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Probabilistic category learning is often assumed to be an incrementally learned cognitive skill, dependent on
nondeclarative memory systems. One paradigm in particular, the weather prediction task, has been used in
over half a dozen neuropsychological and neuroimaging studies to date. Because of the growing interest in
using this task and others like it as behavioral tools for studying the cognitive neuroscience of cognitive skill
learning, it becomes especially important to understand how subjects solve this kind of task and whether all
subjects learn it in the same way. We present here new experimental and theoretical analyses of the weather
prediction task that indicate that there are at least three different strategies that describe how subjects learn
this task. (1) An optimal multi-cue strategy, in which they respond to each pattern on the basis of associations
of all four cues with each outcome; (2) a one-cue strategy, in which they respond on the basis of presence or
absence of a single cue, disregarding all other cues; or (3) a singleton strategy, in which they learn only about
the four patterns that have only one cue present and all others absent. This variability in how subjects
approach this task may have important implications for interpreting how different brain regions are involved

in probabilistic category learning.

Probabilistic category learning has been studied extensively
in both animals and humans since the 1950s, and has
proven to be a fertile domain for the development and test-
ing of formal models of learning and memory (Medin and
Schaeffer 1978, Nosofsky 1984, Estes 1986; Gluck and
Bower 1988a,b). In the last several years, this paradigm
from cognitive psychology has become popular within cog-
nitive neuroscience as a method for studying the neural
substrates for learning incrementally acquired cognitive
skills. However, it appears that these tasks may actually be
solvable by a range of different strategies. This study
presents techniques to deduce what strategies a subject is
likely to be using on the basis of post-hoc analyses of be-
havioral responding. These techniques may be useful for
determining whether various groups—such as different
clinical populations—are using qualitatively different strat-
egies as compared with control subjects.

Many studies of the cognitive neuroscience of proba-
bilistic category learning have used a paradigm known as
the weather prediction task, developed in our lab at Rutgers
University in the early 1990s as a variation of an earlier
probabilistic category learning design from Gluck and
Bower (1988a). As described in Knowlton et al. (1994) (Ex-
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periment 1, Task 2), subjects in the weather prediction task
are given multidimensional stimuli and asked to classify
them into one of two categories. These stimuli are com-
posed from a set of four tarot cards (Fig. 1), each of which
contains a unique geometric pattern.

The stimulus presented on each training trial consists
of one or more of these cards presented in a random spatial
order. Table 1 shows the 14 patterns that were used in the
Knowlton et al. (1994) weather-prediction study. Each pat-
tern is represented as a numeric four-digit sequence corre-
sponding to whether each of the four cards is present (1) or
absent (0). Thus, pattern A = 0001 has card 4 (squares) pres-
ent, pattern B = 0010 has card 3 (diamonds) present, pat-
tern C = 0011 has both card 3 and card 4 present, and so on.
On each trial, subjects see one of these patterns, and are
asked to predict whether there will be good or bad weather
(sun or rain). The actual weather outcome is determined by
a probabilistic rule based on the individual cards, whereby
each card is a partially accurate predictor of the weather.

In the past several years, this weather-prediction task
has been used in over half a dozen different studies. Amne-
sic patients have been reported to learn the weather-pre-
diction task normally during the first 50 trials, although they
are impaired relative to controls with further training
(Knowlton et al. 1994, 1996a). Patients with basal ganglia
dysfunction due to Parkinson’s disease or Huntington’s dis-
ease show impaired learning from the very start of training
(Knowlton et al. 1996a,b). These results have been inter-
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Figure 1 The four cards used as cues in Knowlton et al. (1994).
Each card was associated with each possible outcome with a fixed
probability.

preted as supporting the claim that there are separate
memory systems for declarative memory (in the medial tem-
poral lobes) and nondeclarative learning (in the basal gan-
glia). Other studies of the weather prediction task have
demonstrated severe impairments in patients with schizo-
phrenia (Keri et al. 2000; T. Weickert, T. Goldberg, A. Ter-
razas, L. Bigelow, J. Malley, M. Egan, and D. Weinberger, in
prep.). Functional brain imaging by Poldrack and colleagues
has shown that the medial temporal lobes become active
early during learning of the weather-prediction task, and
gradually become deactivated as the task is learned; con-
versely, the basal ganglia are inactive early in learning, but
gradually become active (Poldrack et al. 1999, 2001). Com-
putational modeling has illustrated how data on amnesic
learning of this task could be explained by a cortico-hippo-
campal model of associative learning (Gluck et al. 1996).

Part of the appeal of the weather-prediction task has
been the assumption that it is a cognitive skill that is learned
in a procedural or habit-based (nondeclarative) manner. An-
other appeal is that the behavioral rules for category learn-
ing appear to involve some of the same principles as seen in
classical conditioning, a canonical example of motor skill
learning (Gluck and Bower 1988a,b, 1990; Shanks 1991). In
particular, a powerful model of classical conditioning (Res-
corla and Wagner 1972), which describes the incremental
trial-by-trial changes that occur during classical conditioning
of a CS and a US, also describes changes in associative
strengths between cues and outcomes in probabilistic cat-
egory learning tasks (Gluck and Bower 1988a). Although
conditioning and category learning undoubtedly involve dif-
ferent neural substrates, it has been intriguing that they
share so many similar behavioral properties.

