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Abstract

NOTE: This is from cog sci conf paper

Too cryptic and rapid -- GB

We test a configural-cue network model of human classification and recognition
learning based on Rescorla & Wagner’s (1972) model of classical conditioning. The model
extends the stimulus representation assumptions from our earlier one-layer network model
(Gluck & Bower, 1988b) to include pair-wise conjunctions of features as unique cues. Like
the exemplar context model of Medin & Schaffer (1978), the representational assumptions of
the configural-cue network model embody an implicit exponential decay relationship
between stimulus similarity and and psychological (Hamming) distance, a relationship
which has received substantial independent empirical and theoretical support (Shepard, 1957,
1987). In addition to results from animal learning, the model accounts for several aspects of
complex human category learning, including the relationship between category similarity and
linear separability in determining classification difficulty (Medin & Schwanenflugel, 1981),
the relationship between classification and recognition memory for instances (Hayes-Roth &
Hayes-Roth, 1977), and the impact of correlated attributes on classification (Medin, Altom,

Edelson, & Freko, 1982).
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Introduction

This paper presents and tests a new, simple model of human classification learning,
Its primary emphasis is upon explaining the results of many laboratory experiments in which
4
adults learn to classify a collection of stimulug patterns (or "cases") into two or more

categories based on feedback about each pattern.

Classification or categorization is a fundamental cognitive act, and in some sense it
underlies all learning, all transfer or generalization, and most induction of generalizations.
People use multiple classifications of their environment in nearly every action they perform.

J

Classification involves treating a person,object, place, or situation as equivalent for some - W
M ¥
purposes to one or more experienced before. Beeausssef This judgment of equivalence, e

3 b
<an partially transfer to the new case some of the l%wledge v%had gleaned from the earlier
cases. For even the most elementary habituation or classical conditioning experiments, the

human or lower animal may be said to be classifying the present stimulus as resembling one

%)
experienced earlier, and responding accordingA tezﬂaéjﬂégz:mbl

Because of its fundamental nature, classification -- its nature and learning -- has long
been studied by psychologists under such headings as discrimination learning, pattern
recognition, concept identification, and categorization. As more data have accumulated,
considerable theorizing has grown up around this body of results. Despite the accumulated
data and theoretical elaborations, no consensus has yet been reached about the best theory.

Into this area, we offer our own theory, called the "configural cue" theory. In the following,
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we describe the basic assumptions of this theory, show its connections to traditional
approaches, contrast it to popular alternative models of category learning, and summarize
some evidence in favor of our theory. Our particular emphasis will be upon formulating the
configural cue theory in an explicit manner enabling us to derive its numerical predictions
for a v%etmmat of category learning experiments. The model can then be evaluated

by its fit to numerical results from an array of critical experiments. Moreover, the

alternative models may be contrasted in their goodness of fit to the critical results.

Last step: insert preview of paper here
THE NETWORK-LEARNING FRAMEWORK

The Pandemonium Approach

The model to be presented combines three separate approaches to discrimination
learning or pattern classification. The first one we call the "Pandemonium" approach,
deriving as it does from the familiar Pandemonium-model of pattern classification. That
approach makes at least four assumptions: first, that objects or patterns to be classified can
be characterized by a collection of stimulus features or attributes which they possess;
second, that each feature provides varying degrees of "evidence" for classifying the pattern
into the different classes of interest, and that through learning this evidential degree comes
to be reflected in the strengths of associations between the feature and the alternative
categories; third, that the total weight of evidence towards a given classification for a pattern
is given by summing the evidence each of its features provides towards each category; and
fourth, that the ranking of amount of evidence for each category is converted into a

behavioral decision about which "category response” to give to the stimulus pattern.
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While these assumptions were transparent in Selfridge’s Pandemonium Model (e.g.,
Selfridge & Neisser, 1960), they were in fact present as well in earlier treatments of
discrimination learning by Kenneth Spence (1936), Clark Hull (1952), and most others
working in neobehaviorism. For example, in accounting for a chimpanzee’s selection of a
large black square covering the left food well over a small white circle covering the right
food well in a Wisconson Generalle/st@paratus, Spence’s theory would add up the strengths
of "approach habits" towards the golr s-timulus features on each side, and then convert those
two net habit strengths to the two choices into a probability of the animal selecting one
pattern over the other. The theory operated similarly when applied to a successive
discrimination task, in which the organism learns to make response R ; to stimulus pattern
P;; the associations to each response from each attribute of the pattern would be summed
over attributes, and the model’s response would be selected according to its net strength
relative to other responses. This type of decision rule is familiar in the literature on linear-
regression models of statistical decisions (see Dawes, 1979) or the lens model of multiple-
cue probability learning (e.g., Hammond et al., 19@@). Our point in citing these examples
is to note that this assumption, that decisions are made by comparing the summation of

evidence towards different alternatives, is familiar and widely used in psychological theories.

A specific network that we used in earlier publications is shown in Figure 1; it is a

Insert Figure 1 about here

simple "one-layer" network, associating input elements to output units in one pass. The
input layer includes a sensory unit or "node" for each stimulus feature; for example, with

AN
patterns of colored geometric forms, thesevwoulq‘a one sensory node corresponding to each
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distinct color and one corresponding to each form used in the experiment. Presentation of a
given stimulus pattern to the network is represented %sacﬁvaﬁng (turning on) the input
nodes corresponding to the presented features of that pattern. Mathematically we will let g;
represent the amount of activation stemming from input node i when its corresponding

1,
stimulus attribute is presented. Intuitively, g; may-be-conceived-ef-as the salience or
intensity of that sensory feature relative to others. In the following, however, we will set all
a; to the same value (namely, 1) whenever the corresponding feature is present, and set g;
to 0 if that feature is not present. Later, we will complicate the nature of the sensory input;

but the elementary model of Figure 1 serves as a useful starting point for exposition.

Each input node, i, is connected to each output (category response) node j with a

weight or strength of degree w;;;

we think of this as the directed association from i to j,
corresponding to the degree of evidence towards category j provided by feature i. If is these
w’s which will change to reflect the stimulus-response correlations in the training
environment. Given an input pattern, the network computes the activation on each output
node by summing the associative weights to that response node from each presented

stimulus feature. Letting A; denote the activation or summed strength of output node j, it is

given by

i

Recall that a; is one if feature i is presented in the pattern on the current trial but is zero

otherwise,
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We will add one further assumption to our network model, and that regards the
specific rule for selecting a "response” or classification. Letting A, 4,,......, A, represent
the total strength of associations from a pattern to category responses 1, 2, ....... n, then the
probability that the person selects response 4; out of a set of alternatives including it will be

assumed to equal

4 @

The summation in the denominator ranges over just the set of alternatives available for
choice on a given frial. Equation 2 is Luce’s Axiom which has many desirable features
(Luce, 1959). For example, one feature is that the ratio of P; to P ; is predicted to be
independent of the set of alternatives in which those two are included -- a prediction that is

frequently upheld in choice experiments (see, e.g., Atkinson, Bower, & Crothers, 1965).

THE LMS LEARNING RULE

The second major assumption in our network model is that new learning is to be
driven by the failure of prior expectations; that is, new expectations are adjusted to reduce
discrepancies between old expectations and reality. This process of discrepancy-reduction is
evoked whenever the organism expects some outcome to a degree that does not match the
actual outcome. Although we believe that this expectation learning proceeds amongst all
features of the stimulus patterns as well as from the stimuli to the classificatory responses,
we will concentrate here on how the sensory units become associated to the output

responscs.
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The model operates in a training environment consisting of a number of discrete
trials during which a stimulus pattern is shown, the network calculates activations (or
strengths of expectations) for the available classificatory responses and responds, and then a
supervisor, critic, or trainer provides feedback regarding the classification (or "correct
response”) that should have been given on that trial. We suppose that the feedback signal
informs the network of what the desired activations over the N response alternatives should
have been on that trial. For the output node j, we let A; denote the training signal given on
a specific trial. In general, the value of A; would vary with parameters of reinforcement,
such as its specificity, magnitude and delay. However, when reward is not varied, as in all
the experiments considered below, we will use the simplest case in which A; is set to some

arbitrary value (namely, 1) for the correct category (response) node on a given trial and 0

e -
otherwise. Wem

ij # '

of trial n of some training series. These w;;’s will change depending on the training

¢
\\\‘ e G
denote the weight of the connection from,\i tch/] at the beginning

schedule. The learning that follows a given feedback trial can now be stated as follows:

A
v G
oY

W;j (n+l) = Wij (n )’-;i"' a; ﬁfﬁhj - E a; wij@l\]' ®
: LoV

If we add trial subscripts they need to be added through EQ-MG
Equation 3 is the central learning axiom of the theory. The parameter f§ is the learning rate

and is to be estimated from fitting experimental data; typical values are .01 to .03.
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Several features of Equation 3 should be noted. First, it really synopsizes three

underlying relationships, namely,

i

wy(n) + 5[1 - Yawy } (3a) if feature i was presented and response j was correct
Wy [n +1 ] =y wyn) - [3|:Za, Wi ] (3b) if feature i was presented and response j was not correct B\ iy
i

Wij (n) (3c) if feature 1 was not presented or there was no feedback

The first line (3a) says that reinforcement of response R; increases the association of the
presented stimulus features to ﬂf%ﬁ;ﬁg second line (3b) says that reinforcement of
some other competing response lowers the association of feature i to R;. The third line (3c)
says that associations do not change either if the corresponding 'stimulus is not presented on

40
this trial or if thered no training signal or reinforcing feedbackAprovided on a given trial.

Second, if the experiment consists solely of repeated presentations of a single pattern
that is consistently reinforced with the same correct response, then Equation 3a implies the

standard exponential learning curve of Hull’s (1943) theory or that of Estes (1950).

Third, the changes in weights specified by Equations 3a or 3b are the same for all

presented stimulus features, regardless of their current strength.

Fourth, the weight changes are proportional to the discrepancy (delta, difference)
between the current output activations and the desired outputs, the A;s. The result of such
weight changes is to reduce the discrepancy were this same pattern to be immediately

presented again.2
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Fifth, Equation 3 is variously called the delta rule (for reducing differences), the
Widrow-Hoff rule (after its originators in linear systems theory, Widrow and Hoff (1960)),
and the Least-Mean-Squares (LMS) rule. The LMS appellation stems from the fact that
Equation 3 provides an iterative method to calculate the weight coefficients so as to
minimize asymptotically the expected squared errors of actual versus desired outputs when
averaged over the patterns in the training set. The weights are similar to regression
coefficients in a linear regression model that aims to predict several criterion variables (the
A;) from a weighted sum of independent vmiabigs;lﬂ}e )stimulus features,\the a;’s. Like
regression weights, the w;; of Equation 3 will eventually reflect the partial correlations

between input features and the category outcomes, once the coefficients are corrected for

inter-correlations among the input featuresZea ecfrta,

Sixth, as noted by Sutton and Barto (198x), Equation 3 has the same form as the rule
of Pavlovian conditioning proposed by Rescorla and Wagner (1972). The notations in our
Equation 3 differ slightly from those of Rescorla and Wagner (e.g., they used V’s rather
than w’s to denote associative strength), but the sense of the rule is the same. Rescorla and
Wagner proposed the rule as a description of a number of striking phenomena observed in
classical conditioning (see below), and the rule has a remarkably broad range of predictions
that have been confirmed in the conditioning laboratory. The next section reviews several of

these implications.
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Conditioning Evidence for the LMS Learning Rule

The strongest evidence for the LMS learning rule comes from the phenomena of
blocking and overshadowing in studies of classical conditioning. In Kamin’s (1969) initial
study of blocking, rats first associated a neutral tone with a painful footshock, so that the
tone came to produce conditioned suppression of bar pressing for food. The rats then
experienced trials with the stimulus compound, tone-plus-light, paired with thé same shock.
A later test to the single stimuli showed a continued high level of fear evoked by the tone
alone, but virtually no conditioning of fear to the light alone. Apparently, the prior
conditioning of the tone to shock had blocked the learning of light to shock when the tone-
plus-light compound was paired with shock. In contrast, other animals who had only trials
of tone + light paired with shock (without the earlier tone-shock pairings) showed

appreciable fear when tested with the tone alone or the light alone.

Such blocking is predicted by the LMS rule. Notice that during the initial phase of
the experiment the tone alone is fully conditioned to the shock, so that by Equation 3a the
associative weight of tone to shock, wrg moves to near whatever strength, A, is supported by
the shock level. Later when the same shock is paired with the tone-plus-light compound,
with the initial light-shock association starting at zero, Equation 3a tells us that the change
in the light-shock association will be zero. In this manner, the blocking effect is implied by

the LMS rule.

The blocking phenomenon and its causes have been described in several different
ways. All descriptions include the idea that simple contiguous conjunction of a cue and an

unconditional stimulus is not sufficient to produce associative learning. Rather, to become
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effective, a cue must impart nonredundant, predictive information about the upcoming
unconditioned stimulusmbeyond that provided by accompanying cues or contexts.

One interpretation of blocking is attentional, that weak cues receive less attention, hence
receive less conditioning because attention is taken up by co-present strong signals for the
outcome. An al;emaﬁve interpretation refers to a weakened reinforcing power of the US
during blocking, namely, that an expected US does not have the same potency for promoting
new associations as does an unexpected US. For example, Wagner (19@@) uses the
gradual habituation of the unconditioned response of animals to a constant shock in a

constant setting as an indicator of this loss of potency of an expected US.

Overshadowing is a similar phenoménon observed when conditioning trials with a
single stimulus, say a tone, occurs in random alternation with conditioning trials involving a
compound stimulus including the former, say that same tone, plus a light. According to
Equation 3a, the result of the single tone-shock pairings is to drive wyg towards the
asymptote A; consequently, the discrepancy on tone-plus-light trials, which is
A = (wrg + wpg), will be smaller the larger wrg becomes. As a consequence, the change in
the light-shock association, w; ¢, will be much less than it would were only the compound

trials to occur without the single tone-shock ftrials.

