom severity.
314	
315	Discussion
316	The present study confirms previous reports regarding impaired acquisition and normal
317	generalization in PD. The novel finding in our study in medication-naïve PD patients
318	indicated that impaired acquisition was only detected in L-naïve patients, while
319	R-naïve patients learned equally well as healthy controls. Results from rs-fMRI results
320	indicated that there was a correlation between the impairment in acquisition and the
321	activity in the dorsal rostral putamen, but not with motor-symptom severity.
322	Dysfunction of the right dorsal rostral putamen was associated with acquisition deficit
323	in L-naïve patients, which confirms the earlier reports that the dorsal rostral putamen is
324	mainly involved in cognitive function rather than in motor function. ³¹⁻³³
325	
326	Dorsal rostral putamen resting-state activity correlated with performance in
327	acquisition not motor symptom severity in Parkinson's disease
328	In the present study, the impairment in acquisition was inversely correlated with ReHo
329	activity in the right dorsal rostral putamen, identifying that the dorsal rostral putamen
330	could be an important region involved in feedback-based associative learning. The
331	hypothesis of ReHo measurement postulates that significant brain activities would
332	more likely occur in clusters rather than in a single voxel. ReHo measures the
333	functional coherence of a given voxel with its nearest neighbors and can be used to

	25
334	evaluate resting-state brain activities. ²⁵ Wu T et al. reported that ReHo, which was
335	negatively correlated with UPDRS, decreased in extensive motor function-related brain
336	regions, including the putamen, thalamus, and supplementary motor area, etc. in
337	off-medication PD patients compared with normal controls. Administration of
338	levodopa relatively normalized ReHo.34 Thus, changes in ReHo can happen secondary
339	to dopamine deficiency, and can be related to the motor symptom severity of the disease.
340	In the present study, decreased ReHo in the dorsal rostral putamen, which might also be
341	secondary to dopamine deficiency, was associated with the impairment in acquisition
342	learning, but not with motor-symptom severity. Decreased ReHo reflects asynchronous
343	neural activity of the dorsal rostral putamen and might lead to impaired performance in
344	associative learning.
511	associative rearining.
345	The putamen was classically regarded as motor-related structure. However, recent
345	The putamen was classically regarded as motor-related structure. However, recent
345 346	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive
345 346 347	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal
345 346 347 348	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal
345 346 347 348 349	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal supplementary motor cortices, and anterior cerebellum, demonstrating its role in motor
 345 346 347 348 349 350 	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal supplementary motor cortices, and anterior cerebellum, demonstrating its role in motor function; ^{31, 38} The rostral putamen had connectivity with dorsolateral prefrontal cortex
 345 346 347 348 349 350 351 	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal supplementary motor cortices, and anterior cerebellum, demonstrating its role in motor function; ^{31, 38} The rostral putamen had connectivity with dorsolateral prefrontal cortex (DLPFC), rostral anterior cingulate cortex and posterior parietal cortex, suggesting its
 345 346 347 348 349 350 351 352 	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ^{35,37} For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal supplementary motor cortices, and anterior cerebellum, demonstrating its role in motor function; ^{31, 38} The rostral putamen had connectivity with dorsolateral prefrontal cortex (DLPFC), rostral anterior cingulate cortex and posterior parietal cortex, suggesting its participation in higher-level cognitive functions. ^{31, 32} Moreover, the rostral putamen

2 3 4	
5 6	
7 8	
9 10 11	
11	
12 13	
14	
13 14 15 16 17 18 19	
18 19	
20 21	
20 21 22 23 24	
24 25	
25 26 27	
28 29	
30 31	
32	
33 34 35 36 37 38	
36 37	
39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

355	in both motor function and associative cognition, and has been implicated in
356	maintaining information about reward outcomes and consequences.40, 41 Our results
357	were consistent with previous studies, but more specifically, the dorsal rostral putamen
358	was identified as the region closely related to feedback-based associative learning.
359	In our study, no correlation was found between the dorsal rostral putamen and the
360	severity of motor symptoms, which further substantiated that the dorsal rostral putamen
361	was mainly associated with cognitive function rather than motor function. ReHo in both
362	sides of the putamen was associated with acquisition errors in L-naïve, but not in
363	R-naïve patients. However, in the scatterplot of Figure 2D, there was no significant
364	ReHo activity change in the left dorsal rostral putamen of L-naïve patients. Thus, this
365	inverse correlation between acquisition errors and ReHo activity of the left dorsal
366	rostral putamen does not have much clinical significance in those early-stage L-naïve
367	PD patients. But we believe, with the disease progression, ReHo activity of the left
368	dorsal rostral putamen will decrease and finally lead to associative learning impairment
369	in R-naïve patients. This suggests a greater role for the dorsal rostral putamen in
370	associative learning in left-onset rather than right-onset patients and may have
371	implications for understanding of disease progression in relation to motor-symptom
372	laterality.
373	

374 Right and left dorsal rostral putamen might function differently following
375 dopaminergic denervation

376	ReHo activity of the right dorsal rostral putamen was inversely correlated with the
377	mean number of errors in acquisition in L-naïve. R-naïve, with intact function of the
378	dorsal rostral putamen, performed equally well to NC in acquisition. The possible
379	reason for different acquisition performance between L-naïve and R-naïve could be that
380	the left and the right dorsal rostral putamen might function differently following
381	dopaminergic denervation. Generally speaking, L-naïve had more dopaminergic
382	neuronal loss in the right substantia nigra, ² resulting in more severely reduced
383	dopamine release in the right striatum. ³ The reverse was true in R-naïve patients. Based
384	on the fact that L-naïve and R-naïve patients were well matched in UPDRS-III scores in
385	our study, we assumed that the degree of dopaminergic denervation contralateral to the
386	onset side should be similar in the two groups. However, our fMRI results showed
387	reduced neural activity in the right dorsal rostral putamen in L-naïve patients, while the
388	activity of the left dorsal rostral putamen in R-naïve was similar to that of controls. This
389	indicates that the right and the left dorsal rostral putamen might function differently
390	after PD-related dopaminergic loss. The right dorsal rostral putamen might be more
391	sensitive to dopamine depletion and finally led to impaired feedback-dependent
392	associative learning function.
393	There is no pathological or anatomical evidence to explain why the right and the

393 There is no pathological or anatomical evidence to explain why the right and the
394 left dorsal rostral putamen function differently following dopaminergic denervation.
395 However, recent studies reported asymmetric dopamine signaling in the striatal and
396 frontal regions caused by genetic variants of dopamine transporter and dopamine D2

397	receptor, ⁴² and left-right asymmetric dopamine D2/3 receptor availability in the
398	dorsal putamen in healthy population. ⁴³ Asymmetric dopamine receptors availability
399	and asymmetric dopamine signaling might contribute to asymmetric functional
400	changes to dopamine depletion between the right and the left dorsal rostral putamen.
401	Asymmetric or uneven function between the left and the right striatum has been
402	evidenced from ¹⁸ F-dopa PET-scan, where tower of London scores correlated with
403	activity in the right caudate nucleus. On the other hand, activity in the left putamen was
404	related to verbal working memory task. ⁴⁴ A task-related fMRI study of healthy subjects
405	observed activity in the right striatum and the right inferior prefrontal cortexes during
406	earlier phases of probability learning. ⁴⁵ A study by Postuma et al. provided stronger
407	evidence for asymmetric function of the putamen by analyzing the functional
408	connectivity between the cortex and the striatum in a meta-analysis of 126 published
409	functional neuroimaging studies. ³⁷ The right and the left putamen co-activated in
410	conjunction with different brain regions with different laterality. Briefly, the left
411	putamen showed a large ipsilateral coactivation essentially with the entire primary
412	motor and somatosensory cortex, while the right putamen showed a peak co-activation
413	with the right DLPFC. These functional connectivity pictures delineated by the above
414	study fully illustrated asymmetric function of the right and the left putamen. Therefore,
415	the left and the right dorsal rostral putamen might co-activate with different regions and
416	function unevenly and differently in feedback-based associative learning. Early-stage
417	R-naïve patients would be spared in acquisition as long as the right dorsal rostral

Our results also showed that both retrieval and generalization function were normal in PD. It has been reported that PD might exhibit impaired retrieval function, which could benefit substantially from cueing.⁴⁶ Normal retrieval function in our study might be due to the fact that these early-stage PD patients had relatively normal executive function at that point, or because the faces shown on the computer screen acted as efficient cueing to help patients recall what they had learned. Normal generalization in our study indicated that in the early stage of PD, asymmetric dopamine depletion didn't affect MTL function and patients had normal cognitive flexibility to use learned knowledge in a new context, which is consistent with the previous studies.^{10, 11, 47}

432 Limitations and Conclusions

Although the relationship between asymmetric motor symptoms and laterality of dopaminergic depletion is well founded,^{3, 48} there are a considerable proportion of PD patients who have ipsilateral or bilateral deficits of dopaminergic function. Erro R et al. analyzed a dataset of 46 [¹²³I] FP-CIT scans of PD patients and reported a prevalence of 4.3% of scans with predominant ipsilateral dopaminergic deficit.⁴⁹ The limitation in this study is that severity of motor symptoms instead of neuroimaging was used as the

indicator for the extent of relative dopamine depletion between the hemispheres. In a study by Kaasinen V, motor asymmetry index and DAT binding asymmetry index showed good accordance with each other in both right-handed and left-handed PD patients, which provided evidence that motor asymmetry index could be used as an indicator for asymmetry evaluation.⁵⁰ Future studies should apply neuroimaging to directly measure dopaminergic asymmetry and analyze its associations with associative learning. In conclusion, our study showed that motor-symptom laterality could affect feedback-based associative learning in L-naïve PD patients. We conjecture that dysfunction of the right dorsal rostral putamen in L-naïve but not in R-naïve patients might be a rationale to explain why L-naïve patients performed worse than R-naïve patients in acquisition. Left and right dorsal rostral putamen might function differently or respond differently to dopamine depletion, which needs further exploration. Authors' Roles: Dr. Huang, Dr. Tan and Dr. Chen had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. PH: provision of study material, collection and/or assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript. YYT: conception and

design, subjects' recruitment and execution, administrative support, data analysis and

interpretation, manuscript writing, final approval of manuscript. DL, YZ: fMRI data

460	analysis and interpretation, revised manuscript writing, final approval of manuscript.
461	MMH, EL, MAG: learning data analysis and interpretation, manuscript editing, final
462	approval of manuscript. YW: subjects' recruitment and execution, final approval of
463	manuscript. SC: conception and design, subjects' recruitment and execution,
464	administrative support, manuscript writing, final approval of manuscript.
465	
466	Acknowledgements
467	The authors also thank Dr. Na-Ying He, Dr. Ke-Min Chen, Dr. Fu-Hua Yan and Dr.
468	Hua-Wei Ling at Department of radiology, Ruijin Hospital affiliated with Shanghai
469	Jiao Tong University School of Medicine for the contribution of the MRI scanner. We
470	thank all the subjects who participated in the study. Financial support was generously
471	provided by grants from the National Natural Science Foundation of China (30872729,
472	30971031, 81100952, 81201083, 81520108016), Program for Outstanding Medical
473	Academic Leader (LJ 06003), and the National Institute of Neurological Disorders and
474	Stroke (NINDS) at the National Institutes of Health (1 P50 NS 071675-02).
475	

Conflict of interests: None.