However, despite considerable interest among cogni-
tive neuroscientists in probabilistic category learning (and
the weather-prediction task in particular), relatively little is
known about how subjects actually approach this task.
Prior studies have assumed that people all learn the task the
same way. Because the four cue-outcome associations are
probabilistic, it has been assumed that subjects learn these
associations incrementally, much as if there were four in-
dependent conditioning processes going on in parallel, with
subjects’ choice behavior on each trial reflecting the accu-

N I N G

&

mulated associations among all the present cues. This was,
in fact, how this learning was modeled in the Gluck and
Bower (1988a) neural network model of probabilistic cat-
egory learning, as well as in the later Gluck et al. (1996)
associative network model.

As such, categorization results are typically analyzed
with respect to optimal responding, that is, on each trial,
given a particular configuration of cues, did the subject
choose the outcome that is most often associated with that
pattern over the course of the experiment?

Using such a strategy, subjects would be able to
achieve 100% optimal responding. However, in the original
weather-prediction study (Knowlton et al. 1994), healthy
control subjects averaged only about 70%-75% optimal re-
sponding by the end of the experiment. Thus, it is possible
that subjects were only imperfectly following such a strat-
egy. However, it is important to realize that in addition,
subjects could potentially use several other classes of strat-
egies to approach the weather-prediction task. For ex-
ample, in the version of the weather-prediction task used by
Knowlton et al. (1994) and others, two of the four tarot
cards are highly predictive of the weather, with each being
associated with one or the other outcome with ~75% prob-
ability. The other two cards are less predictive (associated
with one or the other outcome with ~57% probability).
Thus, a subject who focuses attention on just one of the
highly predictive cards, and then responds sun or rain based
only on the presence or absence of this one card, could
achieve 75% optimal responses, similar to the level of 75%
optimal responding that most subjects in the Knowlton et
al. (1994) study actually achieved. Thus, such a strategy
could conceivably account for the behavior of subjects in
the Knowlton et al. (1994) experiment.

In summary, if one only knows the aggregate percent
optimal responses from a subject, it is difficult to conclude
anything about how that subject learned the task. Thus,

Table 1. Stimulus Patterns Used in the Knowlton et al.
(1994, Experiment 1) Weather Prediction Task

Pattern Cards present
A 0001
B 0010
C 0011
D 0100
E 0101
F 0110
G 0111
H 1000
I 1001
J 1010
K 1011
L 1100
M 1101
N 1110
M E M O R Y
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although the amnesic and control groups in the Knowlton
et al. (1994) study showed similar percent optimal respond-
ing, it is difficult to know whether the two groups were
actually using the same strategies or whether qualitatively
different strategies might underlie learning in the two
groups.

This study presents the development and application
of techniques by which we may deduce what strategies a
subject is likely to be using on the basis of post-hoc analyses
of behavioral responding. These techniques are applied to
subjects’ performance on two versions of the weather-pre-
diction task, an exact replication of the Knowlton et al.
(1994) experiment and a newer version of the task, in
which the cue-outcome probabilities are slightly more dis-
criminable.

Experiment 1

The purpose of Experiment 1 was to evaluate how subjects
approach learning in the weather-prediction probabilistic
category learning task. Our first experiment is essentially a
replication of the weather-prediction task published origi-
nally in Knowlton et al. (1994) (Experiment 1, Task 2).
Here, in addition, we used questionnaires (Experiment 1A)
and mathematical models (Experiment 1B) to assess the
strategies subjects used to learn the task. As described
above, there are four tarot cards that can each be present
(1) or absent (0) on a given trial. Each tarot card is associ-
ated with one of two outcomes (sun vs. rain) with a fixed
probability, as shown in Table 2. The overall probablility of
each outcome on a given trial is calculated according to the
conditional probabilities of each outcome and card occur-
ring together (Table 3). In addition to recording overall
percent optimal responding, we recorded how an indi-
vidual subject responded to each pattern, and to each cue.
Following training, subjects responded to a questionnaire
that was designed to provide insight to the kinds of strate-
gies each subject used while performing the task. Math-
ematical models were developed on the basis of informa-
tion from the self-reports and the questionnaire, to provide
a more objective and accurate strategy analysis.

Experiment 1A: Results

Behavior
Over all 200 training trials, subjects achieved a mean 62.41%
optimal responses (SD 7.36). Performance is shown in Fig-

Table 2. Cue Probabilities
P P
(Sunlcue present) (Rainlcue present)
Cue 4 (squares) 756 244
Cue 3 (diamonds) .575 425
Cue 2 (circles) 425 575
Cue 1 (triangles) 244 .756
L E A R N I N G
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Table 3. Probability Structure of the Task
P

P (rainl
Pattern Cue 1 Cue2 Cue3 Cue4 (pattern) pattern)
A 0 0 0 1 0.14 0.143
B 0 0 1 0 0.08 0.375
C 0 0 1 1 0.09 0.111
D 0 1 0 0 0.08 0.625
E 0 1 0 1 0.06 0.167
F 0 1 1 0 0.06 0.5
G 0 1 1 1 0.04 0.25
H 1 0 0 0 0.14 0.857
| 1 0 0 1 0.06 0.5
J 1 0 1 0 0.06 0.833
K 1 0 1 1 0.03 0.333
L 1 1 0 0 0.09 0.889
M 1 1 0 1 0.03 0.667
N 1 1 1 0 0.04 0.75

For each pattern, each card could be present (1) or absent (0).
The all-present (1111) and all-absent (0000) patterns were
never used. The overall probability of rain, given by summing P
(Pattern) *P (rainlpattern) for all patterns, is 50%.

ure 2A across the four blocks of training; subjects started
near chance (50%) in block 1, and improved to >70% opti-
mal responding by block 4. A repeated-measures analysis of
variance (ANOVA) confirmed a significant within-subjects
effect of block [F(3,84) = 25.68, P < .001], with no effect of
subject gender [F(1,28) =1.25, P =.273] and no block-
gender interaction [F(3,84) = 1.86, P = .142).