Inhibitory conditioning is also implied by the LMS rule. In this case, the organism
learns to expect no unconditional stimulus in a prevailing context where it has often
occurred. To refiect inhibitory conditioning, the weights are allowed to take on negative
values as indicated by Equation 3. Such negative values arise in paradigms known to
produce conditioned inhibitors. The existence of conditioned inhibitors implies that one

should be able to "super condition" a new cue placed into compound with an inhibitor but
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with the compound now paired with the US. If cue B is an inhibitor of shock expectancy,
then the change in conditioning of a novel cue, C, when the compound BC is paired with
the US is expected to be very large. This superiority dubbed "superconditioning," has been

confirmed several times (Rescorla@,@@,).

While the Rescorla-Wagner theory is supported by a more extensive range of
conditioning phenomena, we move on to review of studies relevant to the LMS rule

operating in human earning, since that is the domain classification learning.
Blocking and Overshadowing in Human Learning

Some evidence suggests that adult human subjects show effects similar to blocking
and overshadowing. An early demonstration of blocking was reported by Bower and
Trabasso (1964) studying college-student subjects learning in a concept identification task.
Subjects were presented with geometric figures varying in their color, size, shape, and
embroidery. During an initial learning phase, shape was the relevant dimension with circles
placed in Class A and triangles in Class B, with all other variable dimensions irrelevant.
After initial Ieéming, an overtraining phase of 32 ftrials followed during which color was
made redundant and relevant along with shape, e.g., red circles were As and green triangles
were Bs, and neither red triangles nor green circles were presented. Thereafter, subjects
were assessed for how they would classify various incomplete patterns, such as a red figure
whose shape was not specified or an outlined circle without color. Such tests revealed that
the earlier learning of the shape-to-category associations blocked the later learning of
associations to the color cues that had been made relevant and redundant during

overtraining. That is, having just classified 16 red circles as A’s and 16 green triangles as
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B’s, subjects were unable to guess above chance how to classify red or green figures whose

shape was unknown.

A more recent demonstration of blocking has been reported by Chapman (1991).
College-student subjects were presented with a series of trials in which the stimulus patterns
were framed as patients exhibiting O to 6 medical symptoms. For each patient, subjects
estimated the probability that the patient had a specific fictitious disease, and then were told
whether or not the patient had the disease. Periodically subjects were asked to estimate the
probability that a patient with a specific symptom (with no information about presence or
absence of the others) had the disease. In Phase 1 of the experiment, one symptom was a
perfectly valid predictor of the disease while another was a valid predictor of absence of the

n.n./o(v-ab‘% b]
critical disease. These were called the P (positive) and N (negative) cues,‘\since they were
exptected to acquire positive and negative (inhibitory) associations to the diseasee
respeeﬁ-vel.ﬁ Other cues, L, M, K, etc. were presented but had no correlation with presence
vs. absence of the disease. In the second phase of the experiment, three compounds of two
symptoms were presented, all of which were 5:om;;l::}tejé-};\6 valid predictors of the disease: PA,
NB, and MC. At the end of the secon@%g,\?he single cues P, A, N, B, M, and C wet-é,
eva}uaieg?or their individual validities for predicting the disease. Equation 3 expects that
the strong association established earlier for cue P will block the learning of the cue A-to-
disease association compared to the learning of cue C in the context of the neutral MC
compound. On the other hand, the earlier inhibitory conditioning (or expectation of no-
disease)pf cue N will enhance the learning of the cue B-to-disease association, relative to the
association of cue C -- a f(?rm of "super conditioning." Exactly these results were obtained

by Chapman: subjects ’/\és‘tilrﬁates of the probability of the disease given the single symptoms
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fall in the order B (highest), then C, then A (lowest). The essentials of these results were

replicated in further experiments by Chapman.

Several other human learning experiments also demonstrate overshadowing. An
experiment by Shanks (1991) is illustrative. In one experiment, subjects learned to associate
a compound of medical symptoms, AB, with Disease #1 and another compound, CD, with a
Disease #2. In random alternation with these compound trials, subjects also received trials
with single-symptoms, including symptom B alone predicting absence of all disease, and
symptom D alone also predicting Disease #2. Notice that by Equation 3, these arrangements

- imply that cue A will be more strongly associated with Disease #1 (because cue B has no
such associative strength), whereas cue C will be weakly associated to Disease #2 (because
it is always in compound with cue D which also predicts that disease). On tests with
individual symptoms given at the end of training, Shanks confirmed this prediction: subjects
rated the probability of Disease 1 given cue A nearly twice as high as the probability of

Disease 2 given cue C. Chapman and Robbins (1990) have reported similar findings.

A further implication of Equation 3 is that cugs;égme to be ordered in their
asymptotic strength according to their validity for predicting an outcome relative to that of
other co-occurring cues. Experiment 3 of Shanks (1991) may be used to illustrate this
principle. The experiment, fashioned after an earlier one by Wagner, Logan, Haberlandt, /ﬁl
Price (1968), compared the learning of elementary cues (medical symptoms) that were
presented in one of four compounds. Symptom compounds AB and AC were presented
equally often with the first always paired with Disease #1, and the second always paired
with absence of the disease; compounds DE and DF were both paired equally often with /OU-MM Ve,

obdmre d?
A Disease #2 er-with-absence-ef~disease. After training, subjects rated the degree of
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association of individual symptoms to the various diseases. Interest centers on the
comparison of the associative strengths of cue A versus cue D to their respective diseases.
Note that the validity of cue A for predicting Disease #1 is .50; that is, half the time cue A
is present, Disease #1 occurs. Cue D similarly is partially valid; the probability of Disease
#2 is .50 when cue D is present and is zero othe}rwise. However, the cues differ in that cue
A always appears in the presence oi cuef that agmore predictive of the outcome than is cue
A, whereas cue D only appears with cues E and F that are no more predictive of Disease #2
than is D. In fact, D is advantaged because it occurred twice as often as E or F considered
alone. Equation 3 implies that the strength of the cue A-to-Disease 1 association will be
driven to a lower level than will the strength of the cue D-to-Disease 2 association. Shanks’
findings confirmed this prediction, that ‘cue D was stronger than cue A for their respective
diseases. The important point here is that the conditioning of cue A was weaker than that of
cue D because A always occurred in the presence of cues which were more predictive of the
outcomes than it was. The result illustrates cue competition during learning: when cues

appear together in compounds, more valid cues prevent less valid ones from acquiring much

associative strength.

Cues Compete; Effects Do Not

An important caveat regarding the LMS rule is that the competition is explicitly
restricted to cues that are simultensouly present and involved in predicting some outcome.
This is the natural temporal ordering for cause-effect relations. In contrast, there is no
competition involved if the stimuli are being used to predict several simultaneous outcomes

that are not mutually exclusive. For example, if from a-person’s occupational and economic
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status we learned to predict his<6FRer ing=sitietion that would not block the later
/ —

QLMd

e e

e Nt .
learning to also predict their political afﬁhatlorh Experiments byé

Waldemann and Holyoak (in press) have shown that a few(usually two) multiple outcomes
can be predicted from single causes without competition amongst the outcomes, whereas
multiple predicto%auses") do compete according to the LMS rule for association to a
single effect. The reason for this asymmetry can be seen in the network of Figure 1: the
LMS rule adjusts weights of links coming info a given outcome node; but the model allows

several independent outcomes (e.g,%) a person’s food preferences and political affiliation) to

have their weights adjusted simultaneously without competition.

-

Causality Judgments and the LMS Rule

Recall that the concept of association was used by the philosopher, David Hume
(1964), to explicate people’s beliefs about causality (see Wasserman, 198@). The temporal
conjunction of a cause with its effect was presumed to form a mental association between
their ideas; a stronger sense of causal power was presumably produced by more frequent and
more highly correlated causal conjunctions, which would be reflected in the strength of the

underlying association.

Modern investigators have used several paradigms to study people’s causal
judgments. In one paradigm, subjects observe a lengthy series of antecedent-consequent
pairs of events and then estimate the degree of causal relatedness of the events. An example
is a study by Wasserman (1991) in which subjects tried to judge which foods cause an
allergic reaction in a given patient. Subjects receive as data many observations of days

when the patient ate certain combinations of foods and either did or did not have an allergic
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MWW

reactionﬁéﬁ'mat day. In general, the greater the correlation between presence/absence of a

food eaten and presence/absence of the allergic reaction, the higher were subjects’ judgments

of the degree of causal relatedness of the food and the allergic reaction.

In a second paradigm, subjects make an operant response or not in each time interval
and some outcome occurs or not at the end of the interval; after many trials, subjects judge
the degree to which their response causes (or "controls") some outcome. For example, in a
video \gami battleﬁelcli\, subjects may control the firing of cannon shells from their unreliable

e o
artillery, aiming at an enemy tank crossing a randomly-laid mine field. ¥ tank may or
may not explode, and it may be caused by either the cannon shot or the land mines.

Subjects judge the extent to which their cannon shots are causing the tank to explode.

Several reviews of the causal judgment literature have been written (Alloy &
Tabachnick, 1984; Shanks & Dickinson, 1987; Wasserman, 1990). The major finding of

many of these experiments is best explained using a contingency table (Table 1). In Table

Insert Table 1 about here

1, a, b, ¢, d denote the relative frequencies of the joint events in each cell; these probabilities
sum to one. The consistent finding is that the impression of causal relatedness of event A to
outcome B varies directly (proportionately) with the difference in the conditional

probabilities of outcome B given A versus given not A, which is

=8

a+b c+d
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For example, when outcome B always follows event A but never arises otherwise, then

Ap =1 and the events convey a strong impression that A causes B.

For present purposes, the interesting aspect of this result is that it corresponds exactly
to what the LMS learning rule expects when the four types of trials in Table 1 are mixed
with the indicated probabilities. This relationship was first derived by Chapman and
Robbins (1989). The average change per trial in associative strengths to cues A and X may

be derived for a hypothetical experiment in which the four cue-oufcome possibilities occur

with probabilities a,b,c, and da “TW% G-U‘Q"@'s-’zd “"A’”*Qh = )
Aw, = ﬁ[a+c - (a+b)wy —w, ]
Aw, = ﬁl:a - (a+b)(w, + wx):l .

At asymptote, the average change scores are zero. Solving these two equations, we find the

asymptotic values of associative strengths to be

and



I'd
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Importantly, the implied associative strength of cue A for outcome B is Ap, which was as
noted above. We may presume that empirical judgments of causal relatedness are linearly

related to such associative strengths.

Other writers have noted the relation of the causality judgment literature to attribution

./ theory as used in person perception studies (Alloy & Tabachnick, 1984; Kelley, 1967; Jones

Fanmvy
&

& Davis, 1965). Attribution theory describes how a social perceiver infers causes of a
person’s behavior from an implicit ana_lysis of variance which notes how behaviors vary
across situations and/or persons. Thus,'\Richard drinks excessively in all situations, we
attribute his behavior to an internal factor of alchohol addiction. But if he drinks excessively
only at fraternity parties, we attribute such actions externally to the party situation. Similarly,
when Richard donates blood during the Blood Drive, we attribute the cause more to his
personal beliefs or motivations if only he contributes than if his entire fraternity has a
tradition of frequently contributing. In each case, the social perceiver uses a "discounting”
principle, whereby the inference from the target behavior to an underlying trait (cause) is
blocked if the person’s action can be explained by situational determinants or by baserates

("everyone does it").

Discounting also arises in inferences regarding causes of achievement. A successful
or failed response may have come about due to internal factors such as the actor’s ability

and motivation (or effort), or been caused by external factors such as an easy or difficult
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task and good or bad luck (see, e.g., Weiner, 1986). The more an achievement is attributed

to one factor, the less causal power the other factor is perceived to have.

We mention these phenomena because attributional discounting is a form of
overshadowing: the judged potency of a possible cause for a given outcome is scaled back
due to competition from a stronger causal factor present in the situation. Importantly,
Equation 3 provides a general rule describing the extent of discounting found in attributional

studies of social perception.

Stimulus Representation

The third major assumption in applying any network model concerns how to
represent the stimuli or stimulus patterns of the experiment. In general, network models
assume a collection of sensory units that are turned on by a stimulus pattern, and these send
activation into the associative network. But there are a variety of identifications of what the
"sensory units" or features are. In% models such as TODAM (Murdock, 1982),
CHARM (Metcalf-Eich, 1982), MINERVA (Hintzman, 1986), and similar ones, the

o colornd gy 9V
presentation of, say, 8 familiar word to an adult human would correspond to turning on an
array of features, but these features are left unspecified and totally abstract. For certain
purposes this vagueness suffices (see, e.g., the multicomponent model of Bower, 1967). But
these models then suffer indeterminances when one tries to apply them to experiments

involving novel recombinations, compounds, or concatenations of the experimentally-defined

stimuli,
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An alternative is to identify each single observable feature of an ekpen'mentally-
defined stimulus with a corresponding input unit in the model. For example, in a
classification experiment, presentation of a large red triangle would correspond in the model
to turning on three sensory units representing the features large, red, and triangle. The
complement, a small blue square, would correspond to turning on three different sensory
units representing small, blue, and square. We used these identifications in several earlier
papers, applying the model to our experiments on adults learning of probabilistic
classifications (Gluck & Bower, 1986, 1988a, 1988b). For certain kinds of classifications,
those simple representations work effectively and the model fits such data reasonably well
(see also Estes et al., 199@; MacMillan, 1987; Nosofsky, 199@). Such representations do
best in fitting experiments in which the category to which a stimulus pattern belongs is
determined by the summation of evidence provided by each of the stimulus features
considered singly and independently, and classification does not depend on the particular

configuration of features present.
Standard Prototype Results

It is appropriate to note that even the simple network model can explain most of the
results originally offered in favor of prototype models (e.g., Franks & Bransford, 1971;
Hintzman, 1986; Reed, 1972). In these experiments, a central prototypic member of each
category is arbitrarily defined by a specific configuration of features; other instances of the
category are generated by changing one or more of these characteristic featur@:bjects
usually are trained with several variants of each prototype category, and then are tested for

transfer of the classifications to novel instances at varying "distances” (of mismatching
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features) from the prototype.