References 1. Agid Y, Ruberg M, Javoy-Agid F, et al. Are dopaminergic neurons selectively vulnerable to Parkinson's disease? Advances in neurology 1993;60:148-164. 2. Kempster PA, Gibb WR, Stern GM, Lees AJ. Asymmetry of substantia nigra neuronal loss in Parkinson's disease and its relevance to the mechanism of levodopa related motor fluctuations. Journal of neurology, neurosurgery, and psychiatry 1989;52(1):72-76. 3. Leenders KL, Salmon EP, Tyrrell P, et al. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson's disease. Arch Neurol 1990;47(12):1290-1298. 4. Toth C, Rajput M, Rajput AH. Anomalies of asymmetry of clinical signs in parkinsonism. Movement disorders : official journal of the Movement Disorder Society 2004;19(2):151-157. 5. Tomer R, Levin BE, Weiner WJ. Side of onset of motor symptoms influences cognition in Parkinson's disease. Annals of neurology 1993;34(4):579-584. 6. Verreyt N, Nys GM, Santens P, Vingerhoets G. Cognitive differences between patients with left-sided and right-sided Parkinson's disease. A review. Neuropsychology review 2011;21(4):405-424. 7. Riederer P, Sian-Hulsmann J. The significance of neuronal lateralisation in Parkinson's disease. Journal of neural transmission (Vienna, Austria : 1996) 2012;119(8):953-962. 8. Tomer R, Aharon-Peretz J, Tsitrinbaum Z. Dopamine asymmetry interacts with medication to affect cognition in Parkinson's disease. Neuropsychologia 2007;45(2):357-367. 9. Wilkinson L, Tai YF, Lin CS, et al. Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not. Human brain mapping 2014;35(10):5106-5115. 10. Bodi N, Csibri E, Myers CE, Gluck MA, Keri S. Associative learning, acquired equivalence, and flexible generalization of knowledge in mild Alzheimer disease. Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology 2009;22(2):89-94. 11. Myers CE, Shohamy D, Gluck MA, et al. Dissociating hippocampal versus basal ganglia contributions to learning and transfer. Journal of cognitive neuroscience 2003;15(2):185-193. 12. Hodgson TL, Sumner P, Molyva D, Sheridan R, Kennard C. Learning and switching between stimulus-saccade associations in Parkinson's disease. Neuropsychologia 2013;51(7):1350-1360. 13. Price A, Filoteo JV, Maddox WT. Rule-based category learning in patients with Parkinson's disease. Neuropsychologia 2009;47(5):1213-1226. 14. Wilkinson L, Lagnado DA, Quallo M, Jahanshahi M. The effect of feedback on

518	non-motor probabilistic classification learning in Parkinson's disease.
519	Neuropsychologia 2008;46(11):2683-2695.
520	15. Poldrack RA, Gabrieli JD. Characterizing the neural mechanisms of skill learning
521	and repetition priming: evidence from mirror reading. Brain : a journal of neurology
522	2001;124(Pt 1):67-82.
523	16. Voon V, Brezing C, Gallea C, et al. Emotional stimuli and motor conversion
524	disorder. Brain : a journal of neurology 2010;133(Pt 5):1526-1536.
525	17. Schmidt L, Braun EK, Wager TD, Shohamy D. Mind matters: placebo enhances
526	reward learning in Parkinson's disease. Nat Neurosci 2014;17(12):1793-1797.
527	18. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology
528	1967;17(5):427-442.
529	19. Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio 1996.
530	20. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method
531	for grading the cognitive state of patients for the clinician. Journal of psychiatric
532	research 1975;12(3):189-198.
533	21. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of
534	idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of
535	neurology, neurosurgery, and psychiatry 1992;55(3):181-184.
536	22. Fahn S, Elton RL, Committee UD. Unified Parkinson's disease rating scale. Recent
537	developments in Parkinson's disease 1987;2:153-163.
538	23. Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for "Pipeline" Data
539	Analysis of Resting-State fMRI. Frontiers in systems neuroscience 2010;4:13.
540	24. Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional
541	magnetic resonance imaging data processing. PloS one 2011;6(9):e25031.
542	25. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data
543	analysis. NeuroImage 2004;22(1):394-400.
544	26. Blumenfeld H, McNally KA, Vanderhill SD, et al. Positive and negative network
545	correlations in temporal lobe epilepsy. Cerebral cortex (New York, NY : 1991)
546	2004;14(8):892-902.
547	27. Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS.
548	Cerebral asymmetry and the effects of sex and handedness on brain structure: a
549	voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage
550	2001;14(3):685-700.
551	28. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but
552	systematic correlations in functional connectivity MRI networks arise from subject
553	motion. NeuroImage 2012;59(3):2142-2154.
554	29. Oakes TR, Fox AS, Johnstone T, Chung MK, Kalin N, Davidson RJ. Integrating
555	VBM into the General Linear Model with voxelwise anatomical covariates.
556	NeuroImage 2007;34(2):500-508.
557	30. Cox RW, Reynolds RC, Taylor PA. AFNI and Clustering: False Positive Rates
558	Redux. bioRxiv 2016.
559	31. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal

2		
3	560	ganglia-thalamo-cortical loop. Brain research Brain research reviews
4	561	1995;20(1):91-127.
5 6	562	32. Di Martino A, Scheres A, Margulies DS, et al. Functional connectivity of human
7	563	striatum: a resting state FMRI study. Cerebral cortex (New York, NY : 1991)
8	564	2008;18(12):2735-2747.
9	565	33. Brovelli A, Nazarian B, Meunier M, Boussaoud D. Differential roles of caudate
10 11	566	nucleus and putamen during instrumental learning. NeuroImage
12		
13	567	2011;57(4):1580-1590.
14	568	34. Wu T, Long X, Zang Y, et al. Regional homogeneity changes in patients with
15	569	Parkinson's disease. Human brain mapping 2009;30(5):1502-1510.
16 17	570	35. Gerardin E, Pochon JB, Poline JB, et al. Distinct striatal regions support movement
18	571	selection, preparation and execution. Neuroreport 2004;15(15):2327-2331.
19	572	36. McClure SM, Berns GS, Montague PR. Temporal prediction errors in a passive
20	573	learning task activate human striatum. Neuron 2003;38(2):339-346.
21	574	37. Postuma RB, Dagher A. Basal ganglia functional connectivity based on a
22 23	575	meta-analysis of 126 positron emission tomography and functional magnetic resonance
24	576	imaging publications. Cerebral cortex (New York, NY : 1991) 2006;16(10):1508-1521.
25	577	38. Nakano K, Kayahara T, Tsutsumi T, Ushiro H. Neural circuits and functional
26	578	organization of the striatum. Journal of neurology 2000;247 Suppl 5:V1-15.
27 28		
29	579	39. Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nature
30	580	reviews Neuroscience 2006;7(6):464-476.
31	581	40. Knutson B, Cooper JC. Functional magnetic resonance imaging of reward
32	582	prediction. Current opinion in neurology 2005;18(4):411-417.
33 34	583	41. O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable
35	584	roles of ventral and dorsal striatum in instrumental conditioning. Science (New York,
36	585	NY) 2004;304(5669):452-454.
37	586	42. Zozulinsky P, Greenbaum L, Brande-Eilat N, Braun Y, Shalev I, Tomer R.
38	587	Dopamine system genes are associated with orienting bias among healthy individuals.
39 40	588	Neuropsychologia 2014;62:48-54.
41	589	43. Cho SS, Yoon EJ, Kim SE. Asymmetry of Dopamine D2/3 Receptor Availability in
42	590	Dorsal Putamen and Body Mass Index in Non-obese Healthy Males. Experimental
43	591	neurobiology 2015;24(1):90-94.
44 45		
46	592	44. Cheesman AL, Barker RA, Lewis SJ, Robbins TW, Owen AM, Brooks DJ.
47	593	Lateralisation of striatal function: evidence from 18F-dopa PET in Parkinson's disease.
48	594	Journal of neurology, neurosurgery, and psychiatry 2005;76(9):1204-1210.
49	595	45. Delgado MR, Miller MM, Inati S, Phelps EA. An fMRI study of reward-related
50 51	596	probability learning. NeuroImage 2005;24(3):862-873.
52	597	46. Costa A, Monaco M, Zabberoni S, et al. Free and cued recall memory in
53	598	Parkinson's disease associated with amnestic mild cognitive impairment. PloS one
54	599	2014;9(1):e86233.
55 56	600	47. Nagy H, Keri S, Myers CE, Benedek G, Shohamy D, Gluck MA. Cognitive
50	601	sequence learning in Parkinson's disease and amnestic mild cognitive impairment:
58		
59		

- 602 Dissociation between sequential and non-sequential learning of associations.
 603 Neuropsychologia 2007;45(7):1386-1392.
- 48. Tatsch K, Schwarz J, Mozley PD, et al. Relationship between clinical features of
- 605 Parkinson's disease and presynaptic dopamine transporter binding assessed with 606 [1231]IPT and single-photon emission tomography. European journal of nuclear 607 medicine 1997;24(4):415-421.
- 608 49. Erro R, Barone P, Vicidomini C, Picillo M, Pappata S. Patients with Parkinson's 609 disease and scans with (predominant) ipsilateral dopaminergic deficit. Journal of
- 610 neurology 2013;260(9):2405-2406.
- 611 50. Kaasinen V. Ipsilateral deficits of dopaminergic neurotransmission in Parkinson's
- 612 disease. Annals of clinical and translational neurology 2016;3(1):21-26.