Figure 2B shows performance across just the first 50
trials. A repeated-measures ANOVA confirmed a significant
within-subjects effect of trials [F(4,112) =3.49, P =.010),
no effect of subject gender [F(1,28) =1.23, P =.278] and
no trials-gender interaction [F(4,112)=0.94, P = .442].
However, as seen in Figure 2B, this effect of trials was due
to somewhat better-than-chance responding in the first 10
trials; performance actually fell back to near chance levels
for trials 11-50.

Setting an arbitrary criterion of 65% optimal respond-
ing throughout training, 10 of 30 subjects reached criterion
performance within 200 trials.

Questionnaire

Within the questionnaire, subjects were asked about the
strategy they had used, the cue-outcome probabilities, and
the general task structure.

Open-Ended Question

When given an open-ended question asking the subject to
describe the strategy used to predict the weather, responses
varied widely. Several subjects simply stated that they had
tried to “associate the cards with sunny or rainy weather” or
similar. However, many of the more detailed responses fell
into a few basic categories.
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( A) (B) jects reporting they did not think
they had used a good strategy av-
% Optimal % Optimal o :
Responses Responses eraged 61.4% optimal responses
(SD 8.3). This was not a significant
100 100y . .
difference (independent-samples -
90 90 test, #(11) = 0.40, P > .500).
801 80 Multiple-Choice Question
Following the open-ended ques-
70] 70] tion, subjects were given a mul-
50l 5ol tiple-choice question in which
they were asked which best de-
501 501 scribed the strategy they had used
to predict the weather as follows:
T2 s g 140 | 20 2140 3140 | a1so (O guessing; (b) noticing that
certain cards (which?) most often
Blocks (of 50 trials) Trials

Figure 2 Percent optimal responses (A) over all 200 trials, (B) over first 50 trials of training.

(1) One-Cue Learning. Basing responses on the presence or
absence of a single card (e.g., “I predicted rain when-
ever I saw the triangle card.”).

Multi-Cue Learning. Basing responses on the combina-
tions of cues present on a given trial (e.g., “I noticed
that triangles and diamonds usually meant rain, and the
circles and squares meant sunny.”>).

Singleton Learning. Learning the correct response to
singleton patterns (A =0001, B =0010, C=0100,
D =1000), in which only a single card appears, and
guessing on the remaining trials (e.g., Memorizing the
single cards, “The single cards were the easiest, so I
concentrated on those.”).

@

(6))

Additionally, a few subjects reported that they were learn-
ing the correct response to singleton patterns, and then
adding evidence from singletons together when more than
one card appeared (e.g., “From the result of one-card inci-
dences [sic] I would learn that a pattern predicted a certain
outcome. . . . If there were two patterns that had caused
sun, I would pick that (and vice versa). If there was a card
that had predicted sun and one that had predicted rain, I'd
guess”).

The remaining subjects reported that they were guess-
ing, memorizing what weather went with each combina-
tion of cards, or using a sequence (e.g., respond sun if the
last trial’s weather was rain and vice versa).

A total of 22 of the 30 subjects reported that they
thought the strategy they had used was good or acceptable.
There was no obvious relationship between this response
and behavioral performance; subjects reporting satisfaction
averaged 62.8% optimal responses (SD 7.2), whereas sub-

>Note that this particular subject’s mapping of cues to outcomes is
partially incorrect; as per Table 2, squares and diamonds were most
often associated with sun, and circles and triangles with rain.
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predicted sun and certain cards
(which?) most often predicted
rain; (¢) memorizing which com-
binations of cards predicted which kinds of weather.

A total of 22 subjects checked (b); 18 subjects checked
(©); 10 subjects checked both (b) and (c). Among those
subjects checking (b), only 6 subjects listed all 4 cards.
Several subjects also checked (a).

There was no obvious correlation between answers on
the open-ended question and the multiple-choice question.
For example, one of the subjects who correctly reported all
four cards and contingencies in the multiple-choice ques-
tion had claimed previously to be responding on the basis of
picture association, reading cards from left to right. Con-
versely, another subject who claimed to have learned the
four singleton patterns was only able to verbalize (on the
multiple-choice) that the square card often predicted sun.

Cue-Outcome Contingencies

Next, we investigated subjects’ estimates of association
strengths for each of the individual cues [similar to a pro-
cedure reported in Reber et al. (1996)]. Subjects were asked
four questions of the form, “If just the square [or circle,
diamond, triangle] card is showing, what percentage of the
time would it be sunshine? (Respond with a number from
0-100.)".

For every cue, subject responses varied widely; for ex-
ample, for the square card (highly predictive of sun), esti-
mates ranged from 20%-100%. As Figure 3 shows, although
the group mean of 74.2% for the square card is close to the
actual rate of 85.7% sun (see Table 3), the group mean for
the other highly predictive triangle card approached chance
(51.5%). No individual subject correctly estimated the prob-
ability for all four cues within a range of +/-15% of the
actual probability. (In fact, only one subject even came
close to this criterion, estimating the four probabilities as
85%, 40%, 30%, and 25%).

