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From Conditioning to Category Learning: 
An Adaptive Network Model 

M a r k  A .  G l u c k  a n d  G o r d o n  H .  B o w e r  
Stanford University 

We used adaptive network theory to extend the Rescofla-Wagner (1972) least mean squares 
(LMS) model of associative learning to phenomena of human learning and judgment. In three 
experiments subjects learned to categorize hypothetical patients with particular symptom patterns 
as having certain diseases. When one disease is far more likely than another, the model predicts 
that subjects will substantially overestimate the diagnosticity of the more valid symptom for the 
rare disease. The results of Experiments 1 and 2 provide clear support for this prediction in 
contradistinction to predictions from probability matching, exemplar retrieval, or simple proto- 
type learning models. Experiment 3 contrasted the adaptive network model with one predicting 
pattern-probability matching when patients always had four symptoms (chosen from four 
opponent pairs) rather than the presence or absence of each of four symptoms, as in Experiment 
1. The results again support the Rescorla-Wagner LMS learning rule as embedded within an 
adaptive network model. 

To what extent do the processes of  human learning emerge 
from complex configurations and elaborations of  the elemen- 
tary learning processes observed in animals? Research in the 
two areas of  human and infrahuman learning shares a long 
history that has focused on elementary associative learning 
(Ebbinghaus, 1885; Pavlov, 1927). About  20 years ago, how- 
ever, animal and human learning research became divorced 
from each other. Animal  research continued to be primarily 
concerned with elementary associative processes (Mackintosh, 
1983; Mackintosh & Honig, 1969; Rescorla & Holland, 1982), 
whereas human learning (or memory) tended to be character- 
ized in terms of  information processing and rule-based symbol 
manipulation,  an approach borrowed from artificial intelli- 
gence. 

In spite of  this divergence, a number  of  recent empirical 
findings suggest that there may be some common aspects to 
human and animal learning (e.g., Alloy & Tabachnik, 1984; 
Dickinson & Shanks, 1985; Estes, 1985; M e d i n &  Dewey, 
1984). Furthermore, interest in relating human cognition to 
configurations of  elementary associative connections has re- 

cently been revived by the development of  adaptive networks 
as models of  cognitive processes. Such models - -a lso  known 
as parallel distributed processing or connectionist ne tworks- -  
are being developed to simulate diverse cognitive behaviors 
such as learning, pattern recognition, speech recognition and 
production, motor  control, and so on (e.g., Hinton & Ander- 
son, 1981; McClelland & Rumelhart ,  1986; Rumelhart  & 
McClelland, 1986). This theoretical movement  represents a 
return to a traditional goal of  psychology, which was to view 
complex human abilities as emerging from configurations of  
elementary associative processes that could be studied in 
simple organisms. 

Given the voluminous studies of  learning in animals along- 
side current attempts to model cognition with elementary 
associative processes, it seems particularly timely to search for 
and exploit any correspondence that may exist between ani- 
mal and human associative learning. 
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The most basic and well-studied form of learning is classical 
Pavlovian conditioning. In classical conditioning a previously 
neutral s t imulus-- the  conditioned stimulus (CS), such as a 
be l l - -comes to be associated with a biologically significant 
s t imulus-- the  unconditioned stimulus (US), such as food or 
an electric shock. Early learning theories assumed that the 
simple temporal contiguity or joint  occurrence of  a CS and 
US was sufficient for associative learning (e.g., Hull, 1943; 
Spence, 1956). Later experiments made clear, however, that 
simple contiguity was not sufficient. The ability of a CS to 
become conditioned to a US depended on its impairing 
reliable and nonredundant  information about the occurrence 
of  the US (Kamin, 1969; Rescorla, 1968; Wagner, 1969). 

A critical observation suggesting this principle was an ex- 
periment on blocking of  conditioning (Kamin, 1969). In 
Kamin 's  experiment, a light, the CS, was conditioned to 
predict a shock, the US. Then a compound stimulus consisting 
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of a light and a tone was paired with the shock. Surprisingly, 
learning the tone --* shock association hardly occurred at all 
compared with control subjects who had received no pretrain- 
ing to the light. This result, similar to Pavlov's (1927) work 
on the overshadowing of one by another, is called blocking 
because prior training of the light ~ shock association blocks 
learning of the tone --> shock association during the second, 
(light + tone) ~ shock stage of training. 

The blocking effect suggested that the effectiveness of a US 
for producing associative learning depends on the relationship 
between the CS and the expected outcome (Kamin, 1969; 
Rescorla, 1968; Wagner, 1969). Rescorla and Wagner pro- 
vided a precise formulation of this proposal (Rescorla & 
Wagner, 1972; Wagner & Rescorla, 1972). Their formation 
assumed that the association that accrues between a stimulus 
and its outcome on a trial is proportional to the degree to 
which the outcome is unexpected (or unpredicted) given all 
the stimulus elements that are present on that trial. To for- 
mulate the relationship, let V, denote the strength of associa- 
tion between stimulus element CS~ and the US. If CSt is 
followed by a reinforcing unconditioned stimulus, then the 
change in the associative strength between CS~ and the US, 
AVe, can be described by Equation 1: 

~ = , ~ , # , ( x  - Y, v ~ ) ,  ( 1 )  
k , S  

where a~ reflects the intensity or salience ofCSt, Bl reflects the 
rate of learning on US trials, X is the maximum possible level 
of associative strength conditionable with that US intensity, 
and Y~ Vk is the sum of the associative strengths between all 

k*S 

the CS stimulus elements occurring on that trial and the US. 
IfCSi is presented on a trial and not followed by the US, then 
the association between CS~ and the US decreases analogously, 
namely, 

a v ,  = ai~32(0 - Y, v~), (2) 
keS  

where 0 is the level of associative strength supported by 
nonpresentation of the US and 132 reflects the rate of change 
of the association due to nonreinforcement. Generally,/31 is 
assumed to be larger than 132, but this is not critical for most 
predictions (see Rescoda & Wagner, 1972). 

The Rescorla-Wagner (1972) model is the most widely 
accepted description of associative changes during classical 
conditioning. The wealth of confirmed implications arising 
from this deceptively simple model has been substantial.l This 
model accounts for the blocking effects as follows: When in 
Phase 1, CS~ has been initially conditioned to the US, V~ 
approaches X. If the initial associative strength, V2, of the 
novel stimulus is assumed to be zero, then the compound 
stimulus strength, VI + V2, will equal X. By Equation 1, when 
the compound is paired with the US, the incremental learning 
accruing to the novel stimulus, AV2, is thus predicted to be 
zero--as observed. By a similar logic, the model also predicts 
the results of experiments in which single CS~ - US trials are 
interspersed among compound trials in which CS~ and CS2 
are presented simultaneously and paired with the US. In such 
conditions, the novel element on compound trials, CS2, ac- 

quires relatively little associative strength. This is because the 
single CSI - US trials strengthen V~; and this, by Equation 1, 
reduces the increment available to II2 on compound, (CS~ + 
CS2) - US, trials. 

The model also provides an explanation for a related finding 
by Rescorla (1968), who demonstrated that the conditioning 
ofa CS to a US depends on the probability of the US occurring 
in the presence of the CS relative to the probability of the US 
occurring in the experimental situation but without the CS. 
He found that conditioning proceeds to a level proportional 
to the contingency (or correlation) between the tone and the 
shock and is not solely related to the conditional probability 
of the US given the CS. These results are consistent with the 
Rescoda-Wagner (1972) model if CS1 is identified as the 
background stimulus of the conditioning box and CS2 is 
identified with the added tone, thus making up the conceptual 
compound CS~ + CS2. Increasing the US rate to CSI alone 
(i.e., unpredicted USs) will--by arguments similar to those 
above--increase VI, thereby blocking the development of 
associative strength to the CS2 o n  (CSI  -~- C52)  - US trials. 
Thus the level of conditioning to the tone (CS2) will vary with 
the probability of the US in the presence of the tone compared 
with the US probability in the absence of the tone, as Rescorla 
observed. 

Despite the importance of the blocking experiment for 
theories of associative learning, only a few investigators have 
carded out bridging experiments from animal to human 
learning. Rudy (1974) noted a parallel between human paired- 
associate learning and animal associative learning and pointed 
to a form of blocking in human learning. Specifically, when 
a redundantly relevant cue is compounded with stimuli 
that are already sufficient to evoke the associated response, 
the added cues are not likely to become associated with the 
response (Trabasso & Bower, 1968). Dickinson and Shanks 
(1985) also demonstrated analogues of several conditioning 
phenomena in human learning. They showed that people's 
judgments of the correlation of two events are influenced by 
the conditional status of other events that are present, in a 
manner reminiscent of blocking and overshadowing phenom- 
ena in animal conditioning. Neeley (1982) showed a similar 
effect in a study in which subjects learned the attractiveness 
of different political candidates who ran repeated campaigns 
against each other. Schank (1982) similarly postulated "ex- 
pectation failure" as the driving force behind conceptual 
learning; the EPAM model long ago used a similar rule 
(Feigenbaum, 1959; Feigenbaum & Simon, 1961). 

Despite these tantalizing hints that there may be common 
aspects to human and animal learning, there have been sur- 

I Desp i t e  the many successes of the Rescorla-Wagner (1972) 
model, it does have several well-known limitations and shortcomings. 
First, it does not explain "learned irrelevance" of a cue that has first 
been randomly paired (uncorrelated) with an unconditioned stimulus 
(US). Conditioning in the former case is severely retarded (relative to 
a neutral cue) by that earlier learned irrelevance (see Baker & Mack- 
intosh, 1977). Second, one cannot drive to zero strength a conditioned 
inhibitor (with V = -X) by presenting it without the US--although 
the Rescorla-Wagner model says that that should happen (see Zim- 
mer-Hart & Rescorla, t974). 
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prisingly few attempts to draw a more rigorous connection 
between the models of animal learning and human learning. 
No studies have attempted directly to evaluate whether the 
Rescoda-Wagner (1972) rule is an appropriate characteriza- 
tion of an algorithm underlying human associative learning. 

Adaptive Network  Models of  Cognition 

Recent years have witnessed an increased interest, across 
the disciplines of cognitive psychology, computer science, and 
neurobiology, in understanding the information-processing 
capabilities of complex networks of massively interconnected, 
neuronlike computing elements. Among theorists studying 
these network models, the following people are notable for 
demonstrating the computational power and psychological 
verisimilitude of these adaptive networks: Ackley, Hinton, 
and Sejnowski (1985), Hinton and Anderson (1981), Mc- 
Clelland and Rumelhart (1986), and Rumelhart and Mc- 
Clelland (1986). 