614	Figure legends
615	Fig.1 Learning performance on the Acquired Equivalence Task.
616	(A) L-naïve patients made significantly more errors than R-naïve patients and NC in the
617	acquisition phase. R-naïve patients performed as well as NC in acquisition. No
618	significant difference in accuracy was found either in the retention phase or in the
619	generalization phase among three groups.
620	(B) There was no significant difference in response time in the acquisition phase,
621	retention phase and generalization phase among L-naïve, R-naïve and NC groups.
622	L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve =
623	right-onset medication-naïve patients with Parkinson's disease; NC = normal controls.
624	
625	Fig. 2 Difference in neural activity asymmetry and its correlation with learning.
626	(A) The ANCOVA analysis among L-naïve, R-naïve and NC groups in the ReHo
627	lateralization within the striatum (the left striatum was shown). A significant difference
628	was found in the dorsal rostral putamen.
629	(B) Post-hoc analysis between L-naïve and NC group. Increased ReHo lateralization
630	was detected in the dorsal rostral putamen in L-naïve group.
631	(C) Post-hoc analysis between L-naïve and R-naïve group. Increased ReHo
632	lateralization was detected in the dorsal rostral putamen in L-naïve group compared to
633	R-naïve group.
634	(D) Scatter plot of ReHo activity in bilateral dorsal rostral putamen among groups. The

635	horizontal line represents the mean level of ReHo. Group differences in ReHo
636	lateralization were due to the decrease of ReHo in the right dorsal rostral putamen of
637	L-naïve group.
638	(E) The mean number of errors in acquisition was inversely correlated with the ReHo
639	activity both of the right dorsal rostral putamen and the left dorsal rostral putamen in
640	L-naïve group.
641	L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve =
642	right-onset medication-naïve patients with Parkinson's disease; NC = normal controls;
643	ReHo = regional homogeneity.
644	
645	Fig. 3 Correlation between ReHo activity of the dorsal rostral putamen and
646	UPDRS-III score. No significant correlation was found between UPDRS-III score and
646 647	UPDRS-III score. No significant correlation was found between UPDRS-III score and neural activity of either the right or the left dorsal rostral putamen in L-naïve patients.
647	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients.
647 648	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo =
647 648 649	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo =
647 648 649 650	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo =
647 648 649 650 651	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo =
647 648 649 650 651 652	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo =
647 648 649 650 651 652 653	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo =

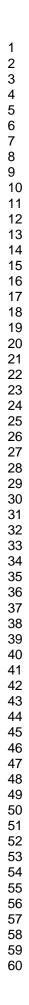
Tables

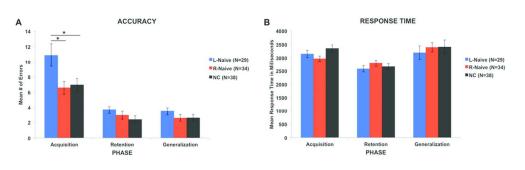
Table 1 Clinical and demographic characteristics of medication-naïve Parkinson's

patients and normal controls

	L-Naïve	R-Naïve	NC	P Value
	(n = 29)	(n = 34)	(n = 38)	
Age (y)	57.3 (8.6)	59.6 (9.2)	58.5 (8.5)	0.580
Gender (M/F)	16 / 13	19 / 15	14 / 24	0.190
Education (y)	11.6 (3.4)	12.9 (3.3)	12.6 (2.6)	0.288
Disease duration (y)	2.7 (2.2)	2.2 (1.4)	-	0.799
UPDRS-III				
Tremor	1.9 (1.9)	1.6 (1.7)	-	0.545
Rigidity	3.6 (2.2)	3.9 (1.6)	-	0.203
Bradykinesia	5.0 (3.6)	4.1 (2.0)	24	0.204
Left side symptoms	9.2 (4.0)	0.6 (1.2)	-	-
Right side symptoms	0.8 (2.7)	8.4 (2.8)	-	-
Dominant side symptoms	9.2 (4.0)	8.4 (2.8)	-	0.565
Non-dominant side symptoms	0.8 (2.7)	0.6 (1.2)	-	0.415

Huang, Tan, Gluck, Chen Total score 14.9 (8.5) 13.2 (5.6) 0.391 Motor asymmetry index -0.9 (0.2) 0.9 (0.2) H-Y score 1.2 (0.3) 1.4(0.4)0.104 BDI-II 0.740 5.2 (3.0) 5.6 (3.3) 5.0 (2.7) MMSE 28.8 (1.0) 28.7 (1.4) 29.0 (1.2) 0.363

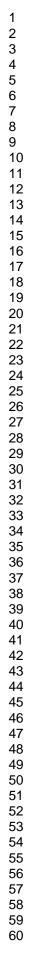

Data are mean (standard deviation). L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve = right-onset medication-naïve patients with Parkinson's disease; NC = normal controls; UPDRS-III = Unified Parkinson's Disease Rating Scale III; Motor asymmetry index = (right side symptoms - left side symptoms) / (right side symptoms + left side symptoms); H-Y = Hoehn and Yahr; BDI-II = Beck Depression Inventory II; MMSE = Mini Mental State Examination.


John Wiley & Sons


Brain Regions	Voxels	Peak MNI coordinates			Maximum F/T Values
		Х	Y	Z	-
ANCOVA					
Dorsal rostral putamen	27	-24	12	-3	5.229 (F)
L-naïve > NC					
Dorsal rostral putamen	22	-24	12	-3	2.811 (T)
L-naïve > R-Naïve					
Dorsal rostral putamen	7	-12	12	-9	3.141 (T)

Table 2 Differences in the asymmetry of ReHo in the striatum

L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve = right-onset medication-naïve patients with Parkinson's disease; NC = normal controls; ReHo = regional homogeneity.


(A) L-naïve patients made significantly more errors than R-naïve patients and NC in the acquisition phase. R-naïve patients performed as well as NC in acquisition. No significant difference in accuracy was found either in the retention phase or in the generalization phase among three groups.

(B) There was no significant difference in response time in the acquisition phase, retention phase and

generalization phase among L-naïve, R-naïve and NC groups.

L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve = right-onset medicationnaïve patients with Parkinson's disease; NC = normal controls.

48x13mm (600 x 600 DPI)

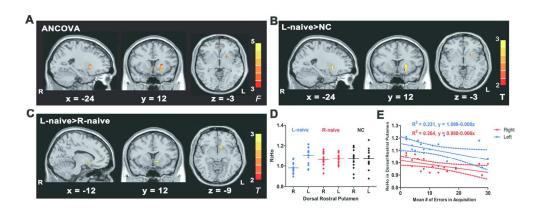


Fig. 2 Difference in neural activity asymmetry and its correlation with learning. (A) The ANCOVA analysis among L-naïve, R-naïve and NC groups in the ReHo lateralization within the striatum (the left striatum was shown). A significant difference was found in the dorsal rostral putamen. (B) Post-hoc analysis between L-naïve and NC group. Increased ReHo lateralization was detected in the dorsal rostral putamen in L-naïve group.

(C) Post-hoc analysis between L-naïve and R-naïve group. Increased ReHo lateralization was detected in the dorsal rostral putamen in L-naïve group compared to R-naïve group.

(D) Scatter plot of ReHo activity in bilateral dorsal rostral putamen among groups. The horizontal line represents the mean level of ReHo. Group differences in ReHo lateralization were due to the decrease of ReHo in the right dorsal rostral putamen of L-naïve group.

(E) The mean number of errors in acquisition was inversely correlated with the ReHo activity both of the right dorsal rostral putamen and the left dorsal rostral putamen in L-naïve group.

L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve = right-onset medicationnaïve patients with Parkinson's disease; NC = normal controls; ReHo = regional homogeneity.

66x25mm (600 x 600 DPI)

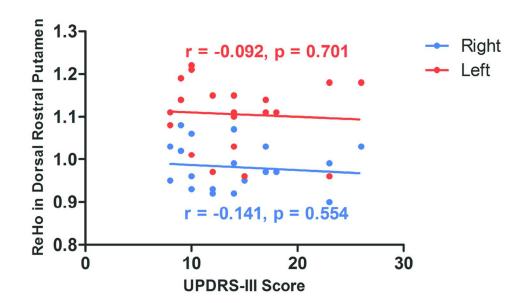


Fig. 3 Correlation between ReHo activity of the dorsal rostral putamen and UPDRS-III score. No significant correlation was found between UPDRS-III score and neural activity of either the right or the left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo = regional homogeneity.

49x30mm (600 x 600 DPI)

1	
2	
3	Supplementary Online Content
4	Supponentary on the content
5	
6 7	eMethod 1 - Procedure of Acquired Equivalence Task
8	eMethod 2 - MRI data processing
9 10	
11	eResult 1 - Behavioral performance of MRI subjects
12	eTable 1 - Acquired Equivalence Task
13 14	eTable 2 - Clinical and demographic characteristics of the MRI subjects
15	eFigure 1 - Learning performance of MRI subjects on the Acquired Equivalence
16 17	Task
18	
19	eFigure 2 - Correlation between ReHo activity of dorsal rostral putamen and left-side symptom scores eReferences (e1-e8)
20 21	left-side symptom scores
22	eReferences (e1-e8)
23	
24	
25	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
57	
58 59	
09	

Supplemental Methods:

eMethod 1 Procedure of Acquired Equivalence Task

Stimuli

We used an Apple MacBook to run the acquired equivalence task.¹ Four drawings of faces (girl, boy, woman, man) were set as antecedent stimuli while the consequents were four drawings of colored fish (red, blue, purple, green). The girl and man had brown hair while the boy and woman wore yellow hair. So each antecedent stimulus shared one feature with another in "Age (adult vs. child), Gender (male vs. female), and Hair color (brown vs. yellow)". For each participant, the antecedent (A1G1H1, A1G2H2, A2G1H2, A2G2H1) and consequent stimuli (X1, X2, Y1, Y2) were randomly assigned.

Acquisition phase

At the beginning of the test, instruction (Chinese Version) was presented on the screen as follows: "Welcome to the experiment. We will show you several drawings of people who have some pet fish. Remember that every person has his own pet fish, which may be different from others. Your task is to find the preference of each person. At the start, you will have to guess." These words were read aloud to the subject by the tester and then acquisition phase started.

On each trial, participants were shown a face and two colored fish with the cue: "Which fish does this person prefer?" The left-right sequence of fish was randomized across each trial. Subjects must learn the association between face and fish according to the corrective feedback that was given after each choice.

The acquisition phase was composed of three stages, each had growing numbers of associations as shown in Table e-1. Since there were eight kinds of relationship between face and fish, stage 1 consisted of two associations and terminated after the subject had made four consecutive correct choices. Similarly, stage 2 and 3 that each included four and six associations ended after eight and twelve consecutive correct responses, respectively. However, the start of a new stage was not informed to the participant.

Transfer phase

The transfer phase followed the end of acquisition phase with instruction: "Good job!

Movement Disorders

In the following phase of the experiment, you will use what you have learned. Correct answers will not be given. But we will show you how many trials you got right at last."

In this part, forty-eight trials including thirty-six old associations (retention) that had been trained during the acquisition phase and twelve new associations (generalization) were tested for the examination of retrieval and learned equivalence. The presence of new associations was not informed to the participant.

Eventually, the mean number of incorrect choices and the mean response time in each phase was recorded for behavioral measures.

eMethod 2 MRI data Processing

MRI data were processed with Data Processing Assistant for Resting-State fMRI (DPARSF) programs.² The first 10 frames were discarded and the remaining volumes were slice-timing corrected. Then they were realigned to the first image to correct for head motion. Individuals with the translation and rotation head motion parameters larger than 2 mm or 2 ° were excluded. Then functional images were coregistered to the corresponding T1 images. The coregistered T1 images were segmented using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), which takes more information outside the brain into account, then the Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) tool was employed to spatially normalize both the T1 images and the functional images into MNI space. Finally, functional images were resampled to $3 \times 3 \times 3$ mm³ voxels.³

ReHo analysis was performed with the rs-fMRI Data Analysis Toolkit (REST, <u>http://www.restfmri.net</u>).⁴ It is based on the hypothesis that the time courses of neighboring voxels are similar with each other and such local synchronization can be modulated by different states.⁵ First, the linear trend was removed and each voxel was temporally band-pass filtered (0.01-0.08 Hz) to reduce the impact of low-frequency drift and high-frequency noise. Second, the ReHo analysis was accomplished by calculating the Kendall's coefficient of concordance (KCC) of the time series of a given voxel with its 26 nearest neighboring voxels.