Regression analyses of the cue estimates, with total
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Figure 3 Actual and estimated cue probabilities.

percent optimal responding as the dependent measure, re-
vealed a significant relationship between estimate of
P(sun|square card) (ANOVA, F(1,28) =11.24, P =.002),
but not for the other highly predictive triangle card
(F(1,28) = 0.66, P = .422), nor either of the less-predic-
tive cards (circle, F(1,28)=0.33, P> .500; diamond,
F(1,28) =2.71, P=.11D).

Subjects were also asked the opposite questions,
“What if you knew it was going to be sunny [or rainy] and
one card was showing? Which card would be most likely to
be showing?” Again, individual responses varied widely,
with at least one subject reporting that each possible card
was most often present during sun or rain trials.

Overall, 14 subjects (46.7%) reported correctly that the
square card was most often present on sun trials, whereas
14 subjects (46.7%) reported correctly that the triangle card
was most often present on rain trials. Only six subjects
(20%) answered both questions correctly. These six sub-
jects averaged 68.8% optimal responding (SD 7.1), only
slightly better than the overall group average of 62.4%.

Questionnaire: Summary

In summary, the results of the questionnaire were highly
conflicting. Group averages did not approximate ideal re-
sponding, and individual subject responses varied widely,
with one subject often reporting different strategies when
the question was posed in various ways. There was no ob-
vious correlation between subject strategy and perfor-
mance, and little good evidence that subjects had learned
the cue-outcome contingencies, although they did tend to
associate the square card with sun and triangle with rain,
when probed to estimate cue-outcome associations. This
last finding is generally consistent with the findings of Re-
ber et al. (1996), who found that when probed, subjects, on
average, tend to provide relatively accurate estimates of
cue-outcome associations.

Experiment 1B: Strategy Analyses
The results from the subject questionnaires suggested that
subjects were using more than one strategy to approach the
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probabilistic categorization task. Some reported using one-
cue strategies (responding based on the presence or ab-
sence of a single card), or using singleton strategies (learn-
ing the optimal response to the four singleton patterns). In
fact, if a subject were reliably following one of these strat-
egies, the overall performance rate could approach that ob-
tained by the optimal multi-cue strategy (see below). This
suggests that simply knowing a subject’s overall perfor-
mance rate does not necessarily provide any information
about which strategy that subject was pursuing.

However, the wide variation within individual subjects
among answers to the open-ended question, the multiple-
choice question, and the probability estimates suggest that
subjects found it difficult to verbalize their strategies. This
would be consistent with the assumption that this task taps
nondeclarative or implicit memory, and suggests that ques-
tionnaire data may be inherently unreliable as an index of
how subjects approach the probabilistic category learning
task.

We next attempted to derive a more formal method of
assessing subject strategies, by quantitatively comparing in-
dividual subject data to the ideal subject data that would be
expected if a subject were reliably following a particular
strategy. On the basis of responses obtained to the ques-
tionnaire, we investigated one-cue and singleton strategies,
as well as multi-cue strategies, which are often assumed to
be how subjects approach this type of task (for example,
see Knowlton et al. 1994). Table 4 summarizes these four
strategies.

RESULTS
Over all 200 training trials, we found that 27 subjects (90%)
were best fit by a singleton strategy, and 3 subjects were
best fit by a one-cue strategy (2 circles, 1 triangle).6

Our list of potential strategies is clearly not exhaustive,
and our strategy analysis clearly cannot prove that an indi-
vidual subject was following a particular strategy. However,
defining a tolerance level of 0.1, all subjects were fit by one
of the three classes of strategies we considered. These re-
sults do demonstrate that most subjects were behaving in a
manner more consistent with a singleton strategy than with
a multi-cue strategy.

We also conducted separate strategy analyses for the
individual subject data over each block of 50 trials. Figure 4

SWithin the singleton group, one subject was better fit by assuming
that she had summed evidence from multiple singletons on those
trials in which two or more cards appeared; whereas there were
not enough subjects well fit by this model to justify treating it as a
separate group, it is worth noting that this is a potentially more
sophisticated strategy than simply learning the singletons and
guessing on multi-card patterns. However, on the questionnaire,
this subject reported that she had been “memoriz[ing] the pattern
of the cards and the sequence of how it appears.”
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Table 4. The Rule for Constructing Ideal Subject Data for Each Strategy Investigated

DISCUSSION

In Experiment 1, we used ques-

Strategy Ideal subject data constructed by: % Optimal tionnaires and mathematical mod-

Multi-Cue Assume the optimal response (i.e., most 100% els to assess strategies used during

frequently-correct outcome) is made training on the weather-prediction

on every trial. category learning task. Findings

Singleton Assume the subject learns the op.tlmal 75% from the questionnaire suggested
response for each of the four singleton . .

patterns and guesses on the remaining that there are various strategies

trials. with which subjects approach this

One-Cue (highly Assume the subject is responding based 87.5% task. Three main classes of strate-

predictive) on the presence or absence of one of gies were identified as follows:

the highly-predictive cues (square or . T . ’

triangle) and ignoring all other cards. multi-cue strategies, in which sub-

One-Cue (less predictive) Assume the subject is responding based 66% jects focus on and learn about all

on the presence or absence of one of
the less-predictive cues (diamond or
circle) and ignoring all other cards.

four cues; singleton strategies, in
which subjects learn primarily

about those patterns in which a

(% Optimal) = potential performance by a subject reliably following this strategy through the

entire experiment.

shows the number of subjects best fit by each strategy
across the four blocks. There is a shift in best-fit strategies,
such that many subjects are best-fit by a singleton strategy
early in training, but gradually come to behave in a manner
more consistent with a (more effective) multi-cue strategy.