There are several classes of adaptive networks and modes 
of processing within these networks. The networks most sim- 
ilar to the models used to describe animal learning are those 
consisting of processing units connected by weighted unidi- 
rectional links (see, however, Ackley et al., 1985, for an 
alternative class of models). These networks are typically 
divided into a layer of sensory units; a layer of response units; 
and zero, one, or more layers of intermediate, association 
units. The state of each processing unit, at each moment in 
time, is described by its activation, which is determined by 
the sum of the weighted inputs to that unit from all its 
incoming connections. Presentation of a stimulus pattern to 
the system corresponds to activating a set of sensory units. 
These units pass their weighted activation along their connec- 
tions either directly to the output units or to intermediate 
units that relay them onward, eventually terminating on 
output units. The activation pattern over the layer of output 
units corresponds to some particular response of the system 
to that input. After receiving feedback regarding the desired 
output pattern for each input pattern, the system adjusts the 
weights on the connections to have that input produce an 
output closer to the one desired. By repeatedly cycling through 
a set of desired input-output pairings, the system "learns" 
just those weights that will achieve the closest match (of which 
it is capable) to the input-output pairings. These weights 
correspond to strengths of associations in classical learning 
theory, and the algorithm for changing the weights in the light 
of feedback corresponds to "learning rules" in traditional 
theories. 

We will formulate these ideas more precisely for a one-layer 
network in which inputs are connected directly to output 
units. A network is considered to have learned to associate k 
pairs of patterns, 111, Ol} . . .  {Ik, Ok}, if the presentation o f la  
to the input nodes as a vector of activation produces Oa as a 
pattern of activation on the output nodes. If there are n input 
nodes and the activation in input node i is a~, then the activity 
in output node j, oj, is determined according to the following 
rule for the spread of activation from input nodes to output 

nodes: 

O: = ~ wifli, (3) 
i = l  

where the sum is over the n input nodes. 
For such a system to be adaptive, the weights, w0, must be 

adjusted to map as closely as feasible the k stimuli, L, into 
the corresponding k responses, O,. A common measure of 
the accuracy of performance of the network is the expected 
squared difference between the actual and desired activations 
at the output nodes. In equation form, this expected squared 
error, E[e], is equal to 

E[e ]=  E[ l ~ ( O j - j =  1 dj)2] ' (4) 

where the expectation is taken across the 250 training trials, 
the summation is over the m output nodes, or is the actual 
activation on output node j, and d: is the desired output for 
output node j given the input pattern. Other measures of 
adaptive accuracy are possible (e.g., minimizing the average 
percentage errors of the outputs or the expected cost of the 
errors). In what follows, however, we test the general idea that 
people learn in such manner as to minimize E[e]. Such 
weights are termed a least mean squares (LMS) somtion to 
the problem of associating the k input patterns with their 
outputs. 

There are several "error correcting" learning rules for ad- 
justing the weights so that they converge to an LMS solution. 
A rule of this kind that has gained considerable popularity 
among network theorists in recent years is the LMS rule, a 
variant of the perceptron convergence algorithm (Rosenblatt, 
1961), which was first proposed as a learning rule for adaptive 
networks by Widrow and Hoff (1960). This rule has been 
called the LMS rule (also the delta rule) because it was the 
first one discovered that leads to the LMS solution. The LMS 
rule says that the changes in weights, AWo, from input node i 
to output node j is given by Equation 4: 

hw,j = 13(d~ - oj)a,, (5) 

where aj is the activation on input node i and dj is a special 
"teaching" input signal to output node j indicating what the 
activation of that node should be to obtain the correct re- 
sponse. A number of useful theorems have been proved about 
the LMS rule (Kohonen, 1977; Parker, 1985, 1986; Stone, 
1986). The LMS rule provides a set of linear equations that, 
when iterated over trials, will converge to weights that will 
perfectly discriminate among the input patterns (if such 
weights exist). Otherwise, the algorithm will converge to 
weights that minimize LMS error between the resulting and 
desired output patterns (Kohonen, 1977). 

One may note the close correspondence among the network 
activation model, the linear discriminant function approach 
to classification, and the standard linear-regression model for 
predicting a criterion variable or category (y) from a set of 
independent variables, x~ (see Stone, 1986). The regression 
equation 

y = blXl + b2x2 + b3x3 + b4x4 (6) 
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has the same form as the summed activation equation with 
the regression coefficients (b~s) playing the same role as the 
weights or association strengths (wis). And like w~, each b~ 
reflects the correlation between a predictor variable, xi, and 
the criterion, after correcting for intercorrelations among the 
predictor variables, as does the LMS rule. In particular, the 
least square estimators of the b~ are equivalent to the asymp- 
totic weights obtained iteratively by changing the w~s trial by 
trial according to Equation 5 (see, e.g., Stone, 1986). This 
correspondence implies that a linear-regression model would 
show many of the phenomena captured by the asymptotic 
behavior of an LMS network model when applied to a fixed 
environment (see, e.g., Johnson & Wichern, 1982). There is 
also an interesting correspondence of the network model to 
logistic regression and to a Bayesian inference model (see 
Slovic & Lichtenstein, 1971). We will not pursue these cor- 
respondences further here, although they are fascinating topics 
for exploration. 

As noted already, the LMS rule is limited to discriminating 
linearly separable patterns on the basis of the idea that similar 
input patterns are mapped to similar output patterns. In cases 
in which similar input patterns are not mapped to similar 
output patterns, a layer of additional, intermediate nodes 
("hidden units") may be required between the input and 
output nodes to solve the discrimination (e.g., see Rumelhart, 
Hinton, & Williams, 1986). Numerous demonstrations have 
shown that multilayered networks have potentially great 
power to learn complex discriminations. But this power was 
gained at an enormous cost; there was no natural rule for 
teaching such multilayered networks what they had to learn. 
For almost 20 years, no plausible learning rule had been 
proposed that would enable scientists to work with these 
multilayered networks; consequently, most scientists lost in- 
terest in using such networks as learning models. 

Recently, however, three groups of researchers have inde- 
pendently discovered generalizations of the LMS rule that can 
plausibly be used with multilayered networks (Le Cun, 1985; 
Parker, 1985; Rumelhart et al., 1986). They have invented 
algorithms that propagate weight chalages at the output layer 
back through successively earlier layers of unit connections. 
Multilayer nets that back-propagate learning changes have 
been demonstrated to learn many discriminations, such as 
parity, exclusive-or, and symmetry relationships. Since then, 
researchers have focused on exploring the information-proc- 
essing potential of these LMS algorithms, trying to demon- 
strate their sufficiency for solving complex learning problems. 
Few researchers, however, have addressed the question of 
whether the LMS rule provides an empirically accurate ac- 
count of how people learn. This is the ultimate aim of our 
research reported here. In developing an experimental pro- 
gram to begin to test the LMS rule as a component of human 
learning, we start by exploring its predictions for asymptotic 
behavior during probability learning. In doing this, we have 
begun to exploit a remarkable connection between animal 
and learning theory and adaptive network theory. 

Connect ing Models of  Animal  and H u m a n  Learning 

As Sutton and Barto (1981) noted, the LMS rule is essen- 
tially identical to the Rescorla-Wagner (1972) model of as- 

sociative learning in animals. This simple but powerful theory 
describing animals' learning in classical Pavlovian condition- 
ing was presented by Rescorla and Wagner in the early 1970s 
(Rescorla & Wagner, 1972; Wagner & Rescorla, 1972). If in 
Equations 1 and 2 we let V, = wu set the training signal in the 
LMS rule, dj, equal to X when the US is present and to 0 
otherwise and let ai = 1 when CSi is present and 0 otherwise, 
then Equation 5 of the LMS rule reduces to Equations 1 and 
2 of the Rescorla-Wagner model. Curiously, adaptive network 
theorists have adopted the LMS rule because of its computa- 
tional power, convergence properties, and generalizability to 
multilayered networks. Nonetheless, adaptive networks that 
implement the Rescofla-Wagner/LMS rule (henceforth 
LMS) can be viewed as a framework for modeling the emer- 
gent properties of complex configurations of the elementary 
associative processes found in animal conditioning. 

Exper iment  1 

Because category learning is a central topic in cognitive 
psychology, we sought to evaluate adaptive networks as 
models of subjects' learning to classify stimuli into categories. 
This is also an elementary induction task for which the 
network model seems well suited. The focus of our evaluation 
is on comparing the performance of human learners with the 
expected asymptotic performance of a network that converges 
to the LMS solution (provided by Equation 5) to the learning 
problem. 

In our experiment, university students, pretending to be 
medical diagnosticians, read the medical charts of 250 hypo- 
thetical patients, each described by the presence or absence of 
each of four symptoms (stomach cramps, discolored gums, 
etc.). The student diagnostician classified each patient as 
having one or the other of two fictitious diseases and received 
feedback regarding the correct diagnosis. During training, 
subjects learned which symptoms were more or less diagnostic 
of each disease. The symptoms, however, were not completely 
valid; that is, the cues were probabilistic, as in the studies of 
multiple-cue probability learning (Castellan, 1977) and the 
learning of fuzzy or ill-defined categories (Medin & Smith, 
1984). 

To develop a network model of subjects' performance in 
this task requires additional assumptions about (a) the net- 
work structure, (b) the representation of external events in 
the network, and (c) a mapping from network behavior to 
observable behaviors in people. 

Figure 1 illustrates the simplest one-layer associative net- 
work that one could propose for this task. Each of the four 
symptoms is represented by an input node at the left. Because 
our task was presented to subjects as a forced choice between 
two mutually exclusive alternatives (i.e., every patient had 

SYMPTOM 1 (c~/0) - - * ~ E  (+9~/-)0 

SYMPTOM 2 (ct/0) 

SYMPTOM 3 (ct/0) 

SYMPTOM 4 (cd0) - - - ) ~  

Figure 1. An adaptive network that learns to diagnose patterns of 
up to four symptoms as having one of two diseases. 
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one disease or the other), there is only one degree of freedom 
in the response. We can therefore represent the output (re- 
sponse) as a single node, assigning positive activation values 
on the output node to indicate increasing degrees of a pref- 
erence for one disease, called Disease R, and the negative 
output values to indicate increasing degrees of preference for 
the alternative category, Disease C. The connection from 
symptom i to the output node has weight, wi, reflecting the 
strength of evidence that the presence of symptom i provides 
toward a diagnosis of Disease R versus C. The four weights 
will be adjusted trial by trial according to the LMS rule in 
Equation 5. 