Given that patients with unilateral onset of PD motor symptoms have asymmetric functional impairments in the striatum, it might influence hemi-striatal asymmetry in neural activity. For instance, left-onset patients have dysfunction in the right striatum, reverse for right-onset patients. In those early-stage patients with Parkinson's disease,

Movement Disorders

the left striatum of left-onset patients and right striatum of right-onset patients should be relatively spared. Thus, motor symptoms laterality might cause hemi-striatal asymmetry in neural activity. In order to evaluate this impact, we used the ReHo lateralization index.^{6,7} In consideration of the anatomical asymmetry of human brain, a symmetric template was firstly made by averaging the gray matter probability template in SPM and its mirror copy that was left-right flipped. In this symmetrical template, each side of the image represents an average of both hemispheres. And individual ReHo maps were then spatially normalized to this symmetrical template and further divided by the global mean ReHo for the purpose of standardization.^{5, 8} Next, the resulting ReHo maps were left-right flipped to obtain the mirror copies. The nonflipped ReHo map was subtracted by flipped ReHo map, and then smoothed with a 4-mm full-width at half-maximum (FWHM) Gaussian kernel. This produced a final ReHo lateralization map, in which left side (meaning image of the left hemisphere minus the right) had the same absolute value with the right side (meaning image of the right hemisphere minus the left), but had different plus-minus sign. Therefore, both sides could reflect hemispheric differences in the same patient. As the template was symmetric, we can restrict statistical analyses to any half of hemisphere. Due to the potential importance of the striatum in Parkinson's disease, a striatum mask was also made. In detail, the gray matter concentration maps obtained during segmentation were firstly thresholded by 0.5, and multiplied with the mask including putamen, caudate and pallidum in the AAL template. Then these regions of interests (ROIs) were normalized to the symmetric template and the intersection was made across subjects.

Supplemental Results:

eResult 1 Behavioral performance of MRI subjects

Acquisition was impaired in L-naïve but normal in R-naïve patients

Mix-model ANOVAs showed that both the group [F(2, 171) = 10.575, P < 0.001] and phase [F(2, 171) = 21.119, P < 0.001] had significant effects on accuracy, and there was significant interaction between group and phase [F(4, 171) = 2.603, P = 0.038]. Post hoc analysis showed that accuracy was significantly different among L-naïve, R-naïve and NC. L-naïve patients made significantly more errors than R-naïve patients (P = 0.002) and NC (P < 0.001), while R-naïve patients performed as well as NC (P = 0.140) (Fig. e-1A). Significant differences were in the acquisition phase as the post hoc analysis indicated, rather than retention or generalization phase, indicating retrieval function and generalization were well preserved in both L-naïve and R-naïve patients (acquisition vs. retention, P < 0.001; acquisition vs. generalization, P < 0.001; retention vs. generalization, P < 0.001; retention the second patients, rather than R-naïve patients, were selectively impaired in feedback-based associative learning, indicating that asymmetric dopamine depletion could affect feedback-based associative learning.

Phase had significant effect on the response time [F (2, 171) = 6.552, P = 0.002], but neither the effect of group [F (2, 171) = 0.638, P = 0.530] nor the interaction between group and phase [F (4, 171) = 0.816, P = 0.517] was significant (Fig. e-1B).

Supplemental Tables eTable 1 Acquired Equivalence Task¹

Acquisition	Acquisition	Acquisition	Transfer Phase:
Stage 1:	Stage 2:	Stage 3:	Old and new
Stimulus-outcom	Stimulus-stimulu	New stimulus-outcome	associations
e associations	s associations	associations	testing
A1G1H1→X1	A1G1H1→X1	A1G1H1→X1	A1G1H1→X2?
	A1G2H2→X1	A1G2H2→X1	
		A1G1H1→X2	
A2G1H2→Y1	A2G1H2→Y1	A2G1H2→Y1	A2G1H2→Y2?
	A2G2H1→Y1	A2G2H1→Y1	
		A2G1H2→Y2	

Transfer phase interleaved trials with old associations (a measure of retention) as well as new associations (a measure of generalization) without feedback. A = age, G = gender, H = hair color.

	L-Naïve	R-Naïve	NC	P Value
	(n = 20)	(n = 21)	(n = 19)	
Age (y)	56.6 (8.8)	61.4 (8.5)	60.8 (5.9)	0.117
Gender (M/F)	7 / 13	13 / 8	8 / 11	0.201
Education (y)	11.4 (2.8)	12.9 (3.3)	12.7 (2.6)	0.193
Disease duration (y)	2.9 (2.5)	2.2 (1.5)	-	0.717
UPDRS-III				
Tremor	1.8 (1.5)	1.4 (1.3)	-	0.641
Rigidity	3.3 (1.4)	3.9 (1.6)	-	0.231

eTable 2 Clinical and demographic characteristics of the MRI subjects

Page 43 of 77

Movement Disorders

Bradykinesia	4.8 (2.4)	4.4 (2.3)	-	0.334
Left side symptoms	9.1 (3.1)	0.8 (1.4)	-	-
Right side symptoms	0.4 (1.2)	8.3 (2.3)	-	-
Dominant side symptoms	9.1 (3.1)	8.3 (2.3)		0.545
Non-dominant side symptoms	0.4 (1.2)	0.8 (1.4)		0.199
Total score	14.2 (5.2)	13.4 (5.5)	-	0.565
Motor asymmetry index	-0.9 (0.2)	0.9 (0.2)	-	-
H-Y score	1.2 (0.3)	1.4 (0.4)	-	0.066
BDI-II	5.0 (3.0)	4.9 (3.2)	4.7 (2.1)	0.991
MMSE	28.8 (0.9)	28.9 (0.9)	29.3 (1.0)	0.127

Data are mean (standard deviation). L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve = right-onset medication-naïve patients with Parkinson's disease; NC = normal controls; UPDRS = Unified Parkinson's Disease Rating Scale; Motor asymmetry index = (right side symptoms - left side symptoms) / (right side symptoms + left side symptoms); H-Y = Hoehn-Yahr; BDI = Beck Depression Inventory; MMSE = Mini Mental State Examination.

Supplemental Figure Legends

eFig.1 Learning performance of MRI subjects on the Acquired Equivalence Task.

(A) L-naïve patients made significantly more errors than R-naïve patients and NC in the acquisition phase. R-naïve patients performed as well as NC in acquisition. No significant difference in accuracy was found either in the retention phase or in the generalization phase among three groups.

(B) There was no significant difference in response time in the acquisition phase, retention phase and generalization phase among L-naïve, R-naïve and NC groups.

L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve = right-onset medication-naïve patients with Parkinson's disease; NC = normal controls.

eFig.2 Correlation between ReHo activity of dorsal rostral putamen and left-side symptom scores.

No significant correlation was found between left-side symptom scores and neural activity of either right or left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo = regional homogeneity.

eReferences

e1. Myers CE, Shohamy D, Gluck MA, et al. Dissociating hippocampal versus basal

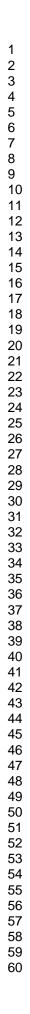
Movement Disorders

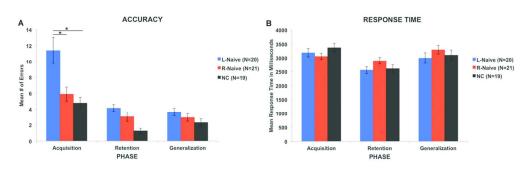
ganglia contributions to learning and transfer. Journal of cognitive neuroscience 2003;15(2):185-193.

e2. Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Frontiers in systems neuroscience 2010;4:13.

e3. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage 2007;38(1):95-113.

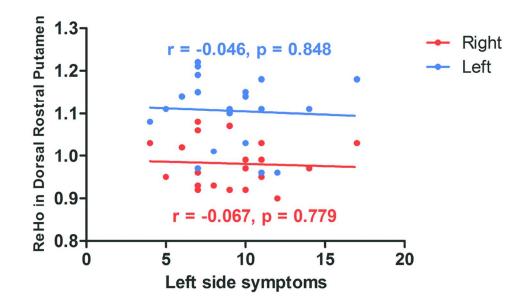
e4. Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS one 2011;6(9):e25031.


e5. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. NeuroImage 2004;22(1):394-400.


e6. Blumenfeld H, McNally KA, Vanderhill SD, et al. Positive and negative network correlations in temporal lobe epilepsy. Cerebral cortex (New York, NY : 1991) 2004;14(8):892-902.

e7. Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 2001;14(3):685-700.

e8. Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. NeuroImage 2013;80:246-262.



eFig.1 Learning performance of MRI subjects on the Acquired Equivalence Task.
(A) L-naïve patients made significantly more errors than R-naïve patients and NC in the acquisition phase.
R-naïve patients performed as well as NC in acquisition. No significant difference in accuracy was found either in the retention phase or in the generalization phase among three groups.
(B) There was no significant difference in response time in the acquisition phase, retention phase and

(B) There was no significant difference in response time in the acquisition phase, retention phase and generalization phase among L-naïve, R-naïve and NC groups.

L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve = right-onset medicationnaïve patients with Parkinson's disease; NC = normal controls.

50x14mm (600 x 600 DPI)

eFig.2 Correlation between ReHo activity of dorsal rostral putamen and left-side symptom scores. No significant correlation was found between left-side symptom scores and neural activity of either right or left dorsal rostral putamen in L-naïve patients. L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo = regional homogeneity.