Assuming that block 4 is the best indicator of a sub-
ject’s ultimate strategy, and most likely to have been reliably
followed at least at the end of the experiment, we at-
tempted to correlate bestfit strategy for block 4 with per-
formance. Figure 5 shows that, in general, subjects who
were best fit by a multi-cue strategy model tended to gen-
erate a relatively high proportion of optimal responses,
whereas subjects best fit by a one-cue model tended to
generate a low proportion of optimal responses. An ANOVA
on block 4 performance with best-fit strategy as the depen-
dent variable revealed a highly significant main effect
[F(2,27) = 8.105, P <.001). Tukey pairwise tests revealed
that subjects best fit by the multi-cue strategy performed
significantly better than those subjects best fit by a one-cue
strategy (P < 0.001). No other pairwise contrasts reached
significance (all P > .100), that is, there was no significant
difference in performance between subjects best fit by the
singleton or the one-cue models, or between subjects fit by
the singleton or multi-cue models.

Finally, comparing questionnaire responses with best-
fit strategy yielded no obvious correspondences. For ex-
ample, two subjects who had spontaneously verbalized a
one-cue strategy were best fit by a multi-cue strategy. Sev-
eral subjects whose actual behavior was most consistent
with a one-cue strategy verbalized that they had been re-
sponding on the basis of information from several cues.
Thus, again, there was little evidence that questionnaire
data accurately represented how subjects had approached
the task.

L E A R N | N G

single card appears; and one-cue
strategies, in which subjects re-
spond on the basis of presence or
absence of a single cue.

We developed mathematical models on the basis of
these strategies, to obtain a more objective and accurate
assessment of the kinds of strategies subjects used while
learning this task. Strategy analyses with these models con-
firmed that subjects use a variety of strategies while learning
this task. Specifically, we found that 90% of subjects were
best fit by a singleton strategy, over all 200 trials. By inves-
tigating strategies within 50-trial blocks, we found evidence
of a shift; in the first training block, most subjects appeared
to start with a singleton strategy; by the last block, subjects
appeared to shift away from a singleton strategy and toward
a more optimal multi-cue strategy. This shift toward multi-

% Subjects
100+
90
80
707
60
50
407
30
20
10

1 2 3 4 1
Multi-cue

234 1 2 3 4

Singleton One-cue

Strategy by block

Figure 4 Percentage of subjects best fit by various strategy models
across the four training blocks.
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% Optimal
Responses
1004

90

80

70

60

50

Multi cue Singleton One cue

Strategy

Figure 5 Percent optimal responding as a function of best-fit
model.

cue strategy was also reflected in better performance on the
final training block (Fig. 5).

We also found little correspondence between subjects’
self reports and their actual performance, as assessed by
mathematical analyses. This is interesting, given that self
reports are often used to gain insight into how subjects
learn. This finding is not really surprising, given that the
weather prediction task has always been assumed to be
learned in an implicit manner by use of procedural, nonver-
balizable rules. This finding further suggests that even when
subjects are using a strategy that could, potentially, be ver-
balized (such as “press sun whenever you see a triangle”),
they may be learning the strategy in a nondeclarative man-
ner.

One important limitation to these findings is that over-
all, subjects were not performing so well. Two-thirds of
subjects were performing at <65% optimal over the 200
trials. Therefore, it is difficult to determine whether they
were following a specific strategy, changing strategies rap-
idly in an attempt to improve performance, or perhaps sim-
ply guessing. In an attempt to address this, in Experiment 2,
we altered the weather prediction task slightly by making
the specific cue-outcome probabilities slightly more dis-
criminable, while maintaining the same formal structure of
the task. We expected that this would have the effect of
making the task somewhat easier to learn (and hence, of
improving performance rates) while maintaining the gen-
eral probabilistic nature of the task.

Experiment 2
In Experiment 1, we attempted to assess the kinds of strat-
egies subjects use to learn the weather-prediction task. We
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presented a new technique for examining learning strate-
gies, and identified three main classes of strategies used.
However, one limitation of these findings is that the task is
quite difficult. The purpose of Experiment 2 was to develop
a task that would be formally identical to the Knowlton et al
(1994) task in every way, but that nonetheless would be
slightly easier to learn. Obtaining slightly higher levels of
performance is particularly important, given that this task is
often used to assess learning patients with various kinds of
memory dysfunction, and poor performance among healthy
controls could make the task less sensitive to impairments
in patient populations.

In the present experiment, we slightly modified the
cue probabilities to make the task easier to master. Specifi-
cally, the four cues were associated with sun with prob-
abilities of 0.8, 0.6, 0.4, and 0.2, which meant that an indi-
vidual who always responded with the most likely category
for each pattern could correctly predict the weather on up
to 83% of trials (compared with 76% under the probabilities
in Experiment 1). The pattern frequencies and conditional
probabilities for Experiment 2 are shown in Table 5.