Assume that presentation of a symptom pattern for a 
patient (a "trial") causes a pattern of activation (o~ if present 
or 0 if not present) over the four input units. The category 
(output) node is then activated in an amount equal to a times 
the sum of the weights from the presented symptoms to those 
category nodes (i.e., according to Equation 3). The activation 
reflects the model's expectation for Category R (versus C) 
given the symptom pattern. In the present situation the cor- 
rective feedback on a trial is the same regardless of the 
response. The amount of learning change produced by the 
feedback is larger the greater the difference between the cur- 
rent expectation and the training signal. The training signal 
provided to the output node (Figure 1) is the experimenter's 
feedback (after the subject's response) regarding the correct 
response. Assume that if Category (or Disease) R is the correct 
classification, then the feedback (~ in Equation 5) will be set 
equal to +~ on that trial; if the alternative category, C, is 
correct on a given trial, then the feedback will be - ~  for that 
trial. 

Two of the parameters in the model are ~ and ~. These 
parameters can be shown to have only a multiplicative effect 
on the asymptotic weights and activation values. The weights 
and activations may therefore be considered as measured on 
a ratio scale; that is, they are unique to within a scalar multiple 
of ~/a. For convenience, let ~ = a = 1. Also assume a single 
learning rate parameter,/3, for adjusting the weights. I fa  fixed 
set of training patterns is presented many times in random 
order to the learning model, the convergence properties of the 
LMS rule lead to expected asymptotic levels of the WgS, the 
symptom-to-disease associations, which are independent of 
(see Appendix A and also Rescoda & Wagner, 1972; Parker, 
1986). These weights, which are parameter-free predictions, 
are those that minimize the mean squared errors of classifi- 
cation achievable by the network for the training problem. 

As in the Rescoda-Wagner (1972) formulation we assume 
that weights and activations will be mapped into decision 
(response) probabilities by a monotone transformation that 
preserves their ordinal relationships. Thus, higher output ac- 
tivations translate into higher probabilities of choosing Dis- 
ease R over Disease C. Later we will propose a specific 
transformation to obtain choice probabilities. Other measures 
of associative strength are also possible. One we have used is 
to ask subjects to estimate directly the marginal probability 
that a patient with a particular symptom, for example, s~, has 
one disease or the other, irrespective of his or her other 
symptoms. We will suppose that the greater the weight from 
s~ to the output node, w~, the higher will be the subjects' 
estimates that the patient has Disease R rather than Disease 

C. Because of the symmetry in the reinforcement, positive 
weights will reflect a preference for Disease R, whereas nega- 
tive weights will reflect a preference for Disease C. Because 
the weights in the model are specified on a ratio scale, the 
mappings of these weights onto subjects' estimates of disease 
likelihoods will be assumed to have only ordinal significance. 

We will compare the predictions of the LMS rule in our 
category learning task with the predictions of three competing 
models of category learning (Estes, 1986): (a) exemplar 
models, which presume that the learner stores are the exem- 
plars of each category and then classifies a new instance 
according to its relative similarity to the stored exemplars of 
each category (e.g., Medin & Schaffer, 1978; Nosofsky, 1984); 
(b) feature-frequency models, which presume that the learner 
stores relative frequencies of occurrence of cues within the 
categories and then classifies an instance according to the 
relative likelihood of its particular pattern of features arising 
from each of the categories (Franks & Bransford, 1971; Reed, 
1972); and (c) prototype models, which presume that the 
learner abstracts the central tendency (model description) of 
each category and then classifies instances according to their 
similarity to this central prototype (e.g., Fried & Holyoak, 
1984; Homa, Sterling, & Trepel, 1981). 

When applied to our task in which subjects estimate the 
probability of each disease given each symptom, the models 
make one of two predictions. Exemplar models assume that 
subjects have access to all (or a random sample of) the 
exemplars presented during training. According to these 
models, subjects access all stored exemplars that contain a 
particular symptom and note the proportion of cases in which 
this symptom occurs with Disease R. Thus these models 
predict that subjects' estimates of the conditional probabilities 
will simply reflect the conditional symptom-to-category prob- 
abilities observed in the training sequence, a form of "proba- 
bility matching." A pure prototype model that ignores varia- 
tions in the overall base-rate frequencies of the diseases would 
predict that subjects' estimates of the probability of a disease 
given a symptom will simply reflect the relative likelihood of 
the symptom given the alternate diseases, namely, 

P (silC1) 
e (s~lCl) + P (s~lC2) " 

In feature-frequency models, subjects are presumed to keep 
count of the number of times the symptom (feature) is asso- 
ciated with each category. If the model assumes that these 
counts are stored as the relative frequencies within a category, 
then the feature-frequency model makes predictions identical 
to prototype models, namely, that subjects' estimates should, 
incorrectly, reflect the relative likelihoods of the symptoms 
given the alternate categories. However, if the counts are 
stored directly, then the frequency model makes predictions 
identical to the exemplar models, namely, that subjects' esti- 
mates should reflect the objective conditional probabilities in 
the training sequence. 

To generate differential predictions to compare for the LMS 
model and the alternative models, we need a learning task in 
which the ordinal relationships among the asymptotic weights 
differ from the ordinal relationships among either the objec- 
tive posterior conditional probabilities of the categories given 
the features or the objective relative likelihoods of the features 
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given the categories. This  is what  we did in the following 
experiments.  One  way to arrange such a situation is to unbal- 
ance the overall  frequencies o f  the two diseases so that  one 
occurs far more  often than  the other. The  quest ion is whether  
people 's  probabili ty est imates and choices will be more  closely 
predicted by the LMS rule than by the exemplar,  feature- 
frequency,  or  prototype models.  

Method 

Nineteen subjects were trained to classify medical charts of hypo- 
thetical patients into one of two mutually exclusive disease categories. 
Disease names were fictitious, but we refer to them as the rare (R) 
disease and the common (C) disease. Among the training exemplars, 
patients with the common disease were three times as frequent as 
patients with the rare disease. A patient chart consisted of one to four 
symptoms drawn from a set of four possible symptoms: bloody nose, 
stomach cramps, puffy eyes, and discolored gums. 

Figure 2 (left side) shows the conditional probability of each of the 
four symptoms occurring in patients suffering from each of the two 
diseases. Each subject received a novel set of training patients that 
was generated during the experiment according to probahilistic pro- 
cedure. First, each patient was randomly designated as suffering from 
either the rare disease (p = .25) or the common disease (p = .75). 
Second, given his or her disease, a patient's symptom chart was 
generated by choosing symptoms according to the following method 
(see Figure 2, left side): If the patient suffered from the rare disease, 
then with p = .6, the chart would include symptom s~; with p = .4, 
symptom s2; with p = .3, symptom s3; and with p = ..2, symptom s4 
(and analogously, but inversely, for patients suffering from the com- 
mon disease). However, patients with no symptoms--henceforth, the 
"null" patients--were eliminated from the training sequence. This 
resulted in the true likelihoods of the symptoms given the diseases 
being slightly higher than indicated above (i.e., the probabilities of 
the symptoms given the rare disease were actually .69, .46, .35, and 
.23 for symptoms Sl through s4, respectively, and were analogous but 
inverse for the patients suffering from the common disease). 

With the base rates of P (R) = .25 and P (C) = .75 and the 
probabilities in Figure 2 (left side), Bayes's theorem provides the 
conditional probability of the two diseases given the four symptoms 
considered separately (see Figure 2, right side). Note that for any 
single symptom the objective probability of the rare disease was 
always less than or equal to the probability of the common disease. 
Because a null patient was equally likely given either the rare or 
common disease, the computation of the posterior conditional prob- 
abilities is unaffected by the elimination of the null patients. 

Each subject received 250 training trials of predicting diseases and 
receiving feedback on the cathode-ray tube (CRT) of a microcom- 
puter. On each trial a new patient (corresponding to a list of symp- 
toms) was presented on the CRT, and the subject had unlimited time 
to categorize the patient by pressing the R or C key on the microcom- 
puter and then received feedback on the CRT about the correct 
diagnosis; the next patient's chart was then presented. The diseases 
were identified by fictitious names assigned to the rare or common 
disease in counterbalanced fashion across subjects. Subjects were told 
that there was no simple rule for making the diagnosis and that the 
order of presentation of the symptoms within a patient's chart was 
irrelevant. After training, subjects were tested by being asked to 
estimate directly the probability that a patient exhibiting a particular 
symptom was suffering from one or the other disease. For each 
symptom and disease, subjects were asked, "Of all the patients in the 
hospital exhibiting [symptom], what percent of those patients would 
you expect to suffer from [disease]?" They gave numerical estimates 
of P (Rlsi) and P (Clsl) on a 0-to-1 scale for each of the four symptoms, 
for a total of eight estimates. Estimates were made by selecting 1 of 
11 keys marked 0,.  10, .20 . . . . . .  90, 1.00 in probability steps of.  10. 
These estimates are the data of primary interest in this report. 

1.0 

To find asymptotic  values for the association weights, one 
can derive a n  equat ion for the expected value o f  each weight 
at t ime t and then let t go to infinity (see Appendix  A for 
details). As noted, the asymptot ic  weights depend only on the 
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Experiment 1 design: On the left, the probabilities of each of the four symptoms occurring 
in patients suffering from each of the two diseases. The lower numbered symptoms were more typical 
of the rare (R) disease whereas the higher numbered symptoms were more typical of the common (C) 
disease. On the right, the conditional probabilities of each of the two diseases given the presence of each 
of the symptoms computed from the left-hand side by using the base rates and Bayes's theorem. 
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reinforcement probabilities in Figure 2 (right side) and not on 
the learning rate, /3. The expected asymptotic association 
strengths are .430, - .043 ,  - .306 ,  and - .771 for Wl through 
w4, respectively, and these are plotted in Figure 3; these 
theoretical indices are to be compared with the objective 
conditional probabilities as well as the observed estimated 
conditional probabilities (also shown in Figure 3 for compar- 
ison). 