To outline the derivation while simplifying, by assuming equal treatment for all
omd alas /o«
prototypic and nonprototypic features, we may then describe any test pattern in terms of the

ﬁ%—j’f:‘ﬂ I Aursg M )
proportion, g, of prototypic featurcs.,\ ach prototypxc feature will converge .dwm-g-&mg
to asymptotic weights towards the target and null categories of w,y and w,,, with

Wpr > Wy, ; similarly, each nonprototypic feature will converge to weights of w,; and wno,
with w,r < wwubno. A test pattern containing a proportion q of prototypic features will

thus give rise to output activations given by

Targe/_é_ategory = Ay = qwy, + (1-g)w,r

and

Nu%.atego’y =4, = qWpo + (1-g)wp, .

The overall acceptability of a given test pattern is related to the ratio ‘A KAqd + Ao ). For the

weight inequalities abog, this ratio increases with g, the proportion of prototypic features in
o ioiliia Yot

the test pattern. -Ehugs; subjects will be more likely to classify a test pattern in the target

category the greater the proportion of features it shares with the central prototype. This

result, dubbed the "distance from prototype" effect, is often observed. An implication is

that, other things being equal, subjects will best classify the prototype itself even if they

have not previously seen exactly that combination of features. Similar to the distance effect

on classification, subjects will rate the "typicality" of particular exemplars of the category

according to the ratio of Ay to 4,.
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Another result of the prototype-learning experiments is that the dégree of transfer of
a classification to new variants of a prototype increases the greater the number and range of |
variants experienced during training (e.g., Homa, Cross, Comell, Goldman, & Schwartz,
1973; Homa & Caultice, 1984). This result is understandable simply in terms of sampling
probabilities: the greater the number and variety of training exemplars of a category, the
more probable it is that a new test variant will be somewhat close (in terms of overlapping
features) to one or more of the training exemplars, and so benefit from such similarity (of

associated, overlapping features) in the classification.

A set of results that were problematic for the prototype theories were those
suggesting that people’s classifying is greatly influenced by the relative frequencies with

which specific instances of a prototype category are presented (Smith & Medin, 1981). D

gproblem can be illustrated by an extreme case: suppose that only two very
different variants of the experimenter’s prototype are presented. It is typically observed that
subjects learn these specific instances and respond to new cases not from some abstract

average but rather according to their similarity to one or another of the training instances. ‘
Uearly Reng l5 b w0 Arodbaddlly Vo 9&7&«—0
The-difficulty-fs-that subjects rmust be exposed to sufficiently many variants before the

Fhy oA pel

Aneﬁen-ef a shared prototype can-be-defined-or-absssaeted-in a sensible manner. On the other

hand, exemplar storage models (such as the context model of Medin!;c Schaeffer, 197x)
track rather well the behavior off’ subjects exposed to varying frequencies of small numbers
of instances. The extended network model discussed below also performs reasonably well in
these circumstances which historically have caused difficulties for prototype-averaging

theories of classification.
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Linear Separability

The tact taken above was to identify each experimental stimulus or cue with a single
input node in the model. However, a fundamental difficulty with such a model is that it can
only learn perfectly those classifications that are "linearly separable” in terms of the single
features. Essentially these are discriminations for which summation of evidence from single
features considered independently provides all the information needed to respond
appropriately to a stimulus pattern comprised of those features. Mathematically, linearly
separable categories are those whose patterns can be perfectly segregated by comparing a

weighted linear combination of each pattern’s features to a threshold.

The concept of linear separability can be illustrated visually for two classes of

patterns formed from two binary valued stimulus dimensions. Figure 2A represents the four

Insert Figure 2 about here

possible patterns by the four corners of a square. Any two category tasks can be deseribed
by coloring the exemplars of one category black, and the exemplars of the other category
white. In this case the black and white patterns are said to be linearly separable if a straight

line can be drawn through the plane which separates the two sets of paterns. Figure 3A

Insert Figure 3 about here

illustrates a linearly separable task (the OR task), while Figure OB illustrates the simplest
non-linearly separable classification (the exclusive-OR). With three stimulus dimensions, the

eight patterns containing three binary valued component cues can be represented as the
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corners on a cube (Figure 2B). Here, linear separability corresponds to the ability to draw a
plane through the cube which separates the black from the white corners. Figures 3C and

3D illustrate this-repre

respectively. .

As noted, the simple network of Figure 1 using single cues as input nodes cannot
learn categories that are not linearly separable in terms of those features. However, the
problem can be solved by a simple reformulation, namely, by expanding the theoretical
feature set to include various conjunctions of the elementary stimulus components, such as
pairs (doublets) and triples (triplets) of presented features. Given the presentation of a
S m§ Pt T
stimulus pattern consisting of elementary features BCD, we assume that this i 3

activation of input nodes corresponding to the single elements B, C, and D, and the pair-

Wmﬁ%’w Wl e i
wise conjuncts BC, BD, and CD. W’ﬁrﬁ?ural cues." By adding cue-

configurations, the expanded model converts a classification which is nonlinear in the

original singleton features into a classification that is linearly separable in terms of the
expanded feature space. A network model containing only single and pairwise configural
cues cannot perfectly learn non-linearly separable classifications that depend on third order
(or higher) cue interactions. However, nth order cue configurations can be added to allow
such models to perfectly discriminate such classification tasks. In practice, we have found
that second order coding of cues is adequate to account for most experimental results in the
experimental literature on category learning. Furthermore, adding third-order cues and
beyond does not significantly change the learning or generalization behavior of the network

for these experimental tasks.
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As an illustration, Figure 4 shows a configural-cue network for classifying geometric

Insert Figure 4 about here

patterns varying in size, color, and shape: presentation of a "small white square” causes
activation of the input nodes blackened in the figure for single and pair-wise cues. We
further assume that these configural-cues obey the same activation and learning rules as do

the single features, viz., Equation 3.

A common alternative approach for solving non-linear classification problems is to
postulate additional, "hidden units" which connect between the input and output units
(Parker, 1986; Rumelhart, Hinton, & Williams, 1986). While these multi-layer networks
have considerable power for learning complex discriminations, they require many
assumptions regarding their structure (e.g., the basic representation of stimuli and responses,
the number and connectivity of hidden units, etc.), their learning rule, and their method for
calculating response probabilities. In our limited explorations with these more complex
models, we have found none that competes with our configural cue model in fitting

experimental data (see, e.g., Gluck, 1991).

Historical Antecedents of the Configural-Cue Model

To include configural cues is hardly a novel move for theories of discrimination
learning. Learning theories have traditionally recognized configural learning, since several
earlier conditioning e;cperiments demonstrated configural discrimination (Pavlov, 1927) For
example, in "negative patterning" (Woodbury, 1943), animals learn to respond to individual

stimuli A and B, but to withhold responding to the compound AB. Since both A and B
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a
evoke positive responsefr something other than the summed associative strengths of the
A

component cues must be responsible for the animal learning to inhibit responding to the
compound AB. To account for these negative patterning results, yet maintain the essential
features of the summation hypothesis, researchers proposed that A and B presented
simultaneously generate an additional "configural cue" representing the compound AB (e.g,

Hull, 1943; Wagner & Rescorla, 1972, p. 306).

Many analyses have attempted to assess the exact nature of this "unique configural
stimulus" and its role in conditioning. Two conceptions of compound AB trials are possible
(Kehoe & @@, 1989): presentation of the compound AB may activate either (1)
representations of the single cues A and B as well as the configural unit denoted <AB>; or
(2) only the representation of the configural unit <AB>. A variety of evidence argues for
the former view, that AB presentation causes the arousal of both the components and the

configural unit,

Eurther characterization of the configural cue is provided by -se experiment by
Whitlow and Wagner (1972). Their sfﬁ‘dies concluded that the configural cue AB is specific
to the combination of its individual elements; from the animal’s perspective, the
configuration is not describable as "two elements,” nor as "more intense," nor as "cue A (or
B) in the presence of another cue." In a series of studies, Rescorla (1972, 1973) found that
configural cues have dynamic associative properties similar to those for single cues.
Configural cues can acquire both excitatory and inhibitory associations, their associative
strengths summate with those of single cues to determine behavior, configural cues can
modify the effectiveness of a given reinforcing event, and their strength can be attenuated by

making them irrelevant to the discrimination being trained (see also Kehoe, 19xx; Pearce,
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19xx). Thus, our introduction of configural cues into the one-layer netwc;(r{c is supported by - M3

a considerable history of evidence in animal learning research and theory.

Furthermore, the ability to form configural units and associate them to behavior may
rely upon specific brain structures in the hippocampus. Sutherland & Rudy (199@; also
Rudy, 19@@; Rudy & Sutherland, 19@@) postulate two parallel learning systems in the
mammalian brain: an "Elemental" system that forms associations between single stimulus
features and behaviors; and a "Configural” system supported by hippocampal brain structures
that brings together several stimulus features into configurations of pairs (or more) and
associates these configural units to behaviors. Whereas these two learning systems usually
operate together, certain pattern discriminations (e.g., exclusive OR) require reliance on one
more than the other system. As d-ueg evidence for their thesis, Sutherland and Rudy
(19@@) found that rats that had bilateral lesions in the hippocampus were able to learn
simple elemental discriminations but were unable to learn negative-patterning discriminations
-- that is, learn to respond to cue A or B alone but to inhibit responding to the compound
AB. Sutherland and Rudy (19xx) also use their hypothesis to explain thg pattern of results
across different/\tasks showing different degrees of sparing versus defieieridearning produced
by hippocampal lesions in animals. Their hypothesis resembles an earlier one by
Wickelgren (19@@) that hippocampal structures are needed to facilitate learning of

"higher-order chunks.@/

Our review of evidence for configural cues was largely confined to studies of
discrimination learning with nonhumans. The remainder of this paper tests our network
model of configural cue learning in the context of adult humans learning to classify patterns.

The stimulus patterns being classified typically involve combinations of three to ten stimulus
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elements. As noted before, a model utilizing the full power set of all possible subsets of
features would rapidly become unwieldy for sﬁéh expeirments. Consequently, we have
arbitrarily limited our configural cue model to use only pair-wise conjunctions of the
elementary features themselves. While one might argue that the configural cues will have
saliences or learning rates that differ from those of the component cues, we will follow
parsimony and assume that saliences and learning rates for single-cue and configural-cue

units are the same,

In the following sections of the paper, the predictions of this configural cue model
will be compared to the data from a variety of representative, critical experiments from the
literature on human classification learning. The fit of the configural cue model to the
observed data will be compared to that of three alternatives, two of which are network
models: (1) our earlier single-cue-only model (Gluck & Bower, 1988a, 1988b), and (2) an
extension of the single-cue model proposed by Estes et al. (1989) which useggnputs Rty the
single cues and the full patterns, so that presentation of stimulus BCD would activate input
nodes B, C, D, and the pattern node BCD. We call this the "feature-pattern" model. The fit
ot:?he network models to data will be compared to that provided byiéf{emplar (or "context™)
model of Medin and Schaffer (1978). It is widely recognized as one of the most successful

Yisfstes, ]

quantitative theories of classification learning (see, e. g.,’\Smith & Medin, 198@), and serves

as a demanding standard to compare against competing models.
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COMPARISON TO MODELS OF CATEGORIZATION

The Exemplar Theory

As noted above, traditional theories of categorization presume that people were either
using general information about the category abstracted from specific instances (e.g., Franks
& Bransford, 196x) or a mixture of category level and specific instance information (e.g.,
Anderson, Kline, & Beasley, 196x). Medin and Schaffer (1978) proposed a radically
different theory -- the "exemplar" or context theory -- in which classification judgments are
presumed to arise exclusively on the basis of stored exemplar information. They assumed
that specific exemplars experienced during training were stored, and that the subject formed
no generalizations or abstractions whatsoever to charactere this array. In their theory, a

Piasag 6 plan Lpausplads oo

probe (test) 1tem would be responded to by its first-serving asweﬁeval—eﬁe-wlnch-acccsses

The more exemplars of a given class called to mind by a

probe, the more likely the subject is to classify the probe into that class.