We expected that subjects would show overall better
performance, but that we would find similar patterns of
learning as in the original task (i.e., incremental acquisition)
and similar patterns of strategy use as revealed by math-
ematical models.

RESULTS

Overall Performance Measures

Over all 200 trials, subjects averaged 74.5% optimal re-
sponses (SD 11.3). Figure 6 shows these data broken into
blocks of 50 trials. A repeated-measures ANOVA confirmed
significant improvement across trials (within-subjects effect

Table 5. Total Frequency of Occurrence of Each Pattern,
Along With Number of Times Each Pattern Occurred With
Sun or Rain Outcome in Experiment 2

Cards
Pattern present Sun Rain Total
A 0001 17 2 19
B 0010 7 2 9
C 0011 24 2 26
D 0100 2 7 9
E 0101 10 2 12
F 0110 3 3 6
G 0111 17 2 19
H 1000 2 17 19
| 1001 3 3 6
J 1010 2 10 12
K 1011 5 4 9
L 1100 2 24 26
M 1101 4 5 9
N 1110 2 17 19
Total 100 100 200
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portion of optimal responses. An
ANOVA on block 4 performance
with best-fit model as the indepen-
dent variable confirmed a signifi-
cant effect of strategy on perfor-
mance [F(2,27) = 6.04, P < .010);
post-hoc Tukey tests revealed that
the multi-cue group significantly
outperformed the singleton group
(P < 0.001) and the one-cue group
(P < 0.050); the singleton group
did not differ significantly from
the one-cue group (P > .500).

% Optimal % Optimal
Responses Responses
100} 100)
907 901
807 80]
70] 701
607 60]
507 507
T T T ¥
1 2 3 4

Blocks (of 50 trials)

Figure 6 Percent optimal responses (A) over all 200 trials, (B) over first 50 trials of training.

of block [F(3,84) = 12.84, P < .001], with no effect of sub-
ject gender [F(1,28) =0.07, P> 0.500], and no gender-
block interaction [F(3,84) = 0.96, P = 0.416).

We also considered just the first 50 trials, divided into
sub-blocks of 10 trials. Figure 6B shows these data. In fact,
there was a slight increase in percent optimal responding
across the first 50 trials; however, a repeated-measures
ANOVA showed that this was not statistically significant
(within-subjects effect of trials [F(4,112) = 0.88, P = .477),
no effect of subject gender [F(1,28) = 0.75, P =.393), and
no interaction [F(4,112) = 1.02, P = .400).

Setting an arbitrary criterion of 65% optimal respond-
ing across all 200 trials, 24 subjects (80.0%) reached crite-
rion performance. This is compared with 33% of subjects
reaching criterion in Experiment 1.

Strategy Analyses

Over all 200 training trials, we found that a singleton model
provided best fit for 24 subjects (80%), whereas a multi-cue
model provided a best fit for 4 subjects (13.3%), and one-
cue models provided fits for 2 subjects (6.7%). Defining a
tolerance level of 0.1, all subjects but one were fit well by
one of the three classes of strategies we considered.

We also conducted separate strategy analyses for the
individual subject data over each block of 50 trials. Figure 7
shows the percent of subjects best fit by each strategy
across the four blocks. As in Experiment 1, we found a shift
in best-fit strategies, with many subjects best fit by a single-
ton strategy early in training, but behaving in a manner
more consistent with a multi-cue strategy later in training.

Finally, we evaluated whether best-fit strategies in the
last block were related to overall performance. Figure 8
shows that subjects who were best fit by a multi-cue strat-
egy model tended to generate a relatively high proportion
of optimal responses, whereas subjects best fit by a one-cue
or singleton model tended to generate a relatively low pro-
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DISCUSSION

In Experiment 2, we used a new
version of the weather-prediction
task. This version of the task was
formally identical to the task in Experiment 1 in all respects,
except that the actual probabilities of cue-outcome associa-
tions were slightly more discriminable. Whereas in Experi-
ment 1, cues 1-4 were associated with sun with probabili-
ties of .25, .43, .57, and .75, respectively, in Experiment 2
the corresponding probabilities were .2, .4, .6, and .8.
These new probabilities resulted in overall slightly better
performance; subjects averaged 74.4% optimal correct per-
formance over all 200 trials in Experiment 2, compared
with 62.1% correct performance in Experiment 1. Further-
more, whereas in Experiment 1, relatively few subjects
reached a criterion of at least 65% correct responses over all
200 training trials, in Experiment 2, substantially more sub-
jects were able to reach criterion performance (33% of sub-
jects in Experiment 1, compared with 80% in Experiment
2). However, despite slightly better performance, overall
patterns of learning were similar—here, too, learning was
incremental across all 200 trials, and we found a similar
pattern of strategy use. These findings are consistent with
fMRI findings of similar patterns of activation with both
versions (Poldrack et al. 1999, 2001). This version of the
weather-prediction task, therefore, appears not to differ
from the initial version in any fundamental way, at least in
healthy young controls.