49x30mm (600 x 600 DPI)

1	Title Page
2	Motor-symptom Laterality Affects Acquisition in Parkinson's disease: a
3	Cognitive and fMRI study
4	
5	Pei Huang, M.D. ^{1*} , Yu-Yan Tan, M.D., Ph.D. ^{1*} , Dong-Qiang Liu, Ph.D. ² , Mohammad
6	M. Herzallah, M.D., Ph.D. ^{3,4} , Elizabeth Lapidow, B.A. ³ , Ying Wang M.D. ¹ , Yu-Feng
7	Zang, M.D. ⁵ , Mark Gluck, Ph.D. ^{3§} , Sheng-Di Chen, M.D., Ph.D. ^{1§}
8	
9	¹ Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao
10	Tong University School of Medicine, Shanghai 200025, China.
11	² Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University,
12	Dalian, China.
13	³ Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New
14	Jersey 07102, USA.
15	⁴ Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University,
16	Jerusalem, Palestine.
17	⁵ Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou
18	Normal University, Hangzhou, Zhejiang 310036, China.
19	
20	*These authors contributed equally to this work.
21	

22	[§] Correspondence to: Sheng-Di Chen, Department of Neurology and Institute of
23	Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
24	Shanghai 200025, China; Tel: +86-021-64457249, Fax: +86-021-64457249; E-mail:
25	chen_sd@medmail.com.cn.
26	
27	Correspondence may also be addressed to: Mark Gluck, Ph.D., Tel: +1 (973) 353-3298,
28	Fax: +1 (973) 353-1760, E-mail: gluck@pavlov.rutgers.edu.
29	
30	Email Address of Co-authors:
31	Pei Huang, huangpei699@126.com
32	Yu-Yan Tan, rabbit82@gmail.com
33	Dong-Qiang Liu, charlesliu116@gmail.com
34	Mohammad M. Herzallah, mohammad.m.herzallah@gmail.com
35	Elizabeth Lapidow, elapidow@gm.slc.edu
36	Ying Wang, wang-ying@medmail.com.cn
37	Yu-Feng Zang, zangyf@hznu.edu.cn
38	
39	Word Count for Manuscript: 3856; Word Count for Abstract: 244; Character
40	Count for Title: 96.
41	
42	Keywords

43	Parkinson's disease; hemispheric asymmetry; dopamine; association learning;
44	resting-state functional MRI
45	
46	Running title: Lateral Parkinsonism affects acquisition
47	
48	Funding sources:
49	Dr. Tan is in charge of National Natural Science Foundation of China (81100952). Dr.
50	Liu is in charge of National Natural Science Foundation of China (81201083). Prof.
51	Zang is in charge of National Natural Science Foundation of China (81520108016).
52	Prof. Chen is in charge of National Natural Science Foundation of China (30872729,
53	30971031). Prof. Gluck received grants from Program for Outstanding Medical
54	Academic Leader (LJ 06003), and the National Institute of Neurological Disorders and
55	Stroke (NINDS) at the National Institutes of Health (1 P50 NS 071675-02). The other
56	co-authors report no disclosures relevant to the manuscript.
57	
58	Conflict of interests: None.
59	

60	Abstract
61	Objective: Asymmetric onset of motor symptoms in PD can affect cognitive function.
62	We examined whether motor-symptom laterality could affect feedback-based
63	associative learning and explored its underlying neural mechanism by fMRI in PD
64	patients.
65	
66	Methods: We recruited 63 early-stage medication-naïve PD patients (29 left-onset
67	medication-naïve patients, 34 right-onset medication-naïve patients) and 38 matched
68	normal controls. Subjects completed an acquired equivalence task (including
69	acquisition, retention and generalization) and resting-state fMRI scans. Learning
70	accuracy and response time in each phase of the task was recorded for behavioral
71	measures. Regional homogeneity was used to analyze resting-state fMRI data, with
72	regional homogeneity lateralization to evaluate hemispheric functional asymmetry in
73	the striatum.
74	
75	Results: Left-onset patients made significantly more errors in acquisition
76	(feedback-based associative learning) than right-onset patients and normal controls,
77	while right-onset patients performed as well as normal controls. There was no
78	significant difference among these three groups in the accuracy of either retention or
79	generalization phase. The three groups did not show significant differences in response
80	time. In the left-onset group, there was an inverse relationship between acquisition

81	errors and regional homogeneity in the right dorsal rostral putamen. There were no
82	significant regional homogeneity changes in either the left or the right dorsal rostral
83	putamen in right-onset patients when compared to controls.
84	
85	Conclusions: Motor-symptom laterality could affect feedback-based associative
86	learning in PD, with left-onset medication-naïve patients being selectively impaired.
87	Dysfunction in the right dorsal rostral putamen may underlie the observed deficit in
88	associative learning in patients with left-sided onset.
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	

105 Introduction	103	Introduction
------------------	-----	--------------

104	Parkinson's disease (PD) is the second most common neurodegenerative disorder,
105	characterized by resting tremor, rigidity, bradykinesia and postural instability. The
106	onset and progression of motor symptoms in PD are usually asymmetric, reflecting
107	asymmetric contralateral dopamine depletion in the basal ganglia. ¹⁻⁴ Relationships
108	between cognitive performance and symptom asymmetry have been revealed that
109	left-onset PD patients performed worse on cognitive measures, such as spatial attention
110	and tasks of orientation and mental imagery, than right-onset PD patients. ⁵⁻⁷ Cognitive
111	processes that are closely related with dopamine, such as cognitive flexibility and
112	motivation, showed different deficits between right-onset and left-onset PD patients. ⁸
113	For example, left-onset PD patients with greater loss of dopamine in the right
114	hemisphere had impaired cognitive flexibility. ^{5, 8}
114 115	hemisphere had impaired cognitive flexibility. ^{5, 8} Feedback-based associative learning, which involves learning through corrective
115	Feedback-based associative learning, which involves learning through corrective
115 116	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and
115 116 117	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that
115 116 117 118	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that feedback-based associative learning was impaired in PD patients. ^{12, 13} However, the
 115 116 117 118 119 	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that feedback-based associative learning was impaired in PD patients. ^{12, 13} However, the impairment in feedback-based learning in PD is not a universal finding, and many
 115 116 117 118 119 120 	Feedback-based associative learning, which involves learning through corrective feedback provided on each trial, has been correlated to striatal dopamine release ⁹ and the function of the basal ganglia. ^{10, 11} Previous studies have reported that feedback-based associative learning was impaired in PD patients. ^{12, 13} However, the impairment in feedback-based learning in PD is not a universal finding, and many factors could contribute to this variability. Wilkinson L et al. did not find a selective

124	learned stimulus-response associations equally well compared to healthy controls but
125	learning was impaired by dopaminergic medication. ¹³ Thus, in the underlying disease
126	process, disease severity and dopaminergic medication might be all involved in
127	modulating feedback-based learning. However, it is still not clear how the dopamine
128	asymmetry affects feedback-based associative learning in PD patients.
129	To control and minimize the effects of medication involvement and disease
130	severity, we recruited early-stage medication-naïve right-handed PD patients including
131	Left-onset medication-naïve patients (L-naïve) and Right-onset medication-naïve
132	patients (R-naïve). We used a computer-based cognitive task of learning and
133	generalization based on the acquired equivalence paradigm to test the effects of
134	dopamine asymmetry on feedback-based associative learning. The acquired
135	equivalence task, which includes tests of acquisition, retention and generalization, was
136	repetitively used to evaluate feedback-based associative learning in patients with PD
137	and other neurodegenerative disorders. ^{10, 11} In the acquisition phase, learning through
138	trial-by-trial feedback learning was shown to correlate to striatal function, while
139	generalization without feedback was shown to correlate with hippocampal and medial
140	temporal lobe (MTL) functionality. ^{10, 11} Although striatal involvement in associative
141	learning has been consistently reported in the previous task-based fMRI studies, such as
142	caudate nucleus, amygdala and ventral striatum, the specific loci are not always the
143	same. ¹⁵⁻¹⁷ Thus, which subdivision of the basal ganglia is associated with
144	feedback-based associative learning remains unclear, and resting-state fMRI (rs-fMRI)

data were collected to explore the underlying neural mechanism of feedback-based
learning.
In the present study, we examined whether motor-symptom laterality could affect
feedback-based associative learning and explored its underlying neural mechanism
using rs-fMRI in PD patients.
Subjects and Methods
Subjects. We recruited 63 right-handed, early stage (H-Y scores between 1 and 2),
medication-naïve PD patients and 38 right-handed normal controls (NC) during
2012-2015. Subjects in the PD and NC groups were matched for age, gender, education
and general cognitive status. ¹⁸ According to the motor-symptom laterality, PD patients
were divided into L-naïve (N = 29) and R-naïve (N = 34) subgroups. All participants

were non-demented (Mini Mental State Examination, $MMSE \ge 24$) and scored less than 15 on the Beck Depression Inventory II (BDI-II).^{19, 20} Participants were also screened for history of cerebral trauma, cerebrovascular diseases, head surgery, severe sleep disorders, hyperthyroidism, insulin-dependent diabetes, psychiatric or neurological disorders, abuse of alcohol, tobacco use, use of hormonal contraceptives, anticholinergic drugs, or antidepressants. For subjects with PD, only patients with unilateral side of onset and asymmetrical motor symptoms were involved and diagnosis was confirmed by two movement disorder specialists according to the UK Brain Bank criteria for the diagnosis of PD.²¹ The side of onset was determined by medical history

166	and physical examination. The severity of motor symptoms was evaluated by Unified
167	Parkinson's Disease Rating Scale III (UPDRS-III). ²² Motor asymmetry index (MAI)
168	was calculated as (right side symptoms - left side symptoms) / (right side symptoms +
169	left side symptoms).
170	
171	Standard protocol approvals, registrations, and patient consents. We received
172	approval from the Ethics Committee of Ruijin Hospital affiliated with Shanghai Jiao
173	Tong University School of Medicine. We obtained written informed consents from all
174	patients and controls prior to their participation in the study.
175	
176	Behavioral data acquisition and evaluation. We used an Apple MacBook to run the
176 177	Behavioral data acquisition and evaluation. We used an Apple MacBook to run the Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and
177	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and
177 178	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and
177 178 179	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the
177 178 179 180	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the transfer phase includes two types of trials: tests of previously learned associations
177 178 179 180 181	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the transfer phase includes two types of trials: tests of previously learned associations (retention) and tests of new associations that are presented without feedback
177 178 179 180 181 182	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the transfer phase includes two types of trials: tests of previously learned associations (retention) and tests of new associations that are presented without feedback (generalization). The mean number of incorrect choices and the mean response time in
177 178 179 180 181 182 183	Acquired Equivalence Task. ¹¹ This task is composed of two phases: acquisition and transfer. In the acquisition phase, participants acquire associations of colored faces and fish through trial-by-trial feedback-based learning. Following this acquisition, the transfer phase includes two types of trials: tests of previously learned associations (retention) and tests of new associations that are presented without feedback (generalization). The mean number of incorrect choices and the mean response time in each phase was recorded for behavioral measures. For detailed procedure, please refer