The most striking difference between the objective proba- 
bility measures in Figure 3 and the predicted associative 
weights in Figure 3 occurs for Symptom 1 (denoted &). This 
symptom was paired as often with the rare disease, R, as with 
the common disease, C; hence the objective conditional prob- 
ability of  R versus C is .5. However, the LMS rule predicts 
that s~ will be associated more with the rare disease than with 
common disease, as indicated by a value of  .43 for w~. 

This prediction of  the LMS rule within the network model 
is understandable in light of  the competitive nature of  the 
learning algorithm. The asymptotic weights reflect the degree 
to which a symptom has been an informative and reliable 
predictor of  a disease, relative to the predictive value of other 
symptoms that happen to be present at the same time. Al- 
though s~ was paired equally often with the two diseases, it 
generally Occurred in the company of  other symptoms when 
the common disease was reinforced. On rare disease trials in 
which Sl occurred, the other symptoms were far less likely to 

Figure 3. Results and predictions for Experiment 1. The objective 
probabilities of the rare disease given each of the symptoms are shown 
as a dashed line (with the scale along the left vertical axis); these also 
correspond to the predictions of exemplar and feature-frequency 
learning models. The predictions of the least mean square (LMS) 
rule, based on asymptotic levels of associations, are shown as shaded 
areas above or below the middle axis to indicate that they are to be 
interpreted relative to the scale on the right. These predictions are 
unique to within a scalar multiple. Hence the critical aspect of the 
predictions is the relative degree to which they are either above or 
below the zero line (corresponding to a prediction of 0.5 on the left 
scale). The observed means of subjects' estimates of P(Rare Disease lsi) 
are shown as a solid line (with the scale along the left vertical axis). 

be present. Hence, Wl was pushed more towards + 1 (indicat- 
ing the rare disease) than towards - 1 (indicating the common 
disease). Whereas Sl is not a better predictor of  the common 
disease than the other symptoms, it is a relatively better 
predictor for the rare disease than are the others. It is the 
relative validity of  a symptom for the two categories that 
determines its association with them in the LMS model. 

Observed estimates. Having described the model 's  predic- 
tions, we turn now to the data. Comparing the actual with 
the estimated conditional probabilities indicated that whereas 
subjects correctly learned the relative strengths of the condi- 
tional probabilities within a particular disease category, they 
appreciably overestimated the conditional probabilities of  
Disease R given each of the symptoms. Subjects' estimates of  
the probability of  Disease R are graphed in Figure 3 for 
comparison with the predicted and objective values. Our 
preceding analyses suggested that the data for sl would be 
most critical for distinguishing between the models. As pre- 
dicted by the LMS rule, the data indicate that subjects believed 
that patients with symptom sl were significantly more likely 
to be suffering from the rare disease than from the common 
disease; subjects' mean estimate of  P(RIs~) = .67 was signifi- 
cantly greater than .50, t(18) = 4.87, p < .0005 (one-tailed), 
and over twice as great as their estimate of P(CIs0. This 
simple result disconfirms the alternative models presented in 
the introduction, which predict that subjects' estimates will 
reflect the objective conditional probabilities observed in the 
training sequence. 

Predicting classificatory responses. The measure used ear- 
lier (i.e., subjects' estimates of  the conditional probabilities of  
the categories given the features) differs from that used in 
most studies of  categorization performance. Our measure asks 
people to estimate probabilities on the basis of  partial infor- 
mation, for instance, the presence of  just a single symptom 
without further knowledge. On the other hand, the typical 
study asks subjects to decide on a category when given full 
information about an instance (e.g., the complete pattern of  
symptoms exhibited by a single patient). Therefore, it is 
instructive also to compare the ability of the models to predict 
subjects' classifications of  patients when given complete symp- 
tom patterns. The 15 (24 - l) possible patients or symptom 
patterns that could occur during the training trials are listed 
in Table 1. We refer to these as Patterns A through O. 

The LMS model presumes that the total evidence or expec- 
tation for the rare disease is the sum of  the association weights 
of the presented symptoms. To derive a choice probability 
from these activations or expectations requires a rule to map 
the activations of  the output (category) node into a probability, 
of choosing the rare disease in preference to the common 
disease. Such a mapping rule should have the property that 
negative numbers would be mapped to probabilities between 
0 and .5, that 0 would be mapped to .5, and that positive 
numbers would be mapped to the range .5-1. 

One of  the simplest functions that satisfies this constraint 
is the logistic. If  one lets Sk represent 1 of  the 15 possible 
stimulus patterns, then one may write the logistic function as 

1 
Pk = P (RISk)  --  1 + e-~ )' (7) 
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Table 1 
Symptom Patterns Presented in Experiment 1 

Symptom P(R) 

Pattern sl s2 s3 s4 Objective LMS Observed 

A 0 0 0 1 .05 .08 .03 
B 0 0 1 0 .18 .27 .15 
C 0 0 1 1 .03 .03 .02 
D 0 1 0 0 .34 .47 .25 
E 0 1 0 1 .08 .07 .05 
F 0 1 1 0 .25 .24 .27 
G 0 1 1 1 .05 .03 .00 
H 1 0 0 0 .67 .80 .66 
I 1 0 0 1 .25 .25 .27 
J 1 0 1 0 .56 .60 .55 
K 1 0 1 1 .18 .11 .18 
L 1 1 0 0 .76 .78 .73 
M 1 1 0 1 .34 .24 .33 
N 1 1 1 0 .67 .56 .53 
O i 1 1 1 .25 .10 .27 

Note. P(R) = probability of rare disease; LMS = least mean squares. 

where P(RISk) is the probability of  responding "rare disease" 
given stimulus pattern Sk, Ok denotes the activation in the 
output node resulting from the presentation of  Sk to the input 
nodes, and O is a (positive) scaling parameter. Equation 7 
describes an ogive curve going from 0 when Ok is very 
negative, through .50 when Ok ---- 0, to 1 when Ok is very 
positive. Equation 7 is essentially Thurstone's (1927) law of 
comparative judgment  and Hull 's (1943) rule for converting 
reaction potential differences into choice probabilities. Recall 

4 

that Equation 3 sets Ok = Y, ai wi, which is the sum of the 
l =  1 

weights of  the presented symptoms. 2 
We fitted Equation 7 to the choice probabilities estimated 

for the 15 symptom patterns over the final block of  50 trials 
(out of  250). The O estimate was obtained by estimating the 
slope of  log [(1 - pk)/Pk] plotted against the theoretical Ok 
values, excluding cases in which Pk was zero. The best estimate 
of  O proved to be 3.2; the fit of  Equation 7 with this O to 
subjects' choice probabilities for the 15 symptom patterns is 
shown in Table 1. The model 's  predictions correlate fairly 
well (.94) with the observed choice probabilities to specific 
symptom patterns with an average absolute discrepancy of 
.07. However, a chi-square goodness-of-fit statistic suggested 
that the fit could be much improved. Because many of the 
proportions in Table 1 are based on relatively small samples, 
they have large standard errors. 

For comparison, we can estimate the expected performance 
of  a probability learner who acquires all the relevant condi- 
tional probabilities of  the two diseases for each symptom 
pattern and then chooses diseases for each symptom pattern 
to achieve probability matching (at the pattern-disease level). 
These probability predictions for this pattern-learning model 
are the objective values listed in Table 1. These probability- 
matching predictions correlate well (.99) with the data with 
an average absolute discrepancy of  .03. The LMS model and 
the pattern-probability-matching models make fairly similar 
predictions (r = .95). In fact, the correlation between the two 
is so high that one could choose O in Equation 7 to fit the 

LMS model to pattern-probability matching (rather than the 
data). When one does this (yielding O = 2.8) and then 
proceeds to predict the data with that value of  O, the corre- 
lation (.95) is by chance slightly better than before (due to p 
= 0 points left out of  the earlier estimation procedures). 

The implications of these results are twofold: (a) Both the 
LMS rule and the pattern-probability-learning model do fairly 
well in predicting subjects' choice behavior during the final 
stage of  the training session, and (b) given that subjects' choice 
behavior is very close to that of a pattern-probability-matching 
learner, subjects appear to have learned the task as well as 
can be expected. This second point is important  because, due 
to the probabilistic nature of  the learning, subjects were 
trained only for a fixed number of  trials rather than to some 
particular criterion performance. 

Furthermore, as Table 1 shows, the LMS rule and pattern- 
probability model make very similar choice predictions across 
the symptom patterns. These choice data do not permit a 
strong preference between the pattern-probability-learning 
and the LMS model. The models do become distinguishable, 
however, when subjects are asked to estimate directly the 
likelihood of each disease given each symptom singly. 

In comparing subjects' choices versus their likelihood rat- 
ings, it is particularly informative to examine the observed 
choice probabilities for Patterns H, D, B, and A, which are 
the patterns in which only one symptom was present (see 
Table 1). Subjects appeared to be aware of  the conditional 
probabilities of  the diseases given these patterns (as indicated 
by the probability matching of their choices). Note that the 
LMS model does not distinguish between the absence of  
information about symptoms and information about the ab- 
sence of  symptoms. Thus the model makes identical predic- 
tions for Pattern H (i.e., the presence of  sl and the absence of  
symptoms s2, s3, and s4) and for the case in which sl is present 
but no other information is given, that is, P(RIs0.  The actual 
conditional probability of  the rare disease in these two cases 
is quite different, however. The actual probability that a 
patient with symptom s~ and no other symptoms (e.g., Pattern 
H) has the rare disease is .67; in contrast, the probability that 
a patient who has symptom s, (but about whom no other 
information is known) also has the rare disease is .5, as shown 

2 Another perspective on Equation 7 is informative. Consider an 
alternative network representation of this problem with two output 
nodes, each connected to all four input nodes. One node--represent- 
ing the rare disease--would be reinforced with 1 on rare disease trials 
and with 0 on alternative trials. The other node--representing the 
common disease--would be similarly reinforced except that it would 
receive the reinforcement of 1 on common-disease trials. Such a 
network would be conceptually equivalent to simultaneously "con- 
ditioning" the symptoms to the alternative diseases to various extents, 
according to the Rescorla-Wagner (1972) model. If the activation 
levels on the two output nodes are transformed by an exponential 

function, that is, OR = e O y' wiRai where OR is the activation in the i - i  , 

rare output node and WiR is the weight from Symptom i to the rare 
node, and then one applies ratio response rule to get choice probabil- 

Om 
ities, with P(RISk) (O~a + O~C)' one would arrive at exactly the 

same expression as Equation 7. 
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in Figure 2 (right side). The difference between these two 
calculations (.67 vs..50) comes from the impact of the infor- 
mation about the absence of the other symptoms in Pattern 
H. Because the observed P(RIPattern H) = .66 is close to the 
subjects' judgments about the P(RIs0 = .67, it is tempting to 
suggest that perhaps subjects were basing their estimates of 
P(Rlsi) on their estimates of the conditional probability of the 
pattern that contained only si and no other symptom (e.g., 
Pattern H). An examination of the other single-symptom 
patterns, however, revealed that the observed choice proba- 
bilities were .25,. 15, and .03 for the patterns containing only 
symptoms s2, s3, and s4, respectively, whereas the observed 
direct ratings of P(RI s~) for these symptoms were .46, .34, and 
.22, respectively. Thus, although this confusion may contrib- 
ute to subjects' judgments, it does not provide a fully satisfac- 
tory account of the data. Moreover, evidence collected in later 
experiments suggests that nearly all subjects understood the 
difference between these two cases, s~ alone versus st with the 
sj absent. 