The context theory predicts that the probability of classifying a test pattern ¢ as a

member of category 4, P(A | ), is given by

Y S(ta)
P(Alt) = acA
Y S(ta)+ Y S(t,b) p,
a€A beA

where S (¢,a) represents the similarity of pattern ¢ to exemplar a, a member of category A,
and A is the set of all exemplars not in category A, The featural similarity between two

exemplars, ¢ and a, is assumed to be the product of the similarities, s; (0<s;<1), in
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comparing the individual feature dimensions, i, of the exemplars, viz.,

S(t.a) =Ts-

i=1

’ wiat, ¥o
For example, if following conditioning to a red triangle a subjeet responds 80% as

much to a green triangle and 60% as much to a red square, the product ru]ellexpect; a
proportional response of 48% (80% x 60%) to a green square. The intuition is that the
extent to which stimulus feature i evokes a given response depends on the joint context
established by the other features which appear together with it -- hence, the name "context
model". This similarity rule permits differential weighting of stimulus features (by the s; ’9 P
and implies that the overall similarity of two exemplars will primarily reflect their

" maximally-dissimilar attribute. With a minimum of processing assumptions, this theory has
accounted quantitatively for data from a wide range of classification studies (Medin, 1982;

Medin, Altom, Edelseon, & Freko, 1982; Medin, Dewey, & Murphy, 1983; Medin &

Schaffer, 1978; Medin & Smith, 1981) P do ke c%m&u,pu:dm? : 77 74 0, Mo
chaffer, ; mith, . A eeml 2y 05 /9%
on #‘. ey R mjxx_) )

The similarity rule. Nosofsky (1984) showed that the similarity rule above is
equivalent to the assumption that the similarity between two exemplars decays exponentially
with their increasing distance in an appropriate psychological space. Considering stimuli
composed of separable dimensions, an appropriate distance metric is the Hamming, or city-

block metric, in which the distance, D (x,y), between multidimensional patterns x and y is
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given by

n
Dx.y)=Y1x; =y,

i=1

where x; and y; denote the component values on each of the r stimulus dimensions. A
function f (x) will map distance into the multiplicative similarity rule of the context model

just in case
n n
SEy)=f(Xlx -y D=1Is.
i=1 i=1

Fhe
Nosofsky (1984) showed that the above relation can only be satisfied if /((o) has an

- exponential form, viz.,

f@)=e, for ¢>0.

Using this identification, the equation for S(x,y) can be written as

n
=Y lxi~y; | :
( E i~ Yi ) n e [xi""yil

Sxy)=e =]I1e ,

=

which defines for each dimension 7 a similarity parameter, 5; = e ¢l

LEULP"W)“MA/%/

Thus, for exemplars composed of separable discrete feature dimensions, the
multiplicative similarity rule is equivalent to an exponential decay relationship between

pattern distance and psychological similarity. This non-linear relationship implies that the
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classification of a test stimulus is determined more by ﬁ;\l-s high similarity to a few exemplars
in a category than by its average similarity to all the exemplars. Much of the success of the
exemplar model in fitting data can be traced to this implication of its non-linear similarity

function (Medin & Smith, 1981).

Surprisingly, the configural-cue model implicitly embodies approximately the same
similarity-distance relationship as does Nosofsky’s formulation. This equivalence can be
seen by noting how the number of overlappingAnodes (similarity) activated by two different
patterns changes as a function of their number of overlapping component cues (Hamming
distance). Much as the traditional "common elements” theory of generalization (Thorndike,
19xx; Estes, 19xx), the configural-cue network will generalize an association from one to
another stimulus pattern in proportion to the number of common input nodes they both
acﬁvazi‘he nonlinear relationship between common single features versus common nodes
in the configural coding can easily be illustrated. For example, if two quartet patterns share
one feature (ABCD,AXYZ), they will have only one active node in common and nine nodes
nonoverlapping; if they share two features (ABCD,ABYZ), they will have three nodes in
common (two component cues and one configural-cue node) and seven nonoverlapping
nodes; if they share three features in common, they will have six active nodes in common
(three component cues and three configural-cue nodes). Note how with 1, 2, and 3 common
cues, the proportion of overlapping nodes in the configural-cue model increases nonlinearly,
as .10, .30, and .60, respectively. A consequence of this nonlinear similarity metric is that
the configural-cue network, like the exemplar model, will judge a 4-element test pattern to
be more similar overall to a category of two exemplars with which it shares 1 and 3 single

features (for an average of 3.5 nodes in common), than to an alternate category of two
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exemplars with which it shares 2 single features each (for an average of 3 nodes in

common).

Figure 5 graphically illustrates an example of this similarity-distance relationship for

Insert Figure 5 about here

stimulus patterns composed of five features. As we add pair-wise (doublet) configural
nodes, and then triplets in this example, the generalization function more closely
approximates an exponential-decay relation. Elsewhere Gluck (1991) has shown that the
stimulus representation in the configural-cue network is isomorphic to a special case of
Shepard’s (1987) theory of stimulus generalization, which derives the exponential-decay
relationship between similarity and distance as an optimal strategy in the face of uncertain

"consequential regions" around a trained stimulus.

YL
The fact that the configural-cue model implies a xear-exponential generalization
ok (Bdush.v Bowtn, 198X), Wty

gradient partly explains /(1 change i our "response rule~~¥s earlier work weth the single-cue
e " wnto !

versior}t, we had converted category activations esponse tendencies by an exponential

O4;

transform, i.e., v; = e '. The configural cue model puts the near-exponential response

tendencies of overlapping patterns into the stimulus coding (allowing a simple ratio response

b frtpondbae

rule) rather than\an arbitrary transformation of activation levels’\(a similar point was made by

Nosafsky, 199x).
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FITTING THE CONFIGURAL CUE MODEL

Here goes new analysis of Gluck & Bower 88 data
The Medin and Schaffer (1978) Results

Medin & Schaffer (1978) presented data from several experiments which consistently
favored the context model in comparison to independent-cue models)which incluc?;qg the
prototype-averaging model. Independent-cue models compute the predictive power, or
association, of each cue dimension separately. The single-cue network model of Gluck and
Bower (1988a) is saaa?af-to independent-cue modely since it independently combines

information about individual cue-outcome associations to determine the network’s response

to a stimulus pattern. The configural cue model differs fronrindepeadente He—THogeEls in that
eues
cue-outcome associations are learned between cue combinations and responses, and so are
not independent of each other. Rather, activation patterns across output responses depend
strongly on a sensitivity to all cues co-present during training. In the following, we will
compare the predictions of the configural-cue model to the data offered in support of the
exemplar model. We will also consider the predictions of the "feature-pattern” network
model of Estes et al. (1989) which extends the single-cue representation by adding additional
nodes representing the presence or absence of entire patterns. While such full-pattern nodes
enable such a model to learn non-linearly separable classifications, this mode'I. nonetheless

embodies the same similarity function as the single-cue model, viz., silnﬂafityﬂequals the

proportion of shared component features.

We turn now to comparing these three models’ abilities to account for the data from

Medin & Schaffer (1978).
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Experinient 1 §f: In Experiment 1 by Medin & Schaffer, subjects learned to classify
six patterns into two equal categories. The training patterns were chosen so that the context
model and independent-cue models would make different predictions concerning each

The
pattern’s relative learning difficulty. Fecht patterr;\consmted of geometnc shapes varymg in

binary valued dimensions such as shape, size, and coIor, e two values of

each attribute dimension as 1 and 0. As Table 2 illustrates, ﬂﬁlﬁa-lﬁe on asy dimension

Insert Table 2 about here

a5 @ labelle Athaf: a value of 1 was more diagnostic of Category A, ?ﬂ‘\the /‘1 cue-value

labelled 0 was more diagnostic of Category B. The diagnosticity of the 1-0 values held
within every dimension. Therefore, models which‘add up the diagnostic evidence from gé;
cuéjindependenﬂy will assign equal weights to the four dimensions. One implication of this
view is that the category prototypes /111 and 0000 in Table 2, should be equally difficult to
leam(?( he context model, however, considers the similarity of exemplars within a category

versus between categories as the major determinant of item difficulty. In these terms, the

Category B prototype, 0000, has one highly similar pattern in its own category (0100) which

psiesr-but another pattern (1011) that is quite dissimilar. In
contrast, the Category A prototype, /111, has two moderately similar patterns (2 of 4
features in common), but also has a highly similar pattern (/011) in the opposing training
category. This balance of within-class versus between-class similarities causes the context
model (with its nonlinear similarity rule) to predict that pattern /717 will be harder to learn

than pattern 0000.
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After training, subjects were presented with a series of transfer test patterns (bottom
rows of Table 2) designed to discriminate between the models. Since during training the
cues within each dimension were equally diagnostic of category membership, independent-
cue models will assign equal associative strengths to the cues of the four dimensions.

s\ Suth vedele Hou, hsutd bt

te; the degree of association of an instance to Category A J§ given simply by its total
number of 1-values and its associative strength towards Category B is given by its number
of O-values. Each transfer pair (row of Table 2) compares a Category A item containing
three 1’s with a Category B item consisting of three 0’s. Thus, independent-cue models

would classify each item of a test pair into its respective category with equal strength,

because these models are only sensitive to the number of 1’s versus 0’s.

The context model, however, makes different predictions. The transfer items b1, b2,
b3 are highly similar to one A and one B pattern, whereas the a1, a2, a3 transfer patterns
are highly similar to two A exemplars and no B exemplars. Thus, the context model
predicts that a1, a2, a3 should be classified more accurately as A’s than their respective

b1, b2, b3 mates are classified as Bs.

Turning to the results, Medin & Schaffer found that the learning and transfer data
from Experiment 1 supported the context model’s predictions. During training, subjects
made more errors on the /711 prototype than on the 0000 prototype, and they gave more
confident A responses to the column A transfer patterns than they gave B responses to the

column B patterns.
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The three network models (single-cue, configural-cue, and feature-pattern models)
araed wi Yidui, v Seboffn’s

were tested in a simulation of the training f Experiment #1. In each case, the networks
were trained through 20 random-order presentations (epochs) of the six training exemplars
since 20 was the maximum number of epochs that actual subjects received. For each model,
the learning rate parameter, f, was selected to minimize the mean squared error between the
predicted and observed cumulative errors reported for each training pattern. Each network
consisted of two output nodes, one representing Category A, the other Category B. An
output (category) node was reinforced with A=1 if a particular pattern was a member of that
category, and with A=0 if the pattern was set a membg%f ﬂkat category. The single-cue
model had eight input nodes, two for each of the feature values on the four dimensions. The
feature-pattern model included six additional input nodes corresponding to the presence of
each complete stimulus pattern. The configural-cue model expanded the single-cue

representation by the addition of 24 nodes corresponding to the pair-wise combinations of

cues that occurred in the six fraining patterns.

The expected probability that a subject would make a particular classificatory
response was calculated by dividing the activation of that category’s output node by the
summed activation of all output nodes. To ensure that this mapping resulted in an expected
probability between O and 1, negative output activations (which were quite small, infrequent
and generally only occurred very early in training) were taken to be 0. * The models’
predictions for the total cumulative errors for each training pattern was computed as the
sum, across all presentation trials, of the probability of a classification error for that pattern.

Trat” Hedoos, ¥
The data kreported for Experiment 1 are neither sufficiently detailed nor reliable to evaluate

the models quantitatively. In place of that, we will evaluate the models by their ability to
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predict qualitative, ordinal features of the data.

To give our conclusion first, these qualitative comparisons showed that the

o A
configural-cue model predicted the data more accurately than either the single-cue feature-

A
pattern models. The predictive advantage was evident for both the learning data and the
transfer test data. Of course, the single-cue model cannot fit the learning data well because
it cannot learn to criterion the nonlinearly separable classification of Table 2. However, the
three models correctly rank-order the difficulty (errors) of the six patterns during training,
with patterns b2 and a2 being hardest to learn, and a1 and b1 being easiest. The rank-
order correlation between the observed and predicted average numbers of errors for the three
models was 1.0, 0.94, and 0.94 for the configural-cue, single-cue, and feature-pattern models,
respectively. The critical comparison concerned the difficulty of learning patterns a 1 and
b1. Here, the configural-cue model correctly predicted that a1 would be harder to learn
than b1 (2.62 versus 1.12 mean predicted cumulative errors), whereas the alternative models
predicted that @ 1 and b1 would be about equally easy to learn (2.96 versus 3.09 predicted

cumulative errors for the single-cue model, and 1.29 versus 1.33 errors for the feature-

pattern model on patterns a 1 and b 1, respectively).

Turning to the pairs of test patterns (see Table 2), Medin & Schaffer reported the
average scaled confidence with which subjects assigned each pattern to category A or B.
Taking the difference in confidence with which test patterns ai and bi are assigned to
categories ‘A and B, respectively, the differences were positive for all pairs. That is, subjects
considered each ai pattern to be a better example of the A category than its bi pattern mate
was of the B category. Importantly, these orderings are exactly as predicted by the

configural-cue network and the context model, whereas the single-cue and feature-pattern
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networks expect no differences whatsoever in these paired comparisons.

In summary, the learning and transfer data of Experiment 1 support the configural-

cue model in preference to independent-cue or prototype models, including the single-cue

W fragpuats
model alone or augmented by node&for storing complete patterns.

A

Experiments 2 and 3 of Medin & Schaffer: As noted, Experiment 1 taught subjects
categories that were not linearly separable. Experiments 2 and 3 in Medin & Schaffer were
designed to quantitatively assess the performances of an independent-cue model and the
context model for a linearly separable classification task. Both experiments had the same
structure: Experiment 2 used geometric forms as stimuli, whereas Experiment 3 employed

schematic Brunswik faces varying in type of eyes, hair, nose, forehead, and so on, Table 3

Insert Table 3 about here

presents the schematic experimental design. As before, cue values are labelled so that value
1 on any dimension appeared more often with Category A whereas value 0 appeared more
often with Category B. The prototypes for categories A and B were 1111 and 0000,
respectively. The categories were linearly separable in that a majority of 1’s on dimensions

1, 3 and 4 indicates Category A; otherwise, the pattern is classified in Category B.

The main difference between the predictions of the independent-cue model and the
context model concerns the relative difficulty of learning patterns a1 and ¢2. Pattern a1
contains more characteristic values (1’s) indicating Category A than does stimulus ¢ 2 and is
also closer to the category prototype 1111 )s,? indepencient—cue models predict that pattern a1

should be easier to learn than pattern 2. The exemplar-context model, however, makes the
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opposite prediction. Pattern a2 is highly similar to two Category A stimuli (a1 and @ 3) and
Sn eonfreal, .
not highly similar to any Category B stimuli. \Pattem a 1 <sesw@wer, is highly similar to only
one Category A stimulus (a2), but is also highly similar to two Category B stimuli (51 and
b2). Thus, according to the context model, the combination of more within-category
similarity with less between-category similarity should make pattern a2 easier to learn than
pattern a 1. Confirming this prediction, subjects in Experiments 2 and 3 committed fewer
errors in learning stimulus a2 than stimulus a1 (Table 3). The context model was also

supported by its ability to predict the proportions of times subjects categorized the test

probes as As and Bs.