186 MRI data acquisition and processing. MRI scan was performed after the acquired

187	equivalence test with an interval of 8.6 ± 1.5 days. A subgroup of 70 subjects (23
188	L-naïve, 25 R-naïve and 22 NC) participated in resting-state fMRI on a 3.0 T GE
189	Medical System scanner based on the subjects' willingness. During the scan, the
190	subjects were asked to remain motionless and awake with their eyes closed. For each
191	participant, 210 functional images were collected using echo planar imaging
192	T2*-weighted sequence (repetition time = 2000 ms , echo time = 30 ms , flip angle = 90
193	°, 33/35/37 slices, matrix = 64×64 , voxel size = $3.75 \times 3.75 \times 4 \text{ mm}^3$). Then the
194	high-resolution, three-dimensional T1-weighted structural images (repetition time =
195	5.78 ms, echo time = 1.77 ms, flip angle = 12 °, 196 slices, matrix = 256×256 , voxel
196	size = $1 \times 1 \times 1$ mm ³) were acquired for registration and normalization of the functional
197	images.
198	After exclusion due to vascular diseases (1 L-naïve, 2 R-naïve and 3 NC) and
199	obvious head motion (2 L-naïve and 2 R-naïve, with the translation and rotation head

motion parameters larger than 2 mm or 2°), MRI data from 60 subjects (20 L-naïve, 21 R-naïve, and 19 NC) qualified for analysis. MRI data were processed with Data Processing Assistant for Resting-State fMRI (DPARSF) programs.²³ Regional homogeneity (ReHo), as a commonly used method to analyze rs-fMRI data, was used with the rs-fMRI Data Analysis Toolkit (REST, http://www.restfmri.net) by calculating the Kendall's coefficient of concordance (KCC) of the time series of a given voxel with its 26 nearest neighboring voxels.^{24, 25} With the assumption that PD patients with unilateral onset of motor symptoms had asymmetric functional impairments in the

208	brain, ReHo lateralization index was used to evaluate hemisphere asymmetry in neural
209	activity as previously reported. ^{26, 27} Striatum subregions including the putamen, caudate
210	and pallidum were chosen as regions of interest (ROIs). For detailed methods, please
211	refer to eMethod 2 in the Supplement.
212	
213	Statistical analysis. The normality of clinical and demographic data distribution was
214	checked by the Kolmogorov-Smirnov test. One-way ANOVA was used to compare the
215	normally distributed continuous variables (age), and the chi-square test was employed
216	to analyze categorical variables (gender). The continuous variables that were not
217	normally distributed (education, disease duration, H-Y, BDI-II, MMSE, UPDRS-III
218	score, MAI) were analyzed by Kruskal-Wallis test. Mix-model ANOVAs with group as
219	between-subject factor and phase as within-subject factor were used to analyze the
220	behavioral data. Post-hoc analysis was done using Tukey HSD test. In the correlational
221	analysis, Spearman rho was calculated. The alpha level was set at 0.05. All P values less
222	than the alpha level were considered statistically significant. SPSS version 17.0 (IBM,
223	Chicago, IL, USA) was used for statistical analysis.
224	For the fMRI data analysis, comparison of the hemispheric asymmetry among
225	groups was performed using one-way ANCOVA. Age, gender, the mean frame-wise
226	displacement (FD) corresponding to the temporal derivative of the head motion
227	parameters, and mean gray matter (GM) volume of ROI were used as nuisance
228	covariates. ^{28, 29} Post-hoc analysis was performed within the significant regions. To

229	control for family-wise error rates, Monte Carlo simulations were performed
230	(3dClustSim; 10,000 iterations) using all brain voxels within the half-striatum ROI. ³⁰
231	The cluster threshold for a corrected alpha level of $P = 0.05$ was 27 voxels for
232	ANCOVA and 7 voxels for post-hoc t-test, respectively.
233	
234	Results
235	Clinical and demographic characteristics of subjects
236	The clinical and demographic characteristics of subjects are presented in Table 1. All
237	the groups were matched for age, gender, education, MMSE, and BDI-II ($P \ge 0.190$).
238	There were no significant differences in disease duration, H-Y score, and UPDRS-III
239	scores (including tremor, rigidity, bradykinesia sub-scores and total scores) between the
240	L-naïve and R-naïve PD groups (P \ge 0.104). MAI was calculated as (right side
241	symptoms - left side symptoms) / (right side symptoms + left side symptoms). The
242	mean value of MAI for L-naïve and R-naïve groups were -0.9 (0.2) vs. 0.9 (0.2)
243	respectively, indicating that motor-symptom asymmetry was also matched. In addition,
244	subjects participating in the MRI examination were also matched across the three
245	groups (see eTable 2 in the Supplement).
246	
247	Behavioral performance
248	Acquisition was impaired in L-naïve but normal in R-naïve patients

249 Mix-model ANOVAs showed that both group [F(2, 294) = 7.228, P = 0.001] and phase

250	[F (2, 294) = 52.680, P < 0.001] had significant effects on accuracy. The interaction
251	between group and phase was at a trend-level [F (4, 294) = 2.127 , P = 0.077]. Fig.1A
252	indicated that the group effect is primarily driven by the acquisition phase. Post-hoc
253	analysis showed that accuracy was significantly different among L-naïve, R-naïve and
254	NC. L-naïve patients made significantly more errors than R-naïve patients ($P = 0.003$)
255	and NC (P = 0.002), while R-naïve patients performed as well as NC (P = 0.996) (Fig.
256	1A). There were no significant differences between groups in retention or
257	generalization phase, indicating that retrieval function and generalization were
258	preserved in both L-naïve and R-naïve patients (retention, $P = 0.201$ vs. generalization,
259	P = 0.331) (Fig. 1A). Thus, L-naïve patients, rather than R-naïve patients, were
260	selectively impaired in feedback-based associative learning, indicating a potential
261	effect of asymmetric dopamine depletion on associative learning.
262	Phase had significant effect on the response time [F $(2, 294) = 12.564$, P < 0.001].
263	However, there was neither an effect of group [F $(2, 294) = 0.733$, P = 0.481] nor an
264	interaction between group and phase [F (4, 294) = 0.782 , P = 0.538] (Fig. 1B).
265	
266	Functional MRI results
267	Dorsal rostral putamen was impaired in the right side in L-naïve but intact in
268	R-naïve patients
269	One-way ANCOVA analysis showed that L-naïve, R-naïve and NC groups were
270	significantly different in ReHo lateralization in the dorsal rostral putamen (voxel level

271	P < 0.05, cluster size > 27 voxels, corresponding to cluster-level corrected $P < 0.05$)
272	(Fig. 2A and Table 2). Post-hoc analysis showed that L-naïve patients had higher ReHo
273	lateralization in the dorsal rostral putamen compared with NC group (Fig. 2B and Table
274	2) and R-naïve group (Fig. 2C and Table 2) (voxel level $P < 0.05$, cluster size > 7
275	voxels, corresponding to cluster-level corrected $P < 0.05$). Further graphing using a
276	scatterplot in Fig. 2D indicated that higher ReHo lateralization in L-naïve patients was
277	due to decreased ReHo activity in the right side of the dorsal rostral putamen. There
278	was no significant difference between the left and the right dorsal rostral putamen in
279	R-naïve patients, suggesting neural function of the left dorsal rostral putamen in
280	R-naïve patients was relatively preserved in early stage PD. Our results showed that the
281	right dorsal rostral putamen of L-naïve patients had reduced neural activity compared
282	with the left dorsal rostral putamen in R-naïve patients, indicating that the right side of
283	dorsal rostral putamen might be more sensitive to dopamine depletion than the left side.
284	
285	Dorsal rostral putamen was correlated with feedback-based associative learning
286	Correlational analysis in the L-naïve group showed that the mean number of errors in
287	acquisition was inversely correlated with ReHo activity of the right dorsal rostral
288	putamen (r = -0.535, P = 0.015) (Fig. 2E). This suggests that reduced activity in the
289	right dorsal rostral putamen might be associated with poor feedback-based associative
290	learning in L-naïve patients. In addition, poor performance in acquisition was also
291	inversely correlated with ReHo activity of the left dorsal rostral putamen in L-naïve

292	patients (r= -0.479, $P = 0.033$) (Fig. 2E). However, there was no significant ReHo
293	activity change in the left dorsal rostral putamen of L-naïve patients. Thus, this inverse
294	correlation between acquisition and ReHo activity of the left dorsal rostral putamen has
295	no clinical significance in those early-stage L-naïve PD patients.
296	Since only 60 cases (20 L-naïve, 21 R-naïve and 19 NC) underwent resting-state
297	fMRI examination based on subjects' willingness, performance in the acquired
298	equivalence task was also analyzed in these 60 cases. Results were consistent with the
299	earlier results from all 101 subjects (See eResult 1 and eFigure 1 in the Supplement).
300	Our results showed that the dorsal rostral putamen activity might be specifically
301	implicated in acquisition learning.
302	
302 303	Function of the dorsal rostral putamen did not correlate with the severity of
	Function of the dorsal rostral putamen did not correlate with the severity of motor symptoms
303	
303 304	motor symptoms
303 304 305	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function,
303 304 305 306	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the
303 304 305 306 307	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the dorsal rostral putamen in L-naïve patients. No significant correlation was found
303 304 305 306 307 308	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the dorsal rostral putamen in L-naïve patients. No significant correlation was found between UPDRS-III score and neural activity of either the right or the left dorsal rostral
 303 304 305 306 307 308 309 	motor symptoms In order to test whether the dorsal rostral putamen was associated with motor function, correlation analysis was done between UPDRS-III scores and ReHo activity in the dorsal rostral putamen in L-naïve patients. No significant correlation was found between UPDRS-III score and neural activity of either the right or the left dorsal rostral putamen (right r = -0.141, P = 0.554 vs. left r = -0.092, P = 0.701) (Fig. 3). In addition,

dorsal rostral putamen did not correspond consistently with motor-symptom severity.

315 Discussion

316	The present study confirms previous reports regarding impaired acquisition and normal
317	generalization in PD. The novel finding in our study in medication-naïve PD patients
318	indicated that impaired acquisition was only detected in L-naïve patients, while
319	R-naïve patients learned equally well as healthy controls. Results from rs-fMRI results
320	indicated that there was a correlation between the impairment in acquisition and the
321	activity in the dorsal rostral putamen, but not with motor-symptom severity.
322	Dysfunction of the right dorsal rostral putamen was associated with acquisition deficit
323	in L-naïve patients, which confirms the earlier reports that the dorsal rostral putamen is
324	mainly involved in cognitive function rather than in motor function. ³¹⁻³³

326 Dorsal rostral putamen resting-state activity correlated with performance in 327 acquisition not motor symptom severity in Parkinson's disease

In the present study, the impairment in acquisition was inversely correlated with ReHo activity in the right dorsal rostral putamen, identifying that the dorsal rostral putamen could be an important region involved in feedback-based associative learning. The hypothesis of ReHo measurement postulates that significant brain activities would more likely occur in clusters rather than in a single voxel. ReHo measures the functional coherence of a given voxel with its nearest neighbors and can be used to