Discussion 

The primary results of this experiment, that is, the proba- 
bility estimate differences shown in Figure 3, confirm the 
predictions of the LMS rule within this network model. It is 
important that subjects conformed to prediction in believing 
that symptom s~ was a stronger predictor of the rare disease 
than of the common disease, although objectively the two 
diseases were equally likely whenever symptom sl appeared. 
Subjects behaved as though they were neglecting the higher 
base rate of the common disease regardless of what symptoms 
the patient presented. 

This result suggests that the subjects fell prey to a form of 
base-rate neglect; in making predictions they erroneously 
judged that the presence of a symptom (s~) highly represent- 
ative of the rare disease was strong evidence for diagnosing 
the rare as opposed to the common disease. This result brings 
to mind many results in research on judgment: People con- 
sistently overestimate the degree to which evidence that is 
representative or typical of a rare event is actually predictive 
of it (Kahneman & Tversky, 1973). When answering ques- 
tions such as "What is the probability that Object A belongs 
to Class B?", people often resort to a representativeness heu- 
ristic in which their judgment reflects the degree to which 
Object A resembles a prototype of Class B objects (Tversky & 
Kahneman, 1982). For example, in estimating the probability 
that a particular student is a computer science major in a 
classroom known to be 80% English majors, people base their 
predictions largely on the degree to which the personality 
characteristics of the student are representative of their ster- 
eotypes of computer wizards, thus neglecting the influence 
that an 80% base rate should have (Kahneman & Tversky, 
1973). Most studies demonstrating such neglect of base rate 
in classification judgments have used natural categories with 
familiar prototypes (e.g., feminists and engineers), and base- 
rate information has generally been presented to subjects as 
abstract numerical information (Tversky & Kahneman, 
1982). Base-rate neglect was demonstrated in an experiment 

in which information about categories and base rates was 
learned by subjects from examples. Of course, there is no 
assurance that the two forms of base-rate neglect are generated 
by similar causal mechanisms. 

One might try to explain our results in Figure 3 by suppos- 
ing that subjects completely ignored base rates of the two 
categories in making their judgments. For instance, we earlier 
indicated how prototype and feature-frequency models could 
be interpreted to be insensitive to base rates of the two 
categories. But this explanation fails because if subjects had 
been ignoring base rates, then they should have judged symp- 
toms s~ and s2 to be as diagnostic of the rare disease as they 
judged symptoms s3 and s4 to be of the common disease. (See 
the symmetry of Figure 2, left side, around .5.) But as Figure 
3 shows, this pattern was not obtained. Only s~ was judged to 
be a significantly stronger predictor of the rare disease than 
the common disease. 

Though subjects' probability estimates reflected less influ- 
ence because of base rates than objectively required, the 
estimates nonetheless show definite sensitivity to the differing 
base rates. These results are consistent with current judgment 
studies that suggest that in most situations base-rate infor- 
mation is not ignored, only underused (Borgida & Brekke, 
1981; Kassin, 1979). Alternative category-learning models, 
which predict either total neglect of base rates or full norma- 
tive use of base-rate information, do not provide an adequate 
account of the data. The LMS rule, however, correctly predicts 
that in this situation only s~ will be perceived as stronger 
evidence for the rare disease; the other symptoms are pre- 
dicted to be stronger evidence for the common disease. 

This LMS-network model views the base-rate neglect ob- 
served here as the outcome of a learning process (of adjusting 
weights according to Equation 5). Other demonstrations of 
base-rate neglect, however, have involved only flawed judg- 
ment processes, not learning. Thus Bar-Hillel (1980) showed 
that even when given direct numerical values for base rates 
and the probability of the features given the categories, sub- 
jects still underused the base-rate information, as though their 
calculations were flawed. Conceivably, our subjects may have 
learned veridical probabilities of the diseases and the disease- 
to-symptom associations but then miscalculated (as did Bar- 
Hillel's subjects) in directly estimating the probabilities of the 
rare disease given each symptom. 

Such a possibility could be checked by asking subjects to 
estimate the base rate, P(R), and the conditional probabilities 
of the symptoms given each disease as well as the disease- 
given-symptom conditionals (which we obtained). In its sim- 
plest form the network model would interpret the strength of 
association from a disease to a symptom to be identical to the 
association from that symptom to that disease. Unpublished 
data collected by Gluck (1984) suggested this is true: In a 
category-learning experiment that unconfounded P(Category 
CIFeature X) from P(Feature XICategory C), subjects who 
had been trained to discriminate different levels of P(Category 
CIFeature X) completely transferred these values over when 
they later estimated the reverse probabilities, P(Feature 
X ICategory C). They behaved as though the latter quantity 
were equivalent to the former quantity, on which they had 
been trained. 
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Exper imen t  2 

Many learning phenomena--including overshadowing, 
blocking, and the effect of  intertrial presentations of  the 
unconditioned stimulus--indicate that animals learn about 
the contingency or informational value of  the CS (Prokasy, 
1965; Rescorla, 1968) rather than learn simply about the 
contiguity of  the CS and US (Hull, 1943; Spence, 1956). The 
importance of  the Rescorla-Wagner (1972) model is that it 
posits a single associative process that accounts for the role of  
these informational variables. In the second experiment we 
sought to test directly one of  the basic predictions of  this 
LMS-network model, namely, that different cues compete to 
be the more valid predictor of  an outcome. 

If  subjects in the category-learning experiment are basing 
their probability judgments on subjective association strengths 
learned according to the LMS model, then one might expect 
to find analogs of  the competitive learning effects that occur 
in classical conditioning experiments. For example, to the 
extent that a stimulus cue is redundant with a stronger or 
more valid cue in predicting a US, the model expects that the 
associative strength of  that cue will be greatly attenuated 
(Wagner, 1969). Analogously, in the category-learning para- 
digm one should be able to attenuate the apparent diagnostic- 
ity of  symptom s, by making one of  the other symptoms a 
truly reliable and strong predictor of  the rare disease. Adding 
a strong predictor of  the rare disease should greatly attenuate 
a subject's erroneous belief that s~ is itself strong evidence for 
the rare disease. The extent of  this attenuation should increase 
the more often the valid predictor cooccurs with s,. Thus in 
our category-learning paradigm we expected to attenuate the 
apparent diagnosticity of  symptom s~ (found in Experiment 
l) by making one of  the other symptoms a truly reliable and 
strong predictor of  the rare disease. To test this prediction we 
designed Experiment 2 to be identical to Experiment 1 except 
that symptoms s2 and s3 were more valid predictors of the 
rare and common diseases, respectively. In particular, the 
likelihood of s2 given the rare disease was increased, and its 
likelihood given the common disease was decreased: s2 was 
present with p = .9 in rare disease patients and with p = .  l in 
common disease patients. Similarly, but conversely, the like- 
lihood of  sa given the rare disease was decreased, and its 
likelihood given the common disease was increased: s3 oc- 
curred with p = .  1 in rare disease patients and with p = .9 in 
common disease patients. 

A comparison of  the critical conditional probabilities used 
in the two experiments is shown in Figure 4. This illustrates 
the actual conditional probability differences for the two 
symptoms, s, and s4, whose objective relationships remained 
unchanged from Experiment 1 to Experiment 2 (see Figure 
3). Symptom s, is still equally diagnostic of  the two diseases 
(and hence the objective value of  P(RIs,) is.5). A model that 
assumes that subjects are independently learning the pairwise 
contingencies of  the symptoms and diseases predicts that the 
manipulation of  predictiveness of  s2 and s3 should not influ- 
ence the judgments for symptoms s~ and s4. 

The LMS rule, however, is a competitive learning algorithm 
in which co-occurring cues compete to predict the outcome, 
and those cues that are the most valid and nonredundant are 

Figure 4. Results and predictions for Experiment (exp) 2. The 
objective probabilities of the rare disease given Symptoms s~ and s4 
are shown as a dashed line (with the scale along the left vertical axis); 
these also correspond to the predictions of exemplar and feature- 
frequency learning models. The predictions of the least mean squares 
(LMS) rule, based on asymptotic levels of associations, are shown as 
shaded areas above or below the middle axis to indicate that they are 
to be interpreted relative to the scale on the right. These predictions 
are unique to within a scalar multiple. Hence the critical aspect of 
the predictions is the relative degree to which they are either above 
or below the zero line (corresponding to a prediction of 0.5 on the 
left scale). The observed means of subjects' estimates of P(rare 
Diseasels,) are shown as a solid line (with the scale along the left 
vertical axis). 

favored for strengthening. Applying the LMS rule to the 
design in Experiment 2 (see Appendix A), we derive asymp- 
totic association strengths of .  18, .76, - .94,  and - .20,  for s~ 
through s4, respectively. 

The weights are graphed in Figure 4, along with the analo- 
gous measures from the first experiment (taken from Figure 
3). As anticipated, the LMS rule expects considerable atten- 
uation of  the association strength between s~ and Disease R, 
and between s4 and Disease C. 

Method 

Thirty-four new volunteers from Stanford University's introduc- 
tory psychology course served as subjects. The procedure in this 
experiment was identical to that of Experiment 1. The only difference 
was in the probability of symptoms s2 and s3 being present in patients 
having Disease C versus Disease R (see Figure 4). Following 250 
training trials, the subjects gave numerical estimates of the probability 
of each disease given each symptom considered singly. 