We now examine the networks’ ability to fit the data from Experiment 2. All three
network models were trained on the training patterns of Experiment 2 for 16 epochs (the
maximum number of epochs seen by subjects in Experiments #2). Because the structures of
both experiments were identical, the qualitative predictions concerning stimulus similarity

are the same for both experiments.

First, we consider the difficulty subjects experienced in learning the nine different
training patterns. The learning rate parameter, f , was selected for each model to best fit the
transfer test data to be reported below; this same § wa:‘s:ed to simulate performance during
the training phase. Each model predicts the expected cumulative errors during training on
each of the nine patterns in Tablg 3. The rank-order correlation between the predicted and
observed average errors was ‘for the configural-cue model, .82 for the feature-pattern
model, and .80 for the single-cue network model. Thus, the configural-cue model predicts

the relative difficulty of learning the nine patterns nearly perfectly, and better than the two

alternative network models. The context model was not fit to the course of learning by
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Medin & Schaffer, since at that time no realistic gradual lzgnmmms (e.g.,. » )
regarding faulty storage) had yet been offered (but-see Estes, 198@h\

We turn now to the transfer test data. Medin & Schaffer reported the proportion of
category-A choices for the 16 patterns presented during the transfer tests: seven novel
patterns (n 1 to n7 in Table 3) along with the nine training patterns. The fits of the four
models to these data are shown in Table 3. In general, each of the models is capturing the
overall ordering of choice proportions among the 16 patterns, except for pattern a3 which is
overpredicted by all the models for some unknown reason. However, the context model’s
predictions required the estimation of four parameters (the similarities of the two values on
ﬂle four stimulus dimensions). Its predictions correlate .97 (rank-order) with the observed
proportions. On the other hand, the similar correlations for the configural-cue, feature-

pattern, and single-cue network models are .97, .88, and .93, respectively. Thesedatter-three

.mﬁw@&ﬁaﬁm

e configiral-cud model imp rra:--‘."r» :.:_:ii-'.:.. 5

indged-being constrained by one«aﬁoth}m,mﬁcn the way the model envisions.
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Discussion of the Medin & Schaffer Tests

Both the context and the configural-cue models provided good quantitative fits to
results of Medin and Schaffer, whereas the feature-pattern and single-cue models fared less
well. However, the network model offers several advantages over the context theory. First,
the configural-cue network fit both the learning and the transfer data after estimating just one
free parameter, the learning rate B. In contrast, the original context model only fit the
transfer data and for that required the estimation of four similarity parameters. Second,
while the multiplicative similarity rule (or its exponential version) is a bald assumption in
the context theory, it is an emergent property inherent in the stimulus representation of the
configural-cue network. Third, the network model provides a trial-by-trial account of
learning, while the original context model only provides a best-fitting set of similarity
parameters valid at some specific stage of training, e.g., at completion of training. On these
bases, then, the configural-cue model would be favored over the context model. However,
one set of results hardly settles the question of the better-fitting model. We require

comparisons of the models’ fits to other critical results, to which we now proceed.

@ GB: Do you think the F-P Effect goes best here?

THE FEATURE-POSITIVE EFFECT

One elementary observation that seems to favor the configural cue model over the
exemplar model is the Feature-Positive effect (Jenkins and Sainsbury, 1970; Sainsbury,
1971;1973; Newman, Wolf, and Hearst, 1980). The effect arises in a simple discrimination

learning task, comparing the learning of the discrimination AB+ versus A-, to the learning of



Gluck, Bower, Heo: Psych Rev February 12, 1992 MEDINSCHAFFER 45

the complementary discrimination, A+ versus AB-. The former task has the positive
(reinforced) stimulus marked by the presence of a positive sign, cue B; the latter task has the
negativ;w?inforced) stimulus marked by presence of this added sign. The invariable result,
found both with rats, pigeons, and human adults, is that the Feature-Positive task is far

easier to learn than the Feature-Negative task.

This difficulty-ordering is difficult for an exemplar model to explain. In either case
&h i meapetive wvutl respovies
the AB and A patterns are repeatedly storecF’ and the nature of the similarity calculations

should not depend on which stimulus is positive and which is negative. Even should the

exemplar model be augmented with selective attention to the extra feature, there is no reason

N
for that theory to expect a difference depending on whether that feature is positive or

negative.

The Feature-Positive advantage fabs=eut-of the inherent characterization of the two
discrimination tasks by the configural cue network model. The three sensory units are A, B,
and (AB), and we assume that these begin with no associations to the reference response. In
the Feature-Positive task, during the course of AB+ versus A- learning, the associat}?l of the
B and AB units increase to .50 whereas the A uni% association rises some initially then
returns to zero; the eventual result is an activation of 1.0 to the AB+ compound and O to the
single cue A-. In contrast, in the Feature-Negative task, the association of cue A must
increase to a strength of 1.0, while the associations of cues B and (AB) are to decrease to
strengths of -.50. Comparing the two cases in the model, the Feature-Positive discrimination
is learned more readily simply because the amount of change of associative strengths of the
three sensory units (namely 1.0) is less in that case than in the Feature-Negative case (where

changes must add to 2.0). In one simulation of the configural cue model, for example, after
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ten training epochs, the mean squared error was .035 for the Feature-Positive task and nearly
four times as large (.130) for the Feature-Negative task. Moreover, in the Feature-Positive
task, the model shows an initial increase followed by a decrease in responding to A-, an

acquisition pattern invariably observed in such discrimination learning.

We conclude that the configural cue model provides a viable explanation of the
Feature-Positive advantage, an effect which would seem difficult for the exemplar model to

explain.
LINEAR SEPARABILITY AND CLASSIFICATION DIFFICULTY

Historically, the inability of one-layer networks to learn non-linearly-separable
classifications has been a major limitation to their general application. But we may ask
whether linear separabilitsl an important variable controlling human classification learning.
Experiments by Medin and Schwanenflugel (1981) provide relevant comparisons. They
contrasted performance of subjects learning pairs of classification tasks, one which was
linearly separable and another, closely matched for similarity, which was not. The context

gy furn cloawr
model of Medin & Schaffer predicts that exemplar similarity, not linear separabilit%, will be
the major determinant of classification difficulty. Highly similar exemplars within a
category should facilitate classification learning, whereas similar exemplars belonging to
different categories should retard learning. For two of their experiments (#3 and #4),Medin
and Schwaneflugel constructed the exemplars so that exemplar-similarity would favor the
non-linearly separable over the linearly-separable classification. In these cases, then, the

exemplar-context model predicts that the non-linearly separable classification would be easier

to learn. We will begin by examining the three dimensional task used in their Experiment
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#4, since its stimulus design is easier to explain. We will then turn to their Experiment #3
in which subjects learned a four-dimensional problem, for which more detailed data were

reported for us to simulate.

The three-dimensional classifications can be visually represented (see Figure 6) using

Insert Figure 6 about here

the eight corners of a cube. Figures 6A and 6B are the three-dimensional linearly-separable
(LS) and nonlinearly-separable (NLS), respectively, classifications studied in Experiment #4.
This graphical representation makes apparent the linear separability of the LS classification;
one can visualize a plane slicing the cube, separating Category A exemplars (black corners)
from Category B exemplars (white corners) in Figure 6A. No such plane exists for the NLS

classification in Figure 6B.

As mentioned, the similarity rule of the context model predicts that this particular LS
task will be more difficult to learn than the NLS task. To understand this prediction,
compare the within-category exemplar distances to the between-category exemplar distances
for the two classifications. To calculate the average between-category distance for each task,
we sum the Hamming (city block) distances from each black to each white dot in Figure 6,
and take the average distance. The Hamming distance between two exemplars is the
minimal number of edges traversed in moving from one stimulus corner of the cube to
another. For the LS task in Figure 6A, six-ninths of the between-category distances are one
edge apart and three-ninths of -ehe;ﬁi-ﬁs&'fntaaees are three edges apart, yielding an average
between-category distance of 5/3. For the NLS task in Figure 6B, four-ninths of the betuees . u&;ﬂ"? |

instances are one edge apart, four-ninths are two edges apart, and one-ninth are three edges
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apart, for an average between-category distance of 5/3. Calculation of the average within-

category distances proceeds similarly, yielding the value of 2 for both classifications. Thus,
R Mg

the LS and NLS stimuli have-been cleverly constructed so that both tasks have identical

average within-category distances (of 2), and identical between-category distances (5/3).

What differs between tﬁeAt:sks is the distribution of between- and within-category
distances. The histogram in Figure 6A shows that the linearly separable task is composed of
relatively more "close” (Distance=1) and fewer "far" (Distance=3) relations, whereas the
non-linearly-separable task (Figur%B) has a more even distribution of "close", "medium",
and "far" between-category distances. These unequal intra-item distance distributions have
important implications when there is a non-linear mapping from Hamming distance to
similarity. Both the configural-cue model and the context model exaggerate the
psychological similarity of close exemplars. The greater proportion of these close between-
category distances in the LS (compared to the NLS) classification should increase the
confusion between the two categories; thus, both models predict that the LS classification in
this comparison (Table 6) should be more difficult to learn. A similar analysis of within-

category distances indicates the presence of fewer close distances in the LS task compared to

the NLS task; this also suggests that the LS task should be more difficult.’

Although we have used the three-dimensional task to illustrate the nature of the LS
and NLS tasks and the rationale underlying their design, Medin and Schwanenflugel actually
reported in most detail the results of a four-dimensional task (their Experiment #3) which we

will compare to the predictions of the alternative models. Table 4 schematizes the two
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Insert Table 4 about here

groups of six stimulus patterns that their college students learned to classify into two
categories. The stimuli were photographs of human faces which varied along four binary
dimensions: hair color, shirt color, smile type, and hair length. Eighteen different
photographs were used to exemplify each of the six stimulus types, so over 108 trials
subjects never saw the same face twice. The LS classification at the top of Table 4 is
linearly separable whereas the NLS classification at the bottom is not. To recognize the
linear separability of the LS classification, note that the number of 1’s in dimensions 1,3,
and 4 equal two for any category A stimulus, but is less than two for any category B
stimulus. No such linear combination of feature values will perfectly separate the two

classes of patterns in the lower, NLS classification.

While a geometric representation of these four-dimensional classifications is not
feasible, the distribution of intra-exemplar distances can be analyzed as before (see Figure

7). Again the LS and NLS classifications were cleverly designed to have identical between-

Insert Figure 7 about here

category average Hamming distances (20/9) and identical within-category average distances
(8/3); but the distribution of these distances varies between the two tasks. Compared to the
NLS task, the LS task had more close (distance=1) between-category relations and more

close (distance=2) within-category relations.

oS
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Figure 8A shows the main result from Experiment #3, namely, the error (learning)

Insert Figure 8 about here

curve throughout training. As is obvious, subjects found this LS classification to be harder
to learn than its matched NLS classification. This reversal of what most other models
expect is strong testament to the predictive power of exemplar models which have an
exponential generalization function. Note that an exemplar model with a proportional

Ahigar
(linear) similarity rule would not predict tlis results.

Comparing Alternative Network Models

To investigate whether the configural-cue model could also fit these results, we
trained that model on the stimulus structure shown in Figure 2 (see also Gluck, 1991).
Figure 4B shows the configural-cue model’s predictions for this experiment. As did the
context-model, the configural-cue model correctly predicts that subjects will find this LS task

more difficult than this NLS task.

We also simulated the experiment with three alternative network models: the single-
cue mode, the "feature-pattern” model, and several multi-layer "back-propagation” network
models (Rumelhart, Hinton, & Williams, 1986) which are capable of learning nonlinearly-

separable classifications.

Applying these models to the stimulus design of Table 4, we find that, as expected,
the single-cue network learns the linearly separable task but never fully learns the non-
linearly separable task; thus, it expects the NLS task to be more difficult. Similarly, the

feature-pattern model also incorrectly predicts that subjects should find the linearly separable
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task easier to learn.

To evaluate multi-layer networks, we adopted the same stimulus representation on the
input and output nodes as the single-cue model. Our multilayer networks had one additional
layer of "hidden” units, fully connected to nodes in both the input and output layers. To
train the network we applied the "backpropagation” rule, a generalized version of the LMS
learning algorithm (Parker, 1986; Rumelhart, Hinton, & Williams, 1986; Werbos, 1984).
Regardless of the number of hidden units employed (2, 8, or 16), this multi-layer
backpropagation network incorrectly predicted that subjects should find the linearly separable
task easier to learn. Figure 8C shows illustrative learning curves produced by a two-layer

network with two hidden units.