334	evaluate resting-state brain activities. ²⁵ Wu T et al. reported that ReHo, which was
335	negatively correlated with UPDRS, decreased in extensive motor function-related brain
336	regions, including the putamen, thalamus, and supplementary motor area, etc. in
337	off-medication PD patients compared with normal controls. Administration of
338	levodopa relatively normalized ReHo. ³⁴ Thus, changes in ReHo can happen secondary
339	to dopamine deficiency, and can be related to the motor symptom severity of the disease.
340	In the present study, decreased ReHo in the dorsal rostral putamen, which might also be
341	secondary to dopamine deficiency, was associated with the impairment in acquisition
342	learning, but not with motor-symptom severity. Decreased ReHo reflects asynchronous
343	neural activity of the dorsal rostral putamen and might lead to impaired performance in
344	associative learning.
345	The putamen was classically regarded as motor-related structure. However, recent
345 346	The putamen was classically regarded as motor-related structure. However, recent studies have revealed that the putamen's subdivisions were involved in comprehensive
346	studies have revealed that the putamen's subdivisions were involved in comprehensive
346 347	studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal
346 347 348	studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal
346 347 348 349	studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal supplementary motor cortices, and anterior cerebellum, demonstrating its role in motor
346 347 348 349 350	studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal supplementary motor cortices, and anterior cerebellum, demonstrating its role in motor function; ^{31, 38} The rostral putamen had connectivity with dorsolateral prefrontal cortex
 346 347 348 349 350 351 	studies have revealed that the putamen's subdivisions were involved in comprehensive connectivity with motor, cognitive and emotional function. ³⁵⁻³⁷ For example, caudal putamen exhibited co-activation with primary sensorimotor cortex, caudal supplementary motor cortices, and anterior cerebellum, demonstrating its role in motor function; ^{31, 38} The rostral putamen had connectivity with dorsolateral prefrontal cortex (DLPFC), rostral anterior cingulate cortex and posterior parietal cortex, suggesting its

355	in both motor function and associative cognition, and has been implicated in
356	maintaining information about reward outcomes and consequences.40, 41 Our results
357	were consistent with previous studies, but more specifically, the dorsal rostral putamen
358	was identified as the region closely related to feedback-based associative learning.
359	In our study, no correlation was found between the dorsal rostral putamen and the
360	severity of motor symptoms, which further substantiated that the dorsal rostral putamen
361	was mainly associated with cognitive function rather than motor function. ReHo in both
362	sides of the putamen was associated with acquisition errors in L-naïve, but not in
363	R-naïve patients. However, in the scatterplot of Figure 2D, there was no significant
364	ReHo activity change in the left dorsal rostral putamen of L-naïve patients. Thus, this
365	inverse correlation between acquisition errors and ReHo activity of the left dorsal
366	rostral putamen does not have much clinical significance in those early-stage L-naïve
367	PD patients. But we believe, with the disease progression, ReHo activity of the left
368	dorsal rostral putamen will decrease and finally lead to associative learning impairment
369	in R-naïve patients. This suggests a greater role for the dorsal rostral putamen in
370	associative learning in left-onset rather than right-onset patients and may have
371	implications for understanding of disease progression in relation to motor-symptom
372	laterality.
373	
374	Right and left dorsal rostral putamen might function differently following
375	dopaminergic denervation

1
2
3
4
5
6
3 4 5 6 7
0
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ 21
∠ I 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40
42
42 43
43 44
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

376	ReHo activity of the right dorsal rostral putamen was inversely correlated with the
377	mean number of errors in acquisition in L-naïve. R-naïve, with intact function of the
378	dorsal rostral putamen, performed equally well to NC in acquisition. The possible
379	reason for different acquisition performance between L-naïve and R-naïve could be that
380	the left and the right dorsal rostral putamen might function differently following
381	dopaminergic denervation. Generally speaking, L-naïve had more dopaminergic
382	neuronal loss in the right substantia nigra, ² resulting in more severely reduced
383	dopamine release in the right striatum. ³ The reverse was true in R-naïve patients. Based
384	on the fact that L-naïve and R-naïve patients were well matched in UPDRS-III scores in
385	our study, we assumed that the degree of dopaminergic denervation contralateral to the
386	onset side should be similar in the two groups. However, our fMRI results showed
387	reduced neural activity in the right dorsal rostral putamen in L-naïve patients, while the
388	activity of the left dorsal rostral putamen in R-naïve was similar to that of controls. This
389	indicates that the right and the left dorsal rostral putamen might function differently
390	after PD-related dopaminergic loss. The right dorsal rostral putamen might be more
391	sensitive to dopamine depletion and finally led to impaired feedback-dependent
392	associative learning function.
393	There is no pathological or anatomical evidence to explain why the right and the

There is no pathological or anatomical evidence to explain why the right and the
left dorsal rostral putamen function differently following dopaminergic denervation.
However, recent studies reported asymmetric dopamine signaling in the striatal and
frontal regions caused by genetic variants of dopamine transporter and dopamine D2

397	receptor, ⁴² and left-right asymmetric dopamine D2/3 receptor availability in the
398	dorsal putamen in healthy population. ⁴³ Asymmetric dopamine receptors availability
399	and asymmetric dopamine signaling might contribute to asymmetric functional
400	changes to dopamine depletion between the right and the left dorsal rostral putamen.
401	Asymmetric or uneven function between the left and the right striatum has been
402	evidenced from ¹⁸ F-dopa PET-scan, where tower of London scores correlated with
403	activity in the right caudate nucleus. On the other hand, activity in the left putamen was
404	related to verbal working memory task. ⁴⁴ A task-related fMRI study of healthy subjects
405	observed activity in the right striatum and the right inferior prefrontal cortexes during
406	earlier phases of probability learning. ⁴⁵ A study by Postuma et al. provided stronger
407	evidence for asymmetric function of the putamen by analyzing the functional
408	connectivity between the cortex and the striatum in a meta-analysis of 126 published
409	functional neuroimaging studies. ³⁷ The right and the left putamen co-activated in
410	conjunction with different brain regions with different laterality. Briefly, the left
411	putamen showed a large ipsilateral coactivation essentially with the entire primary
412	motor and somatosensory cortex, while the right putamen showed a peak co-activation
413	with the right DLPFC. These functional connectivity pictures delineated by the above
414	study fully illustrated asymmetric function of the right and the left putamen. Therefore,
415	the left and the right dorsal rostral putamen might co-activate with different regions and
416	function unevenly and differently in feedback-based associative learning. Early-stage
417	R-naïve patients would be spared in acquisition as long as the right dorsal rostral

418	putamen was not affected. But with the progression of the disease, deficits in
419	acquisition of learning will appear because both sides of the dorsal rostral putamen will
420	be affected

Our results also showed that both retrieval and generalization function were normal in PD. It has been reported that PD might exhibit impaired retrieval function, which could benefit substantially from cueing.⁴⁶ Normal retrieval function in our study might be due to the fact that these early-stage PD patients had relatively normal executive function at that point, or because the faces shown on the computer screen acted as efficient cueing to help patients recall what they had learned. Normal generalization in our study indicated that in the early stage of PD, asymmetric dopamine depletion didn't affect MTL function and patients had normal cognitive flexibility to use learned knowledge in a new context, which is consistent with the previous studies.^{10, 11, 47}

432 Limitations and Conclusions

Although the relationship between asymmetric motor symptoms and laterality of dopaminergic depletion is well founded,^{3, 48} there are a considerable proportion of PD patients who have ipsilateral or bilateral deficits of dopaminergic function. Erro R et al. analyzed a dataset of 46 [¹²³I] FP-CIT scans of PD patients and reported a prevalence of 4.3% of scans with predominant ipsilateral dopaminergic deficit.⁴⁹ The limitation in this study is that severity of motor symptoms instead of neuroimaging was used as the

439	indicator for the extent of relative dopamine depletion between the hemispheres. In a
440	study by Kaasinen V, motor asymmetry index and DAT binding asymmetry index
441	showed good accordance with each other in both right-handed and left-handed PD
442	patients, which provided evidence that motor asymmetry index could be used as an
443	indicator for asymmetry evaluation. ⁵⁰ Future studies should apply neuroimaging to
444	directly measure dopaminergic asymmetry and analyze its associations with associative
445	learning.

In conclusion, our study showed that motor-symptom laterality could affect feedback-based associative learning in L-naïve PD patients. We conjecture that dysfunction of the right dorsal rostral putamen in L-naïve but not in R-naïve patients might be a rationale to explain why L-naïve patients performed worse than R-naïve patients in acquisition. Left and right dorsal rostral putamen might function differently or respond differently to dopamine depletion, which needs further exploration.

453 Authors' Roles:

Dr. Huang, Dr. Tan and Dr. Chen had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. PH: provision of study material, collection and/or assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript. YYT: conception and design, subjects' recruitment and execution, administrative support, data analysis and interpretation, manuscript writing, final approval of manuscript. DL, YZ: fMRI data

460	analysis and interpretation, revised manuscript writing, final approval of manuscript.
461	MMH, EL, MAG: learning data analysis and interpretation, manuscript editing, final
462	approval of manuscript. YW: subjects' recruitment and execution, final approval of
463	manuscript. SC: conception and design, subjects' recruitment and execution,
464	administrative support, manuscript writing, final approval of manuscript.
465	
466	Acknowledgements
467	The authors also thank Dr. Na-Ying He, Dr. Ke-Min Chen, Dr. Fu-Hua Yan and Dr.
468	Hua-Wei Ling at Department of radiology, Ruijin Hospital affiliated with Shanghai
469	Jiao Tong University School of Medicine for the contribution of the MRI scanner. We
470	thank all the subjects who participated in the study. Financial support was generously
471	provided by grants from the National Natural Science Foundation of China (30872729,
472	30971031, 81100952, 81201083, 81520108016), Program for Outstanding Medical
473	Academic Leader (LJ 06003), and the National Institute of Neurological Disorders and
474	Stroke (NINDS) at the National Institutes of Health (1 P50 NS 071675-02).
475	
476	Conflict of interests: None.

477 References

478 1. Agid Y, Ruberg M, Javoy-Agid F, et al. Are dopaminergic neurons selectively
479 vulnerable to Parkinson's disease? Advances in neurology 1993;60:148-164.

480 2. Kempster PA, Gibb WR, Stern GM, Lees AJ. Asymmetry of substantia nigra
481 neuronal loss in Parkinson's disease and its relevance to the mechanism of levodopa
482 related motor fluctuations. Journal of neurology, neurosurgery, and psychiatry
483 1989;52(1):72-76.