Results 

As predicted by the LMS rule, the results in Experiment 2 
showed that the apparent diagnosticity of symptom s~ for the 
rare disease was significantly attenuated by introducing 
greater validity for symptom s2 toward the rare disease. The 
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d i rec t  estimate of  the conditional probabilities of  the rare 
disease given symptom s~ (without information of  other symp- 
toms) decreased from .67 (in Experiment 1) to .54 in Experi- 
ment 2. This was a significant decrease, as the model pre- 
dicted, t(51) --- - 1.93, p < .05, (one-tailed). The model also 
predicted that symptom s4 would have its association with the 
common disease attenuated. The direct estimate of  the con- 
ditional probabilities of  the rare disease given symptom s4 
increased from .24 (in Experiment 1) to .34 in Experiment 2. 
This was also a significant increase, as the model predicted, 
t(51) = -2.04,  p < .025 (one-tailed). 

Predicting Classificatory Responses 

Again one may compare the predicted disease-choice pro- 
portions with specific symptom patterns obtained over the 
last 50 training trials. Recall that the observed proportions 
have a large standard error because of  the small sample sizes. 
Using Equation 8 as in Experiment 1, we estimated O = 4.6. 
Using the symbols in Table 1 to represent the symptom 
patterns, we plotted the observed proportions of rare disease 
choices to the patterns in Figure 5 against the proportions 
predicted by the LMS rule. 

From the scatter of  the data points along the diagonal, one 
sees that the correlations with the observed proportions are 
quite high: r = .97 for the LMS model (average discrepancy 
was .09) and also r = .99 for the probability-matching predic- 
tions (average discrepancy was .07). The goodness of fit, 
however, was significant for both models: x 2 (14) = 53, p < 
.001, for the LMS predictions and x 2 (14) = 91, p < .001, for 
the probability-matching predictions. Once again the predic- 
tions of  the two models are highly correlated (r = .97) with 
each other. 

Discussion 

The results of  Experiment 2 confirm a critical prediction 
of  the LMS rule for learning. The apparent diagnosticity of 
symptom s~ in Experiment 1 was significantly attenuated in 

Experiment 2 when s2 became more diagnostic. It is as though 
symptom s~ "lost its punch," or its claim on the subject's 
attention, when it was put into competition with a truly 
diagnostic symptom for the rare disease. It is this competitive 
nature of  cue-outcome association learning that gives the 
LMS rule its distinctive edge over other learning rules. The 
rule implies that people do not learn sets of  independent cue- 
outcome associations, wherein the contingent correlation for 
each cue to each outcome can be calculated separately. Ac- 
cording to the LMS rule, independent cue-outcome correla- 
tions have little behavioral impact. The key to associative 
strengthening of  a cue is its validity or diagnosticity relative 
to other cues present in the situation. 

It was this key variable, the relative validity, that was 
changed from Experiment l to Experiment 2. Among the 
cues for the rare disease in Experiment l, symptom sl was 
relatively more valid. But in Experiment 2, symptoms s2 and 
s3 were made more valid, so that symptoms sl and s4 lost their 
former associative differential, despite maintaining the same 
correlation with the diseases as they had in Experiment 1. 
The downgrading of these symptoms in Experiment 2 is 
analogous to the overshadowing of  a stimulus by a more 
salient or more diagnostic stimulus in compound-cue classical 
conditioning. Indeed, our results echo conditioning phenom- 
ena such as blocking, overshadowing, and low CS-US corre- 
lations, which were originally offered as evidence for the 
competitive nature of  cue-outcome associative learning. 

Exper iment  3 

The closest competitor to the LMS rule is the learning rule 
that implies asymptotic probability matching at the level of  
whole patterns. Estes (1959) long ago formulated two models 
that achieved different versions of  probability matching. He 
called these the component model and the pattern model. If  
one coordinates his terms to our experiment, a component 
(or stimulus element) would correspond to a single symptom, 
whereas a pattern would correspond to the entire configura- 
tion of  symptoms presented as a patient. Thus our experiment 
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has four stimulus components but 15 stimulus patterns ( 2  4 - -  

1). The component model is identical to what Estes (1985) 
later called the feature-frequency model. 

Given these stimulus identifications, one can then write 
linear difference equations corresponding to the trial-by-trial 
impact of Disease C versus R feedback trials in changing the 
associative probability of that stimulus (component or pat- 
tern) to the disease categories. If the changes in associative 
probabilities on the two kinds of disease trials are symmetric, 
then the long-term impact of a training schedule is to produce 
stimulus-to-category associative probabilities that match the 
objective probabilities of each disease category given that 
stimulus. When one coordinates the theoretical stimuli with 
the component symptoms, then the model expects the symp- 
tom-to-disease probabilities to be matched. According to this 
component identification, the proportion of Rare disease 
responses to a compound of symptoms (e.g., sl and s3 and s4) 
would be calculated by averaging the associative probability 
of each presented symptom toward the rare disease. But this 
component-matching model has been shown to fail to predict 
any aspect of the results. 

Alternatively, one may identify the stimuli of the theory 
with complete patterns of symptoms and suppose that these 
become associated with the disease categories as intact units. 
Estes (1959) called this the pattern model. By this identifica- 
tion, then, each of the 15 symptom patterns in the experiment 
would tend asymptotically to become associated with Disease 
R with a probability equal to the likelihood that when that 
pattern occurred the patient had Disease R, that is, would 
match the actual P(Rlpattern). Given the experimental base 
rates of the categories and the independent conditional prob- 
abilities of the symptoms given each disease, one can calculate 
these objective probabilities. It was those objective pattern 
probabilities that compared so favorably with the observed 
choice proportions in Table 1. 

A curious contrast among the LMS model, Estes's (1959) 
two models, and the data may be noted here. Estes's (1959) 
component model predicts the data rather poorly, whereas 
the pattern model fares far better, especially with the choice 
proportions. On the other hand, the LMS rule that identifies 
the stimuli with the four symptoms (the components) does 
quite well in predicting the asymptotic choice proportions to 
the patterns. In fact, in this respect the LMS model with 
stimuli identified as components nearly mimics the Estes 
(1959) pattern model in its asymptotic choice predictions. 
The main discrimination between the two models occurred 
in the subjects' direct estimates of the probabilities of the two 
diseases given each of the symptoms singly. 

In terms of Estes's (1959) pattern model, one can imagine 
that subjects derive such single symptom estimates in one of 
two ways. The first way would be to report the (weighted) 
average probability of Disease R as pooled over the eight (or 
23) patterns that contained symptom s~. This is equivalent to 
the Bayesian probability of Disease R conditional on appear- 
ance of symptom s~ and is the measure plotted in Figures 2 
(left side) and 3. Such predictions fail in systematic ways (see 
Figure 3). The second way is to set the probability of Disease 
R (given only knowledge of cue s~) equal to the theory's 
probability of Disease R (given the single pattern with s~ 

present and the other symptoms absent). Clearly, however, 
these estimates are also less accurate than those of the LMS- 
network model. Thus neither rule for calculating direct esti- 
mates from the pattern model has proved successful. 

In the next experiment, we sought an arrangement that 
might test more directly the LMS model against Estes's (1959) 
pattern model. The design chosen hinges on a difference in 
the way the component and pattern models treat absence of 
a symptom (patient does not have a runny nose) in contrast 
to presence of an opposite symptom (patient has a stuffy 
nose). Imagine that four pairs of opposing or mutually exclu- 
sive symptoms (e.g., runny nose and stuffy nose) are defined 
and that they are four binary dimensions. 3 Each patient is 
then defined as having one or the other value on each of the 
four dimensions. One can then carry out the basic learning 
design in Experiment 1. However, when the stimulus schedule 
calls for absence of symptom s~, one replaces that by the 
mutually exclusive, opponent symptom, called sT. 

Interestingly, Estes's (1959) pattern model treats these two 
situations as practically identical, because the model treats 
patterns as unanalyzable wholes. As long as the 16 different 
patterns in Experiment 3 have the same probabilistic associ- 
ations with the diseases as did the corresponding patterns in 
Experiment 1, the pattern model predicts that the same be- 
havioral profile should be learned. 

The theoretical situation is different for the LMS-network 
model. In fact, there are at least two different ways to represent 
the opponent-symptom situation within the network frame- 
work, and they make significantly different predictions. The 
two network representations are depicted in Figure 6. Net- 
work A represents each opponent symptom pair as a single 
input node that receives activation of + a or - a, depending 
on which member of the opponent pair is presented on a 
given trial (patient); we refer to this as the four-component 
model. Alternatively, Network B represents each symptom, 
s~, and its opponent of the pair, s 7, as two distinct input nodes, 
one (and only one) of which is activated for each patient; this 
comprises eight input nodes. Notice that Network A has a 
built-in negative correlation between any symptom and its 
opponent, whereas Network B is silent on this issue. Insofar 
as it takes a stand on the issue, the linear-regression model 
would treat the experiment in terms of Network A, because 
it would compute a perfect negative correlation between each 
s~ and sT; hence, an eight-variable regression model would 
collapse to a four-variable model. 

Both of these network representations are plausible and, 
indeed, correspond to different stances in the connectionist 
literature. One obvious implication of Network A is strong 
symmetry in activation for a given pattern and its complement 
(obtained by using the alternate values in the pattern). For 
example, if Pattern I (from Table l) is sl - s~ - s; - s4 and 
yields output activation G, then its complementary pattern 
(Pattern F from Table l), s7 - s2 - s3 - s~, should yield output 
- G. There are eight such complementary pairs of patterns, 
so strong tests of this symmetry prediction from Network A 
are available. Incidentally, if subjects match probabilities in 

3 Tversky (1977) called these substitutive features (e.g., color of 
eyes) rather than additive features (presence or absence of glasses). 
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A 
SYMPTOM 1 (+c~/-cQ - - - ~ ~  

DISEASE (+n/-~) 
SYMPTOM 2 (+cq-c~) - - - ~ ~  

SYMPTOM 3 (+c~/-c0 

SYMPTOM 4 (+ct/-c0 

B 
SYMPTOM 1 (c~/0) --*q~.. . .~ 
SYMPTOM 1" (0/c0 - - -~ . . . . . . . . . . . . . .~~ 

SYMPTOM 2 (c~/0) --~q~.---_.~ ~ DISEASE 
SYMPTOM 2* (0/cQ - - - ~ ~  

SYMPTOM 3 (c~/0) - - - ~ ~ ~  
SYMPTOM 3* (0/cQ - - ~ - ' - - - ~  

/ /  
SYMPTOM 4 (ct/0) - - ~ r f /  
SYMPTOM 4* (0/c0 ---)r" 

(+~./-~) 

Figure 6. (A) A four-component network for classifying the stimuli 
from Experiment 3 that represents each opponent symptom pair as 
a single input node that receives activation of +a or - a ,  depending 
on which member of the opponent pair is presented on a given trial 
(patient). (B) An eight-component network for classifying the stimuli 
from Experiment 3 that represents each symptom, sl, and its opponent 
of the pair, s~, as two distinct input nodes, one (and only one) of 
which is activated for each patient. 

their diagnoses of  symptom patterns (as they did in Experi- 
ments 1 and 2), then this will violate the four-component 
model 's  predictions for complementary patterns. 