The above theoretical comparisons help us judge the diagnostic value of the Medin
and Schwanenflugel results. Their counterintuitive result, that a nonlinearly-separable
classification can be arranged to be learned more easily than a linearly-separable one,
challenges the single-cue, prototype, and feature-pattern models since no parameter values
will suffice to make those models fit }ﬂd such an outcome. The situation for multi-layer
network models is less certain; while our straight-forward architectures failed to predict the
data, the class of multilayer models is so huge and unconstrained that we ca1m§t claim to
have searched the entire class for a successful contender. Our search to date has been
unsuccessful. In contrast to these failures, the configural-cue network and the context model
both predict the qualitative ordering of the LS and NLS curves in Medin and
Schwanenflugel’s results regardless of parameter values. Such parameter-free predictions

provide strong support for the configural-cue and context models against other contenders.
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@@ WE HAVE A REPLICATION OF THE LS/NLS TASK WITH EVEN
STRONGER EFFECT (maybe generalization data, too).
POSSIBLE ALSO TO FIT LEARNING CURVE. SHOULD

WE INCLUDE? OR SAVE FOR LATER? -mg

EXEMPLAR SIMILARITY AND RULE ABSTRACTION

Gy Faddeon , may 4o deotmgisted
Wehave-noted-three broad classes of models for learning cIassiﬁcation/sf First are the

prototype abstraction models (Franks & Bransford, 1974; Posner & Keale, 1968) which infer
an average or modal description of exemplars of a class by recording features independently.
Second are exemplar-storage models (Medin & Schaffer, 1978) which perform no
abstraction but which classify a transfer stimulus according to its relative similarity to full
exemplars of each class stored in memory. Third are power-set frequency models (Hayes-
Roth & Hayes-Roth, 1977; Reitman & Bower, 1973) which accumulate category diagnostic
frequencies for all possible combinations of features (singlets, doublets, triplets, etc.) as these
appear in the training patterns, and which classify a test pattern according to the diagnostic
weights of the several feature-combinations it contains. Each of these general models have
several variants. Our configural-cue model is a variant of a power-set frequency model in
which we have restricted the diagnostic strengths to be accumulated only for single features
and pairs of features and have used the LMS learning rule. The ACT model of Anderson,
Kline, and Beasley (1979) is another example of a power-set model, but one in which any
and all conjunctive generalizations describing a subset of exemplars may be learned and then

strengthened depending on their diagnostic success.
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While the accumulated evidence allows the rejection of the prototype abstraction
model in critical experiments, the exemplar-storage and power-set models have been closely
parallel in their account of most results. An important set of experiments by Elio and
Anderson (1981) attempted to differentiate between the latter two classes of models,
specifically between the Medin and Schaffer exemplar model and the ACT model. Elio and
Anderson’s experiments manipulated the likelihood that subjects could form category
abstractions or rules; they achieved this end while holding constant (bet“;een different

groups) the similarity of transfer items to the set of training patterns.

The method Elio and Anderson used to arrange these conditions was simple and
o psevhy—
elegant. An experimental group of subjects learned 2 set of five-featured stimuli which
pemie? ot wd
included in the same category the two patterns denoted AABFGH and ABUJK; in this case, an
AB--- rule is possible. They were then tested on a pattern such as ABCDE. Note that this
test pattern overlaps in two features with the two training exemplars and with the more
o cabigury el

general, AB--- rule. For comparison, a control group learned stamudi includiag: the patterns
ABFGH and IJKDE, before receiving the ABCDE test pattern. For these two patterns, no
rule abstraction is possible; still, each of these training patterns shares in exactly two items
with the test pattern ABCDE, the same degree of overlap as for the experimental subjects. In
terms of the number of shared elements, then, the experimental and control conditions are
equated. Consequently, a simple exemplar-storage model would expect no difference in
response of the two groups to the transfer stimulus. On the other hand, the ACT model

expects the experimental subjects to learn the more general AB--- rule and use it to classify

the transfer pattern more accurately than will the control subjects.
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The data provided slightly more support for the ACT model than for the exemplar
model. Although the data were qualitatively in accord with the ACT model, certain
quantitative aspects of the data were not well explained (see Anderson, 1990, p. 113).
Because of the critical role these experiments have played in the theoretical controversies
regarding classfication models, we wished to compare the fit of the configural cue model
against that of the ACT model to these results. We now turn to describing the details of the

experiments to be simulated.

In their Experiment #1, Elio and Anderson’s subjects studied five-feature descriptions

/A M
Of’l fictitious people who belonged to one o two’\clubs. Fhetraining-set-consisted of-16

to-another-elub.. The five attributes along which the people varied were their religious
affiliation, hobby, job, education level, and marital staﬂt.‘us. Each attribute could take on one
of four different values. A sample training item wess, "One member of the Dolphin Club is
a Baptist, plays golf, works for the government, is college educated, and is single." s
Dofam, we will use five-digit vectors, composed of the numbers 1 through 4, to represent the
four possible feature values, one for each of the five attribute dimensions. In the fule
condition, @give #@ pairs of exemplars in a category had the same value (overlapped) on
two of the five, allowing subjects to form two-element generalizations; other exemplar pairs

overlapped on three of the attributes, permitting three-element rules. The exemplars learned

by subjects in the /_z_‘ontrol condition did not contain such generalizations.

Training was carried out to a criterion of one perfect cycle through the 16 training
patterns. Following training, subjects in both conditions classified two sets of 16 transfer

patterns, a three-overlap and a ton:overlap set. In both the rule and control conditions,

—
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each pattern in the two-overlap or three-overlap transfer set overlapped with two of the
original training exemplars on two or three of the five dimensions. In the éule condition the
two- and three-overlap transfer stimuli overlapped with training exemplars on the shared
critical two or three dimensions of the potential rule. For example, subjects in the le
condition might study 11213 and 1131 2)and then be tested with the three-overlap transfer
item 11111, whose values overlap with those for the first, second, and fourth dimensions of
both patterns. In the :c_:_ontrol condition the three-overlap transfer stimuli also overlapped on

two or three dimensions with two training patterns. However, this overlap was not consistent

with any potential rule.

Classification accuracy of the transfer patterns was compared for the four possible
conditions in a 2x2 design: rule training set and three-overlap transfer test (denoted "r3");
rule training set and two-overlap transfer test (denoted "r'2"); control training and three-
overlap transfer (denoted "c3"); control training and two-overlap transfer (denoted "c2").
The experiment thus compares the influence on transfer responding of general rules versus
exemplar similarity. For example, if people considerﬂsiﬁarity alone when they make
category judgements, their classification response should be more accurate on the three-
overlap than the two-overlap transfer items but not differ between the _g_ontrol and rule
conditions (i.e. 13,c3 > 12,c2). If subjects make use of rules alone, however, then accuracy
should be better in the éule condition than the _control condition, but should not differ

—

between three-overlap and two-overlap transfer items (i.e. 13,12 > ¢3,c2).

The mean accuracy ratings observed by Elio and Anderson for the four conditions

(see Table 5) shows that within each rule or control condition, people classified the three-

—
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Insert Table 5 about here

overlap transfer items more accurately than the two-overlap items. This presumably reflects
the influence of exemplar similarity on fransfer performance. Furthermore, with overlap held
constant, subjects performed more accurately on transfer items when they coincided with
potential rules; we express this relationship as r3 > ¢3 and r2 > ¢2. The magnitude of these

and

two main effects -- rules 'i;;.,similarity -- are roughly equal in these average data.

Turning to the simulation models, we note that the rules defining club membership
make the clubs linearly separable. We might therefore expect ﬂléﬁ?lg single-cue network
model y(ould predict these two main findings. For example, a pair of exemplars that overlap
in the rule training set should cause the weights on the shared features to acquire a relatively
large associative strength to the category at the expense of the other dimensions. In the
ggntrol condition, however, exemplars do not share features often, so only small weights
would accrue to these features. Thus, we might expect the network’s response to a test
pattern to be stronger in the _r:ule condition, because the network’s output activation would
reflect the sum of several larger weights. Similarly, classification should be stronger with

the three-overlap than the two-overlap transfer items, because the output sum for the three-

overlap stimuli would simply include a greater proportion of the larger weights.

To check these intuitions we trained the single-cue network using the procedure from
Elio and Anderson’s Experiment #1. The network consisted of one input node for the four
possible cue values on each of the five stimulus dimensions (20 total), and two output nodes
representing each of the two categories. The number of training epochs was set equal to the

average number of epochs required by Elio and Anderson’s subjects to reach learning
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criterion (viz., 13 for rule and 16 for control subjects). We estimated the learning rate (at
Beq .008) so as to minimize the sum squared error between the network’s predicted choice
accuracies and those observed for the 16 transfer patterns (Elio & Anderson, Table Al, p.

416).

As shown in Table 5, the single-cue network model correctly forecasts that the
three-overlap transfer items would be easier to classify than the two-overlap patterns for both
the Lule and the Egnlrol conditions (i.e., 13 > 12 and ¢3 > ¢2). However, this model
erroneously predicts that subjects should about equally accurate in the control condition
compared to the _iule condition (c3 = r3; ¢2 = r2). Thus, contrary to intuitions)the single-cue

network does not correctly predict that the existence of potential rules increases subjects’

accuracy in this task. Later we will examine what factors underlie these failed intuitions.

The configural-cue network, however, provides more accurate predictions. Adding
input nodes representing pair-wise cue combinations and estimating a new B (at .00@), the
configural-cue model correctly predicts the two main results (Table 5). That is, the
configural-cue model correctly expects that potential rules as well as exemplar similarities

would both improve classification accuracy.

We will briefly note that the feature-pattern model (of Estes et al., 1989) fares poorly
with these data because its predictions were identical to those of the single-cue network and
suffered from the same shortcomings. The erroneous predictions of the component-cue
model are unaffected by the addition of whole-pattern nodes for two reasons: first, the
weights corresponding to each single pattern node are overwhelmed by the weights

associated with the 20 single-cue input nodes; second, the addition of pattern information
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provides no information whatsoever about the existence of either potential rules or pattern

similarities.

To understand the failure of the single-cue network model to capitalize on the
potential rules, a closer examination of the category structure is required. Although the
transfer patterns overlapped intentionally with specific training pairs designed to form three-
overlap and two-overlap rules, a number of unintended overlaps of the test stimuli with other
training exemplars also arose. These unintended overlaps appear to have caused the
mispredictions of the single-cue network. The configural-cue model is less sensitive to these
spurious overlaps because the addition of doublet nodes increases the network’s relative

sensitivity to multiple overlaps.

Elio and Anderson noted these unintentional overlaps between training and transfer
test patterns. To assess their impact, they computed a mean similarity score for each of their
transfer items using a multiplicative rule similar to that employed by Medin and Schaffer
(1978). The average of the similarities for the patterns in each condition are shown in Table
5 (last column). The ordering of these similarity scores parallels the two main results of
Experiment #1. That is, the similarity ratings for both the three-overlap and two-overlap
rule conditions are higher than for the three-overlap and two-overlap control conditions (i.e.,
13 similarity > ¢3 similarity, and 12 similarity > ¢2 similarity). Thus, the Medin and
Schaffer (1978) context model may be expected to predict these data nearly as well as the

configural-cue network model, viz., r3 > ¢3 and 12 > c2 (see also Nosofsky, 19@@).

Experiment #3 of Elio and Anderson: Elio and Anderson’s Experiment #3 was

designed to overcome some limitations in the design of their first experiment. The new
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study had essentially the same design as before except that to reduce unintended overlaps
each training set consisted of exemplars with five possible cue values on each of the five
dimensions. Both training sets had separate transfer tests so that the mean similarity
between training and transfer patterns could be made as equivalent as possible across both
the ;_ule and gontrol conditions. Only two conditions were studied, a tule training set paired
with rule transfer test items, and a control training set with associated control transfer test
patterns (stimulus overlap was not varied). The results showed that subjects’ transfer

performance was more accurate following study of exemplars for which rules were available

compared to the control study set.

We trained the single-cue, feature-pattern, and configural-cue network models in a
simulation of their Experiment #3. The input nodes were those corresponding to the
possible combinations of five cue values on five stimulus dimensions relevant to each model.

The control and rule conditions were both trained for 11 epochs, approximately the number

required by subjects to reach criterion. As-befor, the learning rate, B, was chosen to
minimize the sum of squared errors between the predicted and observed transfer test
accuracies (Elio & Anderson, Table A3, p. 417). With this procedure, we found that all three
network models HBJ correctly predicted the main advantage of having rules available. For
the configural-cue model, the predicted mean accuracy in the rule condition is 0.79
(compared to an observed value of .79); the predicted mean accuracy in the control
condition is 0.70 (compared to an observed value of .72). Both the single and feature-
pattern models predict mean accuracies of .78 in the rule condition and .69 in the control

condition.
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The fit of the network models to the Elio and Anderson results is encouraging
because they are often cited as demonstrating the role played by rule abstraction in category
learning. But note that the rules in these cases are expressible simply as the sharing of
feature-conjunctions across several training exemplars. The sharing of feature conjunctions
implies that the associative strength of the connection between that conjunction-node and the
category will often b{Wﬂms enabling it to overshadow and compete successfully

with single-cues or other feature combinations.

The ACT model of Anderson et al. (1979) differs from the configural-cue model in

several aspects. As applied to an experiment similar to those of Elio and Anderson, the
roden Bosed on ey A
ACT model could leam-ﬂareezelﬁmeﬁbﬁabs-, of the form (ABC--)—Club 1 as well as the

'more general rules (AB---)—1, (A-C--)—1, and (-BC--)—1. In contrast, when restricted to
only pairwise conjuncts, the configural-cue model represents a three-element generalization
'simply in terms of large weights on the three conjunctive nodes for AB, AC, and BC. In

fitting the Elio and Anderson results, this restriction seems to have been immaterial.

The major differenceAis that the ACT model siews=for any Boolean or predicate-

calculus function of the stimulus features to serve as the left-hand side of a rule. 'For

example, a possible ACT rule (see Anderson et al., 1979) might be "If a person is a Catholic
and a tennis-player but is not a day laborer or divorced, then he is probably a Club 1
member."f A Boolean expression is one formed by conjunctions, disjunctions, and negations
of any length of elementary featurc:,ﬂ However, when ene-has 4 small set of dimensional
values, then negations -are equivalent to a disjunction of alternative features (e.g., not brown

eyes implies they are either blue or hazel). Moreover, a rule involving the disjunction of

features is equivalent to a simple listing of element-to-category associations. The result of
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these considerations is the view that any rule expressible as a Boolean function of
elementary stimulus features can be captured and expressed as well by a disjunctive listing
of associations of configural (conjunctive) cues in our model. In fact, a theorem in Boolean
algebra (see Suppes, 19@@) attests that any Boolean function can be expressed as the

disjunction of a collection of conjuncts.