Trials

General Discussion
The main point of our results is to demonstrate that a task
widely used in the cognitive neuroscience literature may
not be solved by subjects in the ways that researchers
thought previously. In particular, there appears to be con-
siderable variability in how subjects approach this task.
Using mathematical models of three classes of strate-
gies, the multi-cue, one-cue, and singleton strategies, we
found that data from all subjects were consistent with one
of these strategies, and, in fact, 59 of 60 subjects across two
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Figure 7 The percentage of subjects for whom multi-cue, one-
cue, and singleton strategies provided a best-fit model for each of
the four training blocks.

experiments were fit within a tolerance level of 0.1. In both
the original and the modified version of the weather-predic-
tion task, the singleton strategy appeared to account for
most subjects’ data, particularly early in training. There was
also evidence of a shift, with many subjects showing behav-
ior more consistent with an optimal multi-cue strategy to-
ward the last block of training.

Because both the one-cue and singleton strategies are
simple and easy to verbalize, there is no particular reason to
expect that subjects would use nondeclarative memory to
mediate learning on the basis of these strategies. However,
our finding in Experiment 1 that subjects’ actual perfor-
mance (assessed with models) was poorly correlated with
their self reports, supports the idea that even these verbal-
izable rules are acquired in an unconscious, nonverbalizable
way.

Obviously, one cannot definitely assume a given sub-
ject was using a particular strategy just because that strategy
provided a best-fit model; at least one subject in Experiment
2 was not well described by any of the mathematical models
we explored, suggesting that he may have been using a
different strategy to approach the task. In future work, it
may be interesting to apply clustering techniques, such as
multidimensional scaling, to response profile data, to see
if we can identify additional or alternate strategy tech-
niques.

Because the weather prediction task is probabilistic
and incrementally acquired, it has been assumed in the past
that it therefore must depend on nondeclarative (extra-hip-
pocampal) memory systems. In reviewing our results, we
feel that it is important to note that just because a strategy
can be learned incrementally, it does not necessarily follow
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that it must be nondeclarative, nor is it the case that just
because a strategy can be easily memorized, it must be
declarative.

For example, the one-cue strategy can obviously be
learned in a nondeclarative, incremental fashion analogous
to conditioning to a single cue. However, one can also easily
verbalize this strategy using declarative memory: ‘Respond
“rain” whenever the triangle card is present, and respond
“sun” whenever it is not present.” Conversely, just because
the singleton strategy is easy to verbalize, does not mean
that a person with impaired declarative memory, such as an
amnesic patient, should be unable to learn the correct re-
sponse to each of four stimuli that are presented with very
high frequency compared with other stimuli in the task.
Thus, we argue that one should be cautious about strong
claims regarding which strategies are declarative versus
nondeclarative. In fact, it seems plausible to suggest that a
normal healthy human may use a variety of strategies and
brain substrates—possibly in parallel—to approach a diffi-
cult categorization task. Patients with damage to one or
more brain systems may be restricted in the strategies they
can use to approach this task—but to the extent that they
can still use at least one effective strategy, they may be able
to perform quite well in terms of overall percent optimal
responding. In such a case, a gross measure of overall op-
timal responding may not differentiate a patient group from
healthy controls, but a strategy analysis might. Future stud-
ies with various patient groups are obviously indicated to
determine the extent to which strategy analysis on proba-
bilistic category learning tasks may help elucidate not just
how well patients learn, but what they are learning.

% Optimal
Responses
100

20

80

707

60

50

40

Multi cue Singleton One cue

Strategy

Figure 8 Percent optimal responding as a function of best-fit strat-
egy.

M E M

www.learnmem.org

416



Individual Variability in Category Learning

METHODS

Experiment 1A

Subjects

A total of 30 Rutgers University undergraduate students partici-
pated, and received class credit in exchange for their participation.
The group included 13 males and 17 females, with a mean age of
19.8 years (SD 2.9).

Apparatus

Testing took place in a quiet room with the subject seated at a
comfortable viewing distance from a Macintosh iBook laptop com-
puter. The keyboard was masked except for two keys, labeled sun
and rain, which the subject could use to enter responses.

Stimuli and Procedure

The general procedure was as described previously in Knowlton et
al. (1994) (Experiment 1, Task 2), using the same software, cues,
and cue probabilities as in the earlier work.

In brief, the subject was required to learn which of two out-
comes (rain or sun) was predicted by combinations of tarot cards
that appeared on the screen. There were four cards total, as shown
in Figure 1, each associated with each outcome according to a fixed
probability (see Table 2). One to three cards could appear on each
trial. The actual outcome on each trial was calculated according to
the conditional probabilities of each outcome and card occurring
together (see Table 3). There were 200 trials total, and the sun and
rain outcomes occurred with equal frequency.

On each trial, the cards appeared and the subject was asked to
respond with a prediction of sun or rain. Once the subject re-
sponded, the correct answer was shown. If the response was cor-
rect, a smiley face appeared, a high-pitched tone sounded, and a
score bar on the right of the screen increased; if the response was
incorrect, a frowning face appeared, a low tone was sounded, and
the score bar decreased. Visual feedback and cards remained on the
screen for 2 sec, followed by a 1-sec intertrial interval during which
the screen was blank.

If the subject did not respond within 2 sec, a prompt ap-
peared, Answer Now!. If the subject did not respond within the
next 3 sec, the trial was terminated and the correct answer was
shown.

Following the 200 training trials, subjects were given a ques-
tionnaire, including both open-ended and multiple-choice ques-
tions about the strategies they had used to approach the task, the
individual cue-outcome probabilities, and the overall structure of
the task.