By a related line of  reasoning, similar predictions follow 
from Network A about subjects' estimates of  P(Rlsi). The 
four-component model  predicts that subjects' estimates of 
P(RIs/) and P(Rlnot  si) will sum to one. These predictions 
provide further tests of  the four-component model. On the 
other hand, Network B, treating the eight symptoms as dis- 
tinct, makes no such strong predictions. 

Turning first to the predictions of Model B, Figure 7 shows 
the predicted weights for the eight-component model. The 
derivation of  these asymptotic weights is slightly different 
from that in Experiments 1 and 2; see Appendix B for details. 
Also shown are the probabili ty-matching predictions of  Estes's 
(1959) pattern model and, for comparison, the association 
weights predicted by the LMS model for Experiment 1. 

Note several features of  these predictions. First, the pattern 
model 's  predictions for the positive symptoms (s~, s2, s3, and 
s4) in Experiment 3 (see Figure 7) are identical to what they 
were in Experiment 1 (see Figure 3). Second, the predictions 
of  the LMS model of  the estimates of  P(Rlst) for symptoms 
s~ through s4 differ mainly by being less extreme (i.e., closer 
to .5) in Experiment 3 than they were in Experiment 1. Thus, 
compared with Experiment 1, symptom s~ in Experiment 3 
should appear to be less diagnostic of  the rare disease, whereas 
symptoms s3 and s4 should appear less diagnostic of the 

common disease. In fact, the LMS model expects a general 
regression toward .50:.50 in the estimates of disease probabil- 
ities in Experiment 3. One reason for this regression is that in 
Experiment 3, a symptom must always appear in the company 
of  three other symptoms; thus it must  always share strength- 
ening increments. 

Third, these two models differ in their predictions for 
symptom s4. The pattern model implies that s] will be asso- 
ciated with common disease, whereas the LMS model predicts 
that s4 will be more associated with the rare disease. 

The differing predictions from the two network models 
along with the predictions of  Estes's (1959) pattern model 
were so compelling that we conducted Experiment 3 to see 
which ones would be closer to the results. 

Method 

As noted earlier, the statistical design and procedures of Experi- 
ment 1 (see Figure 2) were repeated, 4 except that each present or 
absent symptom (e.g., fever or no fever) was replaced by two mutually 
exclusive features (e.g., diarrhea or constipation), one of which was 
always present for each patient. Each patient had four symptoms. 
Thirty-six college-student subjects classified 250 patients, receiving 
feedback on each. After training, the subjects estimated the condi- 
tional probability of each disease given each of the eight single 
symptoms (four mutually exclusive pairs), providing a total of 16 
estimates. 

Results 

Direct likelihood ratings. The primary results are subjects' 
estimates of the likelihood of  Disease R versus Disease C. 
Figure 7 shows the observed probability estimates for the rare 
disease, for each of  the eight symptoms. The data of Experi- 
ment  1 are also shown for comparison. A number of  conclu- 
sions may be drawn from these findings. 

First, we test the four-component model. As noted earlier, 
Network Structure A, which uses + 1 / -1  on input  nodes to 
represent the pairs of  opponent  symptoms, predicts that judg- 
ments of P(Rlsl) should be symmetric around .5 with P(RIsT). 
The data, however, are not consistent with this prediction; 
this is most clearly evident in subjects' estimates of  P(RIs3) 
and P(RIs3), which were both significantly below.5,  violating 
the symmetry prediction of  the four-component LMS model. 

For  the eight-component model  (Network B), the LMS rule 
predicts that s~ will still be considered more diagnostic of  the 
rare disease, in contrast to the .5 value expected by the 
probability-matching models. The data support the LMS pre- 
diction. The estimated P(RIs~) was significantly greater than 
.5, t(35) = 5.46, p < .0005 (one-tailed). 

Second, Network B predicted that the opponent  symptom, 
s4, which is complementary to s4, would be rated as diagnostic 
of the rare disease. Indeed, the observed estimates of  P(RIs]) 
are moderately greater than .5, t(35) -- 1.48, p < .10 (one- 
tailed). The apparent diagnosticity of  symptom s] for the rare 

4 Actually, they differed slightly in that Experiment 1 excluded the 
pattern in which a patient had none of the four symptoms, whereas 
Experiment 3 had no such case. 
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Figure 7. Results and predictions for Experiment (exp) 3. The objective probability of the rare disease 
given each of the symptoms is shown as a dashed line (with the scale along the left vertical axis); these 
also correspond to the predictions of exemplar and feature-frequency learning models. The predictions 
of the least mean squares (LMS) rule are shown as shaded areas above or below the middle axis to be 
interpreted relative to the scale on the right. The observed data from subjects' estimates of P(Rare 
Disease lsi) are shown as a solid line (with the scale along the left vertical axis). The data from Experiment 
1 are also shown for comparison. Note that the objective conditional probabilities for Symptoms 1 
through 4 were unchanged from Experiment 1 to Experiment 3. 

disease violates the probability-matching prediction (see Fig- 
ure 7) of  the pattern model. Also, symptom s4 was significantly 
less diagnostic of  the rare disease than was symptom sl, t(35) 
= 3.01, p < .005 (one-tailed); the Network B model predicted 
a slight trend in this direction. 

Third, comparing the estimates in Experiment 3 with those 
in Experiment 1, we expected the probability estimates for 
symptoms s~, s3, and s4 to shrink toward .5, reflecting less 
competitive dominance. Pooling symptoms s3 and s4, there is 
a significant shrinkage of  the observed estimate (toward.5) in 
Experiment 3 versus 1, t(53) - 2.93, p < .005 (one-tailed). 
The change for sl in Experiment 3 versus Experiment 1 is in 

the predicted direction but not statistically significant (t = 
.95, p > .  10). 

Fourth, the slight change in symptom s2 (from below .5 to 
above .5) was not in the expected direction; however, the 
change was very small and did not differ reliably from .5 or 
from the small difference observed in Experiment 1. 

Choice proportions. As before, one may examine the 
models'  predictions of  the asymptotic proportion of  rare- 
disease choices for each of  the 16 symptoms patterns, where 
Pattern P represents all-Os pattern that was missing in Table 
1. Figure 8A compares the observed proportions with those 
predicted by Network Model B and Equation 7 with O = 
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3.12, Figure 8B compares them with those predicted by 
probability matching, and Figure 8C compares Network 
Model B's predictions with those of probability matching. As 
in the earlier experiments, both the probability-matching and 
Network Model B's predictions correlate very highly with the 
observed proportions, especially given their large standard 
errors. The correlations with the observed proportions are .98 
for the LMS model (average discrepancy was .08) and also 
.98 for the probability-matching predictions (average discrep- 
ancy was .03). The goodness-of-fit statistics are x2(15) = 22.4, 
p > .08, for the LMS predictions and • (15) = 22.6, p > .08, 
for the probability-matching predictions. (Once again the 
predictions of the two models are highly correlated [.99] with 
one another.) 

Turning back to the four-component model, one recalls 
that this model predicts that estimates of P(RI S) and P(RI S*) 
will sum to 1, in contrast to the objective values of these 
probabilities. Contrary to this model's predictions, subjects' 
choice proportions were very close to the objective probabil- 
ities. Furthermore, their choice probabilities clearly violated 
the aforementioned equality; for example, in the two oppo- 
nent patterns considered earlier, subjects' estimates of 
P(RIPattern O) and P(RIPattern P) summed to .45 rather 
than 1, a clear violation of the predictions of the four-com- 
ponent model. 

Discuss ion  

The probability ratings appear to support the eight-com- 
ponent LMS model (Network B), as opposed to the four- 
component LMS model (Network A) and the pattern model. 
Both the eight-component LMS model and the pattern model 
predict a V-shaped graph over the eight symptoms, but the 
LMS model predicts a V that rises above the .5 baseline at 
the two ends. Also, the pattern model expects the probability 
estimates in Experiment 3 for symptoms s~, s2, s3, and s4 to 
be identical to those in Experiment 1. But in fact the two 
profiles for these two symptom lists deviate significantly from 
one another. 

An advocate for the pattern model might argue that because 
Experiment 3 involved more cues (eight vs. four), the contin- 
gencies would be learned more slowly, so that subjects would 
not have reached asymptote in the 250 trials of training. Thus 
their likelihood judgments might be expected to be less ex- 
treme than predicted by probability matching. While this 
"regression to chance" argument has some merit, we note that 
it does not account for the salient results predicted by the 
LMS model, namely, the significant overexpectation of the 
rare disease given symptoms s~ and s4. 

General  Discussion 

We used adaptive network theory to evaluate learning rules 
to describe human probabilistic category learning. As noted, 
to specify an adaptive network model, the theorist must 
specify a network architecture, identify a coding of environ- 
mental stimuli and responses in that network, and specify a 
rule for changing weights adaptively so that the system can 

learn to assign each input pattern to its appropriate output 
pattern. The network architecture we have adopted is the 
simplest possible for a forced choice task, namely, one layer 
of N distinct input units (one per physical stimulus) feeding 
activation directly into one output unit corresponding to the 
two output (disease or response) categories. We have tested 
this simple model and eschewed more complex theoretical 
options, such as multiple layers of association units "hidden" 
between the input and output layers, recurrent feedback loops, 
or multiple-unit representations of each symptom (for the 
range of possibilities, see Rumelhart & McClelland, 1986). 
Surprisingly, with just the simplest network, the optimal LMS 
weights delivered successful predictions in the three experi- 
ments reported here. 