The ACT model has potentially more expressive power than the configural-cue
network simply because it can accomodate any predicate calculus (or propositional)
expression on the lefthand side of a rule. Thus, for example, in a rule for classifying a
printed letter as a capital letter E, the lefthand side might be "If the left ends of three
parallel, horizontal lines touch a vertical line with no figures closing them on the right edge,
then the figure is an E." Note that several predicates here are relational (left end, parallel,
touch) and reflect a rich perceptual base. It is this relational perceptual base that gives such
rules far more descriptive power than models (such as the configural-cue network) based
only on Boolean functions of presence/absence of featural elements. In defense of the
configural-cue model, however, we would point out that the overwhelming majority of
studies of the learning of artificial categories have been carried out within the latter,
restricted domain. So we will continue to test the configural-cue model as appropriate for

that well-researched domain of classification problems.

QEEREEEE@E@@

@NOTES:
SHOULD WE DELETE EXPERIMENT #3 SINCE IT DOESN’T DISTINGUISH

AMONG THE
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NETWORK MODELS?72?
THE ANDERSON CHAPTER ALSO ONLY ANALYZES EXPERIMENT #1

(BUT DOES NOT TOUCH

ON THE SPURIOUS OVERLAP/SIMILARITY PROBLEM WHICH I THINK

IS IMPORTANT)

NOSOFSKY DOES NOT ANALYZE THIS STUDY (TO THE BEST OF MY

S % KNOWLEDGE)

HINTZMAN (19Q0@)

PICKS RANDOMLY GENERATED EXEMPLARS TO TRAIN HIS MODEL AND
ONLY PREDICTS THE BASIC TRENDS (GENERALIZE CONDITION

MORE ACCURATE THAN

CONTROL CONDITION) DESCRIBED IN THE PAPER

RECOGNITION MEMORY AND CLASSIFICATION

In testing models of category learning, we may examine how the classification of a
given test pattern depends on the subjects) femem;ﬁpeciﬁc exemplars that were shown
during training. Such "recognition memory" can be tested by asking subjects to judge
whether a test pattern is an "old" training instance, or a "new" instance not experienced
during training. Prototype theories, which assume that people extract only a mean centroid
from the training exemplars, expect a strong correlation between classification and "old"

judgments for test exemplars, since both decisions presumably could only be based on the

distance of the exemplar from the prototype.

62
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An experiment by Hayes-Roth and Hayes-Roth (1977) examined this issue: Over a
variety of test patterns, they found a surprisingly low correlation between subjects’
classifications and their Old (vs. New) judgments. It was of interest to see whether the
configural-cue model could duplicate this surprising lack of correlation between classification
and recognition memory. The training patterns used by Hayes-Roth and Hayes-Roth were
descriptions of people who varied along three dimensions: age, marital status, and education
level. Each of the three dimﬁs had four possible feature values. Assigning the numbers
1 through 4 to these values(-atq\am for each subjccb,) a training pattern may be represented
by a three digit number. Thus, for a given subject *123’ might refer fo a stimulus pattern
("person description™) who is "'30 years old, married, with a college education.h’ Subjects
were trained to classify such individuals as belonging to either Club 1, Club 2, or to neither
Club. The assignment of individuals to clubs was determined by the following rules: a
majority of 1’s with no 4’s (e.g., 112,131) signified membership in Club 1, whereas a
majority of 2’s with no 4’s (e.g., 212, 221) indicated Club 2. An equal number of 1’s and

$0% o Tl Fentr AL\ 4o funs
2’s with no 4’s indicated me;nlzeils“hii in either clul}(if any 43 Avere present, the person

belonged to neither club. The 3{‘\& were irrelevant features. Specific patterns were presented

with widely varying frequencies. The most prototypical category members (e.g., 111, 222,
333, 444) were never presented during training, but were tested for subsequent recognition
and classification. Training consisted of a single pass through a collection of @ patterns
exemplifying these rules (see Hayes-Roth & Hayes-Roth, 1977, Table @, p. @, also

Nosofsky, 1988, Table @., p. @).

Following training, Hayes-Roth and Hayes-Roth tested subjects’ ability to recognize

test patterns as being New or Old as well as to classify these same patterns as describing a
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Club 1 or a Club 2 member. Their principal finding was that the accuracy of classifying a
test item correlated only poorly (@r=@@) with its recognition. For instance, the non-
presented category prototypes, /11 and 222, were given the highest classification ratings;
yet, these prototypes were rarely recognized as "old" training instances. Also, specific
exemplars which were presented many times during the training session (e.g., 112, 121)

received the highest recognition ratings, but weaker classification ratings.

Implications for Exemplar Storage Models

The low correlation between recognition memory and categorization was earlier
thought to embarrass exemplar sterage models (e.g., Anderson, Kline, & Beasley, 1979).
The reasoning was that since classification in s#ek models is based on memory for stored
instances, whether an instance is classified accurately would seem intuitively to depend on
whether it was remembered. However, Nosofsky (1988) showed that the exemplar-storage
context model could account for the Hayes-Roth and Hayes-Roth data if recognition memory

was assumed to be based on the summed similarity of a test pattern to all stored exemplars.

This recognition rule was used previously in the SAM model of Gillund and Shiffrin (1984).
roetpomcn, nde. sllowed Ty vplion
Nosofsky’s d1 modz_%bgrrectly predictgd both the highly accurate classification of

category prototypes, /11 and 222, as well as the h!? recognition of frequently-presented

exemplars (see Table 6).

Insert Table 6 about here




Gluck, Bower, Hee: Psych Rev February 12, 1992 BAYESROTH 65

We were interested to see whether the configural-cue network could also account for
these data. The model was put through the training procedure of the Hayes-Roth and
Hayes-Roth experiment. Patterns were presented in a random order to the network for one
complete pass through each of the exemplars, with their appropriate frequencies. The
network had four input nodes (cue values) for each of the three dimensions (12 total) plus
48 configural-cue nodes corresponding to the observed pair-wise combinations of the feature
values. These input nodes were connected to three output nodes, representing the Club 1, 2,
and Neither classifications. Reinforcement of the Club 1, Club 2, and Neither classifications
occured by reinforcing the appropriate output node with A;eq 1 and the other two with
A;eq0. Exemplars in "either" the Club 1 or Club 2 categories were reinforced with either
Club 1 or Club 2 membership with a 50% probability, corresponding to the Hayes-Roth and

Hayes-Roth procedure.

The model’s probability of assigning a test pattern to one of the two clubs was
calculated from with the ratio of its activation to that of the other club node (the Neither
node was not included because subjects were not given this option during testing). On the

e \'\M}M'S
other hand, %e; recognition-memory rating for a test pattern was predicted from the summed
callgory-
activation of all three output nodes (including the Neither rgde) to that pattern. This
response rule is similar to Nosofsky’s (1988) method for predicting recognition ratings with

the context model.

During testing, subjects in the Hayes-Roth and Hayes-Roth experiment were required
to classify each pattern as belonging to Club 1 or 2_)and to rate on a 5 point scale their
confidence in the accuracy of their classification. Unfolding this into a 10-point scale (with

Club 1 negative) and normalizing the scores across all test patterns yielded the z-scores
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reported by Hayes-Roth and Hayes-Roth (see righthand columns of Table 6). The

o . actie) |
recognition scores were similarly computed: each test pattern was recogmemed as Old or New
with confidence rated on a 4-point scale. Unfolded "Oldness" z-scores across test items

reported by Hayes-Roth and Hayes-Roth are also given in Table 6. Figure 9 compares the

Insert Figure 9 about here

three models’ predictions of recognition and classification ratings to test patterns with the
observed ratings (transformed z-scores) given by subjects. Model predictions in Figure 9 are
based on an average of multiple simulated training sequences, each with a different random
sequential order of the training patterns. The simulations were done with the learning rate
parameter, f, arbitrarily chosen to be 0.01; however, variations in this learning rate had a

negligible effect on the rank-order of the predictions.

While the single-cue model correctly predicted subject’s classificatory responses with
a rank order coefficient of 0.89, it predicted recognition memory with considerably less
success (rank order coefficient of 0.82). In contrast, the configural-cue network model was
more successful overall. Predictions of classificatory responses agreed with the data with a
rank order correlation x 0.90; importantly, the accuracy of,\recogniﬁon predictions
significantly improves over that of the single-cue model (rank order correlation = 0.94).
These fits may be compared with those of Nosofsky (1988) who reported that the context
model predicted the classification data with a Spearman rank-order correlation of .95 and
predicted the recognition data with a correlation of .94 (see Table 6). 6 Nosofsky’s model,
however, requires at least one free parameter whereas the configural-cue network’s

predictions are largely parameter free (variations in P having a negligible effect over a wide
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range of values).

We also compared the predictions of the configural-cue model to the predictionsAthe
feature-pattern model. The feature-pattern model’s predictions for both sets of data were

very similar to those for the configural cue model, and yielded no discriminating

comparisons.

While the several models reveal some shortcoming in fitting these data, we will not
analyze them further since there is reason to doubt the reliability of some aspects.
Particularly troubling in the data of Table 6 are the classificatory z-scores which seem to
cluster into three regions,' those for Club 1 patterns (below -2.2), for Club 2 patterns (around
2.0), and for ambiguous patterns (around 0). The tight clustering of scores around these
means suggest that subjects were not using the full 10-point classificatory scale

discriminatively, but essentially were collapsing it into three points, reflecting judgments of

Club 1, Club 2, or "Can’tm that when response probabilites near .98 or (.02)

are transformed to normal deviates (z scores), variations in response probability that are

g Yt

customarily considered trivial (say, from .98 to .99) produce large-appearing differences in

%MW%’MM Z/Jca-au:;)w,_/e vy

normal-deviate scores. Many of the differences in classificatory z-scores among the patterns
within the three clusters in Table 6 seem to be of this inconsequential variety. Therefore, we

will not attempt to fit the models to any further break-downs of these data.

While the data are not all that we might hope for, the main conclusion of our
theoretical exercise nonetheless remains. The configural-cue network model with no free
parameters does a creditable job of fitting the Hayes-Roth and Hayes-Roth data on

classification and recognition memory; importantly, it implies the surprisingly low
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correlation of these two measures.

BASIC LEVELS IN HIERARCHICAL CLASSIFICATION LEARNING

Basic Levels in Category Hierarchies

Among natural categories that stand in hierarchical relations to one another, Rosch
and colleagues (Rosch, X & Y, 1976; Rosch & Mervis, 1978) found that categories at an
intermediate level of abstraction are usually psychologically preferred or primary. They
referred to this preferred level as the "basic level." Examples would be the term bird in the
hierarchy animal, bird, robin or the term apple in the hierarchy fruit, apple, mackintosh
~ apple. For natural categories, several behavioral indicators are correlated with the basic
level. The.basic level term is usually learned earlier by children, used more often in
spontaneous labeling of an object, and verified more rapidly against a picture of the object.
Basic categories are alleged to be the highest level for which one can form a recognizable
composite image, because they often share perceptible parts. It is also the highest level for
which standard interactions with objects share common actions, e.g., sitting on a chair.
When asked to list common attributes shared by members of a class, people list relatively
few attributes for superordinate categories (like vehicles, furnitur any more attributes for
basic categories (car, chair), a2t/ only a few more for subordinate categories (coupe, lounger

p]

chair).

Basic level categories appear to be special because they capture many regularities or
patterns of correlations among the attributes of exemplars of the categories. A system of

categories has two forces acting on it: on the one hand, one wants to have only a few
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categories so that some cognitive economy is achieved; on the other hand, one wants
informative categories, meaning that by knowing that an object belongs to a given category
one also knows many of its other attributes. In other words, one wants relatively few
categories that are informationally rich, which maximize the feature similarity of objects in
the category and minimize the similarity of objects in different classes. These desiderata are
incompatible and categories’krade—off how well they satisfy both goals. The basic level

2
appears to be that level of generality which attains 'p(satisfactory compromise of both goals.

For present purposes, the relevant aspect of basic level phenomena is that many are
well explained by our associative network model. Elsewhere (Gluck, Corter, & Bower,
198x; Corter, Gluck, & Bower, submitted) we have detailed the model’s analysis and
explanation of basic level phenomena. The key idea that mediates the basic level advantage
stems from the LMS learning rule (cf. Eq. 1) which is sensitive to both cue validity and
category validity. Cue validity is the extent to which presence of a given cue or feature
predicts presence of a category (e.g., having feathers predicts bird). This association is

directly incremented by Eq. 1 whenever a cue and category co-occur. Category validity is

Y

the converse'\the extent to which presence of a category predicts presence of the feature.
e J

This aspect is tracked by the cue-competition component of Equation /1\: if several features

are already strongly predicting a given category (due to their higher validities or

frequencies), they will crowd out or drive down the associative strength of some other cue

that co-occurs with them and that also predicts the category.

The network model has been applied to laboratory experiments involving learning of
artificial hierarchies of categories. An experiment by Hoffman and Zeissler (1983) may be

used as illustration. They trained subjects to classify line drawings of rocket space ships
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that differed in their overall shape, bottom edge, and type of porthole (see Figure x). Three
groups of subjects were taught to classify these eight pictures according to one of three
category hierarchies shown in Figure x. The feature-category associations were designed so
that the expected easiest level to learn would be the top, middle, and bottom in Hierarchies
I, I, and I, respectively. The optimal level category was the one for which all instances of
the category shared values on one or more feature dimension. For example, in Hierarchy I
the top level is expected to be most easily learned because instances of the top-level
categories share the same overall shape (angular vs. rounded). In Hierarchy II the middle
level was expected to be optimal because instances in those categories share two features
(porthole and shape) which contrast with the neighboring categories at that level. In

Hierarchy HI bottom level categories should be learned fastest because ynly three have a -

recognizable shapa
Insert Figure x about here
wAne
In Hoffman and Zeissler’s experiment, subjets sq\m-single stimul'Aand were told at

what level of the hierarchy to classify each. Response accuracy and latency were recorded.