For the purposes of data analysis, a subject was considered to
have made an optimal response if the subject selected the outcome
that was most often associated with the current cue pattern, re-
gardless of the actual (probabilistically determined) weather on
that trial. Thus, subjects could be scored as making an optimal
response on a given trial even if their actual prediction of the
weather was wrong. Two patterns (F=0110 and I=1001; see
Table 3) appeared equally often with each outcome, and so the
optimal response for trials on which pattern F or I appeared was
undefined. Percent optimal scores were analyzed in blocks of 50
trials. Additionally, following previous studies, we analyzed data
from the first 50 trials in sub-blocks of 10 trials.

Experiment 1B
Ideal response profiles were constructed for each strategy, defined
as the expected response to each trial in the experiment if a subject
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were perfectly following that strategy (see Table 4). This ideal
profile was compared with individual subject data by means of a
least-mean-squared-error measure (see Appendix). The strategy
generating the lowest error was defined to be the best-fit model for
that subject’s data. Note that although the scoring for the multi-cue
strategy allows for 100% optimal responding, a subject reliably fol-
lowing one of the other strategies could obtain up to 88% optimal
responding.

‘We conducted this strategy analysis for all 30 subjects over all
200 training trials. The actual probabilities of the experiment only
hold true across all 200 training trials. However, on the basis of
subject questionnaire responses, it appeared likely that at least
some subjects had switched strategies during the course of the
experiment. Accordingly, we also conducted separate strategy
analyses for the individual subject data over each block of 50 trials.

Experiment 2

Subjects

A total of 30 subjects were recruited from the Rutgers University
community, including 17 female and 13 male subjects, with a mean
age of 20.73 years (SD 3.64); participants either volunteered or
received class credit for an introductory psychology course. All
subjects signed statements of informed consent before initiation of
behavioral testing.

Stimuli and Procedure
Stimuli were the same as in Experiment 1 and in prior studies (e.g.,
Knowlton et al. 1994; Experiment 1, Task 2). The two outcomes
(sun and rain) were equally probable, but each of the four cards
was independently associated with each outcome with a fixed
probability: P(sun|card 4) = 0.8; P(sun|card 3) = 0.6; P(sun|card
2) = 0.4; P(sun|card 1) = 0.2. The associations between cards 1-4
and rain were, accordingly, P(rain|card) = 1-P(sun|card) or 0.2,
0.4, 0.6, and 0.8, respectively. Trials were then constructed to
adhere to these independent probabilities. Table 5 shows the num-
ber of times each combination of cards (i.e., each pattern) occurred
with each outcome. The 200 trials defined in Table 5 were pre-
sented in a random, but fixed order for all subjects.

The apparatus, procedure, and data collection were identical
to Experiment 1.
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APPENDIX
Strategy Analysis

We investigated three basic classes of strategy that subjects might
be using as follows: multi-cue strategies, in which the subject at-
tends to all four cues, one-cue strategies, in which the subject
attends selectively to one particular cue (e.g., the presence or ab-
sence of a particular card), and singleton strategies, in which the
subject learns how patterns containing individual cues (singletons)
predict the outcome.

For each strategy, we constructed ideal data, defined as the
pattern of responses expected across the 200 trials if a subject were
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reliably following that strategy. For example, ideal data for a one-
cue model based on the square card would assume that the subject
responded sun to all patterns in which the square card was present
(A,CE,G,LK,M), and rain to all patterns in which the square card
was absent (B,D,F,H,J,L,N). Ideal data for a singleton model would
involve responding sun to singletons A and B, rain to singletons D
and H, and randomly to the remaining patterns. (We also initially
considered a rule in which subjects responded to multi-card single-
tons by summing evidence across singletons—i.e., a majority rule,
if two of the three cards are associated with sun, then respond
sun—but as only one subject was best fit by this model, we do not
consider it further.) Ideal data for a multi-cue rule would involve
responding to each pattern on the basis of the most frequent out-
come, for example, pattern A appears 19 times, 17 sun and 2 rain,
so ideal data would involve responding sun each time A appears.
These ideal data thus provided various models of subject perfor-
mance that could be compared against actual subject response
patterns.

In practice, no subject’s response profile was perfectly iden-
tical to any of these ideal profiles. In the early trials, before any
learning had taken place, a subject’s responses would be expected
to be random (or nearly so); later in the experiment a subject might
switch strategies—or even make occasional errors in key pressing.
Nonetheless, averaged over all 200 trials of the experiment and
over the 4 blocks of 50 trials, many subjects’ response profiles were
fit quite well by at least one of the ideal data models.

To quantify this fit, we took the squared difference between
the number of sun responses generated by a subject and the num-
ber predicted by a model, summed across all patterns; this score
was normalized by dividing between the sum of squares of total
presentations of each pattern,

2 pEsun_expectedy, ,, — #sun_actual, o)

Z A #presentationsp)’

in which P = pattern A...N; #presentations, is the number of times
pattern P appears in the 200 trials of the experiment; #sun_expect-
edp ,, is the number of sun responses expected to pattern P under
model M, and #sun_actual, is the actual number of sun responses
the subject made to pattern P during the experiment.

The result was a number between 0 and 1 for each strategy,
with 0 indicating a perfect fit between the model M and a subject’s
response profile. Comparing across all strategies examined, the
model generating the lowest score was defined as the best-fit model
for that subject. If the best fit was less than 0.1, we concluded that
there was evidence that the subject’s data could be accounted for
by assuming that the subject was following the corresponding strat-

egy.

Score for Model M =
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