To briefly recap those predictions, the learning conditions 
arranged in Experiment 1 were expected to cause subjects to 
believe that symptom s~ was significantly more diagnostic of 
the rare than the common disease. This prediction was con- 
firmed in contradistinction to alternative theories that pre- 
dicted that subjects' expectations would match the probabili- 
ties of the two diseases given each symptom. By converting 
theoretical strengths into choice probabilities by using the 
logistic function in Equation 8, the LMS model's predictions 
were also reasonably close to the pattern of rare-disease choice 
proportions as asymptote given each of the 15 patterns of 
symptoms. 

The illusory diagnosticity of symptom s~ for the rare disease 
in Experiment 1 depended on the fact that symptom Sl was 
indeed relatively more diagnostic of the rare disease than were 
any other symptoms that might have been present; the LMS 
learning algorithm exploits this relative validity of a cue 
compared with that of its copresent competitors. This analysis 
suggests that the illusion of sl's diagnosticity could be greatly 
reduced by increasing the validity of one of the other symp- 
toms for predicting the rare disease. Conditions similar to this 
were arranged in Experiment 2, and the behavioral outcomes 
were as predicted. 

In Experiment 3, we tested the LMS model against Estes's 
(1959) pattern model, which had closely predicted choice 
proportions to symptom patterns in Experiments 1 and 2. 
The pattern model implies that the same behavior profile 
would be learned when patient-symptom patterns were de- 
fined by the presence or absence of four symptoms as com- 
pared with the presence of a symptom or its opponent symp- 
tom. In contrast, Network B expected the opponent-symptom 
experiment to lead to quite different asymptotic outcomes. 
Given contingencies comparable to those in Experiment 1, 
the use of opponent symptoms in Experiment 3 was expected 
to diminish the extremity of strength differentials to the two 
diseases for symptoms s~, s2, s3, and s4, while leading to a 
reliable overexpectation of the rare disease for the comple- 
mentary symptom, s4. Such results were obtained in estimated 
disease probabilities, and they differed from those predicted 
by the pattern model. 

One of the pleasant surprises was that the LMS association 
strengths can be easily converted into choice probabilities (by 
Equation 7), which provided a close fit to observed disease 
choices for symptom patterns. A curiosity is that the logistic 
transformation of the LMS weights can be chosen to be highly 
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correlated with the objective probabilities of the rare disease 
given each stimulus pattern. In fact, the mimicry is so accurate 
that one would be tempted to estimate O by fitting the LMS 
weights to the objective probabilities of the rare disease given 
each pattern; if one did so and then predicted the observed 
choice proportions, those predictions would then be virtually 
parameter-free, in that no data would be used to estimate O. 

Note again the peculiar fact that the LMS model that 
identifies the stimulus units with individual symptoms deliv- 
ers predictions of near-matching choice probabilities to pat- 
terns of symptoms, which can be achieved within Estes's 
(1959) theory only by identifying the stimulus units with 
complete symptom patterns. As noted before, the two models 
differ in their predictions of subjects' direct likelihood esti- 
mates of disease probabilities given knowledge of only one 
symptom at a time (e.g., see Figures 3, 4, and 7). 

Related Work 

Our experiments provide evidence for the competitive na- 
ture of learning, whereby cues compete for association 
strength according to their relative validity for predicting 
categories. Two recent results provide similar support for this 
competitive rule in studies of human cue-correlation learning. 

One supportive result came in an experiment by Medin 
and Edelson (1988), who demonstrated an extreme form of 
learned neglect of base rate. They presented Symptom Pair 
AB with Disease 1 three times as often as Symptom Pair AC 
with Disease 2. As expected, this led to a majority of Disease 
I choices when subjects were tested with the ambiguous A 
cue. More important, a conflict test on the novel pattern BC 
yielded a surprising majority of Disease 2 choices, thus re- 
versing the direction of the 3-to-1 base rate. As Medin and 
Edelson noted, the LMS learning rule accounts for this 
stronger association of Cue C to Disease 2 than of Cue B to 
Disease 1. Because the 3:1 base rate causes A to become 
predominantly associated with Disease 1, it increases the 
predictability of Disease 2 to AC. In such circumstances, the 
LMS rule implies that Cue B will be relatively more blocked 
than Cue C in acquiring their respective associations, so that 
Cue C will dominate B in the BC conflict test. And this was 
the paradoxical reversal of base rate that was to be explained. 

In related research by MacMillan (1987), subjects were 
found to keep track of the relative frequency of a feature (cue) 
within a category only if it was somewhat diagnostic for the 
presence versus absence of that category. For example, if 70% 
of all patients with a target disease had stomach cramps and 
so did 70% of patients without the disease, subjects came to 
ignore this symptom because it was irrelevant for diagnosing 
the disease. More important, when asked to estimate the 
proportion of disease patients who had this symptom, subjects 
grossly underestimated the actual relative frequency, Mac- 
Millan showed that this neglect of relative frequency of invalid 
features develops over training as subjects learn the irrelevance 
of these features. MacMillan (1987) concluded, "Within-cat- 
egory feature frequencies are retained only if they are useful 
in distinguishing that category. If feature frequencies are 
irrelevant in distinguishing category members from nonmem- 

bers, there is no need to retain feature frequency information 
that is sorted by category" (p. 38). MacMillan's results discon- 
firmed theories such as Estes's (1959) feature-frequency model 
and Medin and Schaffer's (1978) context model, which store 
veridical frequency counts; she showed instead that her re- 
sults, that frequency counts depend on the validity of the cue, 
were well fit by our adaptive network model with the LMS 
learning rule. 

Extensions of  the Model 

We have already noted that the network model we tested 
has a simple architecture and identifies stimulus patterns 
(such as one or more symptoms) in a simple, direct manner. 
We are currently investigating several modifications or 
amendments of the simple network theory by way of com- 
puter simulations. One modification assumes that of each 
trial one or more background stimuli are presented independ- 
ently of whatever symptom pattern the experimenter is pre- 
senting. This background cue serves the same role as the 
experimental context or the "conditioning apparatus" in the 
studies by Rescorla and Wagner (1972). Our analyses indicate 
that the addition of a context cue does not improve the 
model's ability to predict our data. 5 For example, for Experi- 
ment 1 the model with the context cue predicts probability 
ratings that deviate about twice as far from the data as do the 
predictions of the model without the context cue. Moreover, 
the context-cue model predicts in Experiment 1 that symptom 
s2 would become predominately associated with the rare 
disease, a prediction not supported by data. Such predictions 
arise because the omnipresent context cue would become 
strongly associated with the common disease. Thus the pre- 
dicted association between the symptoms and the common 
disease would be attenuated by the competitive nature of the 
LMS algorithm. Compensating for this attenuated association 
with the common disease, the context-cue model expects the 
symptoms to become more strongly associated with the rare 
disease. But this pattern of changes caused the context-cue 
model to predict the data more poorly than did the simpler 
model. 

Another theoretical variation we are investigating assumes 
that sensory units themselves are interconnected by links with 
adjustable weights. Whenever two sensory units are on to- 
gether or off together, the link between them will be strength- 
ened. Such a network of intersensory connections can learn 
symptom-symptom correlations across patterns as well as 
symptom-disease correlations (as our current network does). 
Such amendments will presumably be required for a one- 
layer model to handle results by Medin, Altom, Edelson, and 
Freko (1982) and others who have demonstrated subjects' 
sensitivity to such symptom correlations. 

In conclusion, we have tentatively accepted the LMS error 
criterion as confirmed by the results of Experiments 1, 2, and 
3. We are currently conducting further tests of implications 
of the LMS rule in the symptom-disease learning paradigm. 

5 The addition of a constant context cue to the network model has 
an effect similar to that of adding a constant to the linear-regression 
model. 
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We are encouraged not only that the LMS rule of connection- 
ist theories that fits human learning data links with the 
Rescorla-Wagner (1972) model of conditioning but also that 
it implies the phenomenon of base-rate neglect, which has 
proved to be a robust phenomenon in the literature of judg- 
ment and decision. Such theoretical connections across dis- 
parate research areas are especially encouraging to the goals 
of cognitive psychology. 
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A p p e n d i x  A 

To find asymptotic values for the weights in the adaptive networks 
used here, we derive an equation for the expected value of the weights 
at time t and then let t become large. This derivation was adapted 
from the work of Parker (1986) and Stone (1986). The basic least 
mean squares (LMS) learning rule says that the change in weights, 
AWU, from input node i to output node j is governed by 

(A-l )  

where at is the activation on input node i, dj is the desired output for 
node j ,  and the summation is over the n input nodes. Because the 
weights are updated at discrete trial intervals t = 1, 2 . . . . .  we index 
Equation A-1 to make this trial dependence explicit, where 

AW~j(t) = r  k=lY'Wkj(t)ak(t)]a~(t)" (A-2) 

We can recast Equation A-2 in matrix notation by using the column 
vectors Wj(t) and A(t), where 

w, A t )  

, 

WAt  ) = w,At ) 

w.At) 

a , ( t ) l  

and A ( t ) =  a, ( t ) l  

a . ( t ) l  

We can now rewrite Equation A-2 in vector notation as 

AWj( t )  = r - Wi( t )rA( t )]A( t ) ,  (A-3) 

where Wj (t)r is the transpose of Wj (t). Equivalently, 

Wj ( t+  1 )=  Wj(t) + 1 3 [ d j ( t ) -  Wj( t ) rA( t ) ]A( t )  

= W~(t) + Bdj( t )A(t )  - [1[ Wj( t ) rA( t )]A( t ) .  

Note that WAt)rA(t) is a scalar multiplier and can be reexpressed as 

Wj( t ) rA( t )  = ~ W k j ( t ) a ~ ( t ) = A ( t ) r W j ( t ) .  
k=l 

With this equality, we can regroup the terms in Equation A-3 so that 

I, Vj(t + 1) = Bdj( t )A( t )  + [ I -  BA( t )A( t )  r] WAt) ,  (A-4) 

where I is the identity matrix and A(t)A(t) r is the symptom covari- 
ance matrix, 

a l ( t )  2 . . .  a~(t)a,,(t~ 

A( t  )A(t  ) r = : " . .  �9 

a.( t)al( t)  . . .  a . ( t )  2 

Equation