Subjects were trained to criterion, concurrently at all three levels.

The authors reported theirgresults in terms of errors during learning and

response latencies over the final six blocks of trials at each level. The major results were

chusiifintn (uy ot

clear in showing that the optimalAlevel ewest errors,\fastest response times) was the top

level in Hierarchy I, the middle level in Hierarchy II, and the bottom level in Hierarchy IIL
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The complete ordering of levels according to average classification latency was: top-middle-
bottom in Hierarchy I; middle-bottom-top in Hierarchy II; and bottom-middle-top in

. . . S Con
Hierarchy III. It is of interest to se whether the configural cue model has-the-wherewitial

A account for these complex set of results.

In applying the configural model to such results, we used 10 single-cue input nodes
(corresponding to the 4 bottom edges, 4 porthole types, and 2 overall shapes) an:iiq;(l);
pairwise configural cues that occurred in the 8 training stimuli. These 30 input nodes were
fully connected to 14 output nodes representing the category responses (2, 4, and 8 at the

top, middle, and bottom levels). the model was then applied to a simulation of the

Hoffman-Zeissler Training procedure (for details, see Corter et al., submitted).

The simulated learning curves are shown in Figure y for a single learning rate
(BETA = .025)). The trends of the theoretical curves closely follow the observations
reported by Hoffman and Zeissler. In particular, the percentage correct responses over the
last two blocks of trials are .96, .93, and .88 for the top, middle, and bottom levels in
Hierarchy I, respectively; .84, .93, and .88 for top, middle, and bottom levels of Hierarchy
II; and .64, .69, and .83 for the top, middle, and bottom levels of Hierarchy IIl. Assuming
that correct naming speed is directly related to percentage correct responses, the predicted
and observed orderings correspond perfectly across the three levels for. each hierarchy. It is
important to note that these relationships among associative strengths at different levels in
different hierarchies are practically independent of the value of the learning rate, BETA.

They are implied by the way the structure of the feature-to-category contingencies are doedt il



Gluck, Bower, Hee: Psych Rev February 12, 1992 BASIC LEVELS 72

2

snepped-ints the cue competition model.

Insert Figure y about here

Elsewhere (Corter et al., submitted) we successfully applied the configural cue model
to three other experiments studying the learning of three-level hierarchies of nested artificial
categories--one by Murphy and Smith (1982) and two new experiments by Corter et al.
(submitted). In each case feature-category contingencies similar to those in Hierarchy II (see
Figure x) of Hoffman and Zeissler (1983) were investigated. As expected the middle-level

cLotafig ot guik
categories proved to be learned most quickly and praeessedmo;e—easﬂy The middle level
is learned more rapidly in Hierarchy II because categories at that level are characterized by
presence of a single feature (type of porthole); on the other hand, the superordinate level in
Hierarchy II is defined by a disjunction of basic features (e.g., a il has either a square or
round porthole). The reader may wonder whether this structure characterizes hierarchies of
natural categories for which Rosch et al. (1976) made their observations about basic level
categories. Indeed, a number of investigators (Rosch et al,, 1976; Smith & Medin, 1981);
Corter et al., submitted) have observed this aspect Mcrarchies (e.g., furniture, clothing,
Jruit, animal). The superordinate category appears to be a disjunction of basic-level
categories that have little in common except for nonperceptible, functional properties. Of

course, this disjunctive character is why people cannot list many common attributes of

superordinate categories nor image or act upon a common form.
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Let us briefly, retrace our argument here. We have shown that when hierarchies of
categories are structured as in Hierarchy II, the middle level is easier to learn by people and
the network model. It is further argued that natural hierarchies that have preferre_d
categories at the middle level aré‘% structured like Hierarchy H. Therefore, we
suggest that if people learned categories as the network model expects, then the middle level
would be learned quickest, and responded to most accurately and quickly. In turn that
would explain a number of the behavioral observations offered in support of the basic level.
Once a given level in a hierarchy is easy to lcarxbﬂlen other sequelae follow: it would be
used more frequently by adults so that it would be acquired earlier by children and its label
would tend to be shortened. The advantage of this structural-learning hypothesis is that it

can accommodate to deviations from a simple basic level hypothesis caused by special

expertise, training, and cultural use.

[End of section]

HYPOTHESIS TESTING IN RULE INDUCTION

MISCELLANEOU COMMENTS ON ADDITIONS NEEDED FOR SHJ

Shepard Quote re this data: "Models of conditioning of cues are not alone sufficient but in
addition something like the abstraction and formulation of rules is apparently involved."
WHAT TO DO DIFFERENTLY FROM JML PAPER: As this is the last section of the
paper (before discussion), I think that we can use these data to point out TWQO

LIMITATIONS to (suggestive of future work):

* 1, LIMITS OF SING + PAIRWISE CODING
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Start first with application of same model
used in other sections (singlets + doublets): Note produces
correct order but does not learn type VI which requires

triplets

ALSO: Types IV and V are not learned perfectly with only
sing + doublets either. WHY?
Just because a task is Linearly Separably does not mean that
the LMS network will reduce MSE to 0. LS implies that a
THRESHOLD rule will solve perfectly. We have adopted a
direct (raw) RATIO RESPONSE RULE. But note that exponential/logistic
transform (ala Gluck - Bower 1988) would take care of this.
So we add Triplets for COMPLETE POWER SET (singlets+doub-+triplets)

With RATIO rule learns all -- but 2 vs. 3 misorders..

* 2. NO ENCODING OF DIMENSIONAL STRUCTURE

* FOCUS ON I vs IIT -- do not ignore, is important

suggests network lacks "dimensionality sensitivity"

-- DESCRIBE DIMENSIONALITY ISSUE -- vs. INTRA/EXTRA Shifts
THUS: Model ignores dimensions and can not account for learning

about dimensions that is independent of S-R associations.
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--- CURRENT MODEL: Subsitutive dims represented ONLY

as sets of additive features

syntax error file -, between lines 3116 and 3247 Include not yet implemented file -, between

lines 3116 and 3411

Notethatanalysesof othertasksinpapershowthatTripletsorQuadshavelittleef f ectonpredictions.. FROMHERI

s€

Examplesof thesixtypesof classif icationsusedbyShepardetal. (1961).From ‘‘Learning andmemorizationof cla:
sh

plotted

trials
simulations

to Shepard’s Theory of Stimulus

Meansquarederror of learningthesixclassif icationtypesof Shepard Hoviand ,&Jenkins (196 1)usinga

Generalizationthissectionpulled (astl's )k 1991.ppShepard (1987)describesarationalmotivation fortheexponen
ucKk ,
have
regions.Followingasingletrainingtrial theindividualispresumednoknowledgeof thewwinof therelevantconsequ
Regions and Configural-
understanding

cues.ppShepard’sapproachcanalsobe applied howtheconfigural—cuemodelsolvescategorizationproblems.

need transition (LS/NLS cut from psych sci article)

Shepard’s theory of stimulus generalization applies only to the highly idealized
experiment in which a single learning trial is followed immediately by a generalization test.
The configural-cue network model can be viewed as an extension of Shepard’s theory to
discrimination and classification learning using the principles of associative learning from
Rescorla & Wagner’s (1972) model of classical conditioning. The successes of the

configural-cue model in accounting for both animal and human learning can therefore be
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construed as independent and converging evidence for Shepard’s theory.

This connection between theories of associative learning and theories of stimulus
generalization suggests several new theoretical directions which might extend the range of
phenomena deducable by either theory alone. We briefly note three such possibilites here.
First, Shepard has also shown that the implications of his theory are largely unaffected by
the distribution of the sizes of the consequential regions. We conjecture that this result
might be related to our observation that the predictions of the configural-cue model are
largely unaffected by the #fe addition of configural-cues more complex than pair-wise
combinations or by most variations in the individual learning rates assigned to the

configural-cues.

A second possible new direction is motivated by a serious limitation of the
configural-cue model. In its current form it is applicable only to stimuli composed of
separable discrete-valued features. Shepard’s theory provides a broader theoretical
framework within which we might identify stimulus representations described by continuous

and integral feature dimensions.

Finally, a third possible research direction is suggested by the success of the
configural-cue model compared to the base-line multi-layer networks. In spite of their
complexity, multi-layer networks have the attractive property that they can dynamically
reconfigure a small set of hidden units, thereby avoiding the configural-cue model’s
problematic assumption that input nodes exist, a priori, for all conjunctive-cue combinations.
The evidently critical role of Shepard’s stimulus generalization principles in the configural-

cue model’s ability to account for learning behaviors may point us toward the development



Gluck, Bower, Hee: Psych Rev February 12, 1992 Sy 77

of a categorization model that embodies these same generalization principles within a multi-

layer network.

Comparison to Single-Cue Network Model

INSERT HERE?? ANALS OF CONFIGCUE APPLIED TO GBS88

Limitations of Mode!l

Dimensional Salience

Lawrence/Nonreversals, intrajextra, SHJ, II/IIT

Feature Extraction

wheredothef eaturescomefrom?.lh Configural Explosion with Many Cues but singlets +

doublets almost always suffice

future
stillausef ultool forpoiting way theorydevelopment exps

Other

GORDON: OTHER LIMITS TO NOTE...

Concluding Remarks

THIS IS TAKEN FROM OUR CONFIG-CUE COG SCI PAPER

By expanding the representation of stimuli to include pair-wise configurations of
features, the network model appears to account for a wider range of learning results from

both the animal and human learning literatures. Some of this success can be traced to its
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using a similarity metric like that of Medin & Shaffer, viz., an implicit exponential decay
relationship between stimulus similarity and psychological distance (number of feature
mismatches). The configural-cue model has several obvious limitations, including the
exponential growth of input nodes with increasing pattern size. Nevertheless, we believe
that this model is interesting for four reasons. First, it is simple, understandable, and
accounts for a surprisingly wide range of empirical phenomena. Second, it is theoretically
parsimonious and uses assumptions for which independent evidence already exists. Third,
its successes are instructive in identifying empirical phenomena which can be explained as
emergent from the same elementary, associative processes found in lower species. Fourth,
explanations of the failures of this model can suggest more sophisticated versions of the
network model. Such failures may also indicate performances arising from an entirely
different class of learning mechanisms, i.e., the rule-based or symbolic processes which have

been well studied by cognitive psychologists.
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Footnotes

Correspondence regarding this article should be addressed to: Dr. Mark A. Gluck,
Center for Molecular & Behavioral Neuroscience, Rutgers University, 197 University Ave.,
Newark, New Jersey 07102. Email: gluck@paviov.rutgers.edu For their thoughtful
comments and advice on this work we are indebted to: James Corter, W. K. Estes, Robert
Nosofsky, Jay McClelland, Doug Medin, Misha Pavel, Robert Rescorla, and Allan Wagner.
This research was supported by a Henry Rutgers Fellowship to MAG, an Office of Naval

Research grant (@@) to MAG,

2. One could imagine a short-term memory process whereby the weights change a
large amount so as to immediately reduce the discrepancy to zero, thus guaranteeing a
correct response were the same pattern to be presented again immediately. In this approach,
one would have to assume further that with the passage of time and other interfering
patterns, the new weights in long-term memory would decline to approximately those given

by Equation 3 with some smaller value of f.

3. A qualification to the configural hypothesis is that some brief time is needed for
the configural units <AB> to be recruited after presentation of the AB compound. For
example, Kehoe and X (199x) found that rabbits could learn a negative-patterning eyeblink
discrimination (tone+, light+, tonelight-) only if the CS-UCS interval was longer than 400
msec; with a shorter 300 ms interval, animals apparently triggered their conditioned eyeblink

to any signal first sensed on a trial and never learned to wait for both cues in order to inhibit
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response to the compound. A similar minimum interval would doubtless be needed to train
adult humans to respond to either of two signals but not to both signals presented
sequentially in order to avoid an aversive outcome. The existence of this configural
recruitment-time will be ignored in our applications, since in these experiments the human
subjects were permitted to respond at their own liesurely pace after fully inspecting each

stimulus pattern.

4. @ note alternative: inside learning eq. or outside , cf, g&b1990 @ --> all

simulations were done with the ratio rule outside learning

5. We note that this prediction hinges crucially on the specific set of stimuli
constructed by Medin and Schwanenflugel to realize the LS and NLS classification tasks.
More generally, across a range of problems, the relative difficulties of linearly separable and
non-linearly separable tasks should vary; in terms of ecological statistics, most linearly

- separable tasks would probably be expected to be easier than non-linearly separable tasks.

6. These rank-order correlations reported by Nosofsky (1988, p. @) are for the
single-parameter version of the context model, with the similarity parameter, s, held constant
across classification and recognition. The values given in Table 6 and Table @ of Nosofsky
(1988) are for the 2-parameter version which yielded a rank order correlation of .97.

(Robert Nosofsky, personal communication, August 22, 1990).
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Table 1 #1.
IH_I_/lafb

[c |[d.TE.bp.TSbox ,center ,tab([);cf Bssssssssscf Bssssssssscssssssssscssss | esssscesss | cessseecee | ccccecceee | ceccecece
//m2/1/0/0/0/.94/.93/Transfer ['\n3}/1/1/1/1/.50/.57/
Patterns

FIND MISSING TRANSFER MODEL PREDICITONS..