- 484 3. Leenders KL, Salmon EP, Tyrrell P, et al. The nigrostriatal dopaminergic system
 485 assessed in vivo by positron emission tomography in healthy volunteer subjects and
 486 patients with Parkinson's disease. Arch Neurol 1990;47(12):1290-1298.
- 487 4. Toth C, Rajput M, Rajput AH. Anomalies of asymmetry of clinical signs in
 488 parkinsonism. Movement disorders : official journal of the Movement Disorder Society
 489 2004;19(2):151-157.
- 490 5. Tomer R, Levin BE, Weiner WJ. Side of onset of motor symptoms influences
 491 cognition in Parkinson's disease. Annals of neurology 1993;34(4):579-584.
- 492 6. Verreyt N, Nys GM, Santens P, Vingerhoets G. Cognitive differences between
 493 patients with left-sided and right-sided Parkinson's disease. A review.
 494 Neuropsychology review 2011;21(4):405-424.
- 495 7. Riederer P, Sian-Hulsmann J. The significance of neuronal lateralisation in
 496 Parkinson's disease. Journal of neural transmission (Vienna, Austria : 1996)
 497 2012;119(8):953-962.
- 498 8. Tomer R, Aharon-Peretz J, Tsitrinbaum Z. Dopamine asymmetry interacts with
 499 medication to affect cognition in Parkinson's disease. Neuropsychologia
 500 2007;45(2):357-367.
- 501 9. Wilkinson L, Tai YF, Lin CS, et al. Probabilistic classification learning with
 502 corrective feedback is associated with in vivo striatal dopamine release in the ventral
 503 striatum, while learning without feedback is not. Human brain mapping
 504 2014;35(10):5106-5115.
- 505 10. Bodi N, Csibri E, Myers CE, Gluck MA, Keri S. Associative learning, acquired
 506 equivalence, and flexible generalization of knowledge in mild Alzheimer disease.
 507 Cognitive and behavioral neurology : official journal of the Society for Behavioral and
 508 Cognitive Neurology 2009;22(2):89-94.
- 509 11. Myers CE, Shohamy D, Gluck MA, et al. Dissociating hippocampal versus basal
 510 ganglia contributions to learning and transfer. Journal of cognitive neuroscience
 511 2003;15(2):185-193.
 - 512 12. Hodgson TL, Sumner P, Molyva D, Sheridan R, Kennard C. Learning and
 513 switching between stimulus-saccade associations in Parkinson's disease.
 514 Neuropsychologia 2013;51(7):1350-1360.
- 515 13. Price A, Filoteo JV, Maddox WT. Rule-based category learning in patients with
 516 Parkinson's disease. Neuropsychologia 2009;47(5):1213-1226.
- 517 14. Wilkinson L, Lagnado DA, Quallo M, Jahanshahi M. The effect of feedback on

2		
3	518	non-motor probabilistic classification learning in Parkinson's disease.
4	519	Neuropsychologia 2008;46(11):2683-2695.
5 6	520	15. Poldrack RA, Gabrieli JD. Characterizing the neural mechanisms of skill learning
7	521	and repetition priming: evidence from mirror reading. Brain : a journal of neurology
8	522	2001;124(Pt 1):67-82.
9	523	
10		16. Voon V, Brezing C, Gallea C, et al. Emotional stimuli and motor conversion
11 12	524	disorder. Brain : a journal of neurology 2010;133(Pt 5):1526-1536.
13	525	17. Schmidt L, Braun EK, Wager TD, Shohamy D. Mind matters: placebo enhances
14	526	reward learning in Parkinson's disease. Nat Neurosci 2014;17(12):1793-1797.
15	527	18. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology
16	528	1967;17(5):427-442.
17	529	19. Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio 1996.
18 19	530	20. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method
20	531	for grading the cognitive state of patients for the clinician. Journal of psychiatric
21	532	research 1975;12(3):189-198.
22		
23	533	21. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of
24 25	534	idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of
26	535	neurology, neurosurgery, and psychiatry 1992;55(3):181-184.
27	536	22. Fahn S, Elton RL, Committee UD. Unified Parkinson's disease rating scale. Recent
28	537	developments in Parkinson's disease 1987;2:153-163.
29	538	23. Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for "Pipeline" Data
30 31	539	Analysis of Resting-State fMRI. Frontiers in systems neuroscience 2010;4:13.
32	540	24. Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional
33	541	magnetic resonance imaging data processing. PloS one 2011;6(9):e25031.
34		
35	542	25. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data
36	543	analysis. NeuroImage 2004;22(1):394-400.
37 38	544	26. Blumenfeld H, McNally KA, Vanderhill SD, et al. Positive and negative network
39	545	correlations in temporal lobe epilepsy. Cerebral cortex (New York, NY : 1991)
40	546	2004;14(8):892-902.
41	547	27. Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS.
42 43	548	Cerebral asymmetry and the effects of sex and handedness on brain structure: a
43	549	voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage
45	550	2001;14(3):685-700.
46	551	28. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but
47	552	systematic correlations in functional connectivity MRI networks arise from subject
48		
49 50	553	motion. NeuroImage 2012;59(3):2142-2154.
51	554	29. Oakes TR, Fox AS, Johnstone T, Chung MK, Kalin N, Davidson RJ. Integrating
52	555	VBM into the General Linear Model with voxelwise anatomical covariates.
53	556	NeuroImage 2007;34(2):500-508.
54	557	30. Cox RW, Reynolds RC, Taylor PA. AFNI and Clustering: False Positive Rates
55 56	558	Redux. bioRxiv 2016.
57	559	31. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal
58		
59		

560	ganglia-thalamo-cortical loop. Brain research Brain research reviews
561	1995;20(1):91-127.
562	32. Di Martino A, Scheres A, Margulies DS, et al. Functional connectivity of human
563 564	striatum: a resting state FMRI study. Cerebral cortex (New York, NY : 1991)
565	2008;18(12):2735-2747.
566	33. Brovelli A, Nazarian B, Meunier M, Boussaoud D. Differential roles of caudate nucleus and putamen during instrumental learning. NeuroImage
567	2011;57(4):1580-1590.
568	34. Wu T, Long X, Zang Y, et al. Regional homogeneity changes in patients with
569	Parkinson's disease. Human brain mapping 2009;30(5):1502-1510.
570	35. Gerardin E, Pochon JB, Poline JB, et al. Distinct striatal regions support movement
570	selection, preparation and execution. Neuroreport 2004;15(15):2327-2331.
572	36. McClure SM, Berns GS, Montague PR. Temporal prediction errors in a passive
573	learning task activate human striatum. Neuron 2003;38(2):339-346.
574	37. Postuma RB, Dagher A. Basal ganglia functional connectivity based on a
575	meta-analysis of 126 positron emission tomography and functional magnetic resonance
576	imaging publications. Cerebral cortex (New York, NY : 1991) 2006;16(10):1508-1521.
577	38. Nakano K, Kayahara T, Tsutsumi T, Ushiro H. Neural circuits and functional
578	organization of the striatum. Journal of neurology 2000;247 Suppl 5:V1-15.
579	39. Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nature
580	reviews Neuroscience 2006;7(6):464-476.
581	40. Knutson B, Cooper JC. Functional magnetic resonance imaging of reward
582	prediction. Current opinion in neurology 2005;18(4):411-417.
583	41. O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable
584	roles of ventral and dorsal striatum in instrumental conditioning. Science (New York,
585	NY) 2004;304(5669):452-454.
586	42. Zozulinsky P, Greenbaum L, Brande-Eilat N, Braun Y, Shalev I, Tomer R.
587	Dopamine system genes are associated with orienting bias among healthy individuals.
588	Neuropsychologia 2014;62:48-54.
589	43. Cho SS, Yoon EJ, Kim SE. Asymmetry of Dopamine D2/3 Receptor Availability in
590	Dorsal Putamen and Body Mass Index in Non-obese Healthy Males. Experimental
591	neurobiology 2015;24(1):90-94.
592	44. Cheesman AL, Barker RA, Lewis SJ, Robbins TW, Owen AM, Brooks DJ.
593	Lateralisation of striatal function: evidence from 18F-dopa PET in Parkinson's disease.
594	Journal of neurology, neurosurgery, and psychiatry 2005;76(9):1204-1210.
595	45. Delgado MR, Miller MM, Inati S, Phelps EA. An fMRI study of reward-related
596	probability learning. NeuroImage 2005;24(3):862-873.
597	46. Costa A, Monaco M, Zabberoni S, et al. Free and cued recall memory in
598	Parkinson's disease associated with amnestic mild cognitive impairment. PloS one
599	2014;9(1):e86233.
600	47. Nagy H, Keri S, Myers CE, Benedek G, Shohamy D, Gluck MA. Cognitive
601	sequence learning in Parkinson's disease and amnestic mild cognitive impairment:

- Dissociation between sequential and non-sequential learning of associations. Neuropsychologia 2007;45(7):1386-1392. 48. Tatsch K, Schwarz J, Mozley PD, et al. Relationship between clinical features of Parkinson's disease and presynaptic dopamine transporter binding assessed with [1231]IPT and single-photon emission tomography. European journal of nuclear medicine 1997;24(4):415-421. 49. Erro R, Barone P, Vicidomini C, Picillo M, Pappata S. Patients with Parkinson's disease and scans with (predominant) ipsilateral dopaminergic deficit. Journal of
 - 610 neurology 2013;260(9):2405-2406.
 - 611 50. Kaasinen V. Ipsilateral deficits of dopaminergic neurotransmission in Parkinson's
 - 612 disease. Annals of clinical and translational neurology 2016;3(1):21-26.

614 Figure legends

615 Fig.1 Learning performance on the Acquired Equivalence Task.

- 616 (A) L-naïve patients made significantly more errors than R-naïve patients and NC in the
- 617 acquisition phase. R-naïve patients performed as well as NC in acquisition. No
- 618 significant difference in accuracy was found either in the retention phase or in the
- 619 generalization phase among three groups.
- 620 (B) There was no significant difference in response time in the acquisition phase,
- 621 retention phase and generalization phase among L-naïve, R-naïve and NC groups.
- 622 L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve =
- 623 right-onset medication-naïve patients with Parkinson's disease; NC = normal controls.

Fig. 2 Difference in neural activity asymmetry and its correlation with learning.

- 626 (A) The ANCOVA analysis among L-naïve, R-naïve and NC groups in the ReHo
- 627 lateralization within the striatum (the left striatum was shown). A significant difference
- 628 was found in the dorsal rostral putamen.
- 629 (B) Post-hoc analysis between L-naïve and NC group. Increased ReHo lateralization630 was detected in the dorsal rostral putamen in L-naïve group.
- 631 (C) Post-hoc analysis between L-naïve and R-naïve group. Increased ReHo
 632 lateralization was detected in the dorsal rostral putamen in L-naïve group compared to
 633 R-naïve group.
- 634 (D) Scatter plot of ReHo activity in bilateral dorsal rostral putamen among groups. The

635	horizontal line represents the mean level of ReHo. Group differences in ReHo
636	lateralization were due to the decrease of ReHo in the right dorsal rostral putamen of
637	L-naïve group.
638	(E) The mean number of errors in acquisition was inversely correlated with the ReHo
639	activity both of the right dorsal rostral putamen and the left dorsal rostral putamen in
640	L-naïve group.
641	L-naïve = left-onset medication-naïve patients with Parkinson's disease; R-naïve =
642	right-onset medication-naïve patients with Parkinson's disease; NC = normal controls;
643	ReHo = regional homogeneity.
644	
645	Fig. 3 Correlation between ReHo activity of the dorsal rostral putamen and
646	UPDRS-III score. No significant correlation was found between UPDRS-III score and
647	neural activity of either the right or the left dorsal rostral putamen in L-naïve patients.
648	L-naïve = left-onset medication-naïve patients with Parkinson's disease; ReHo =
649	regional homogeneity.
650	
651	
652	
653	
654	
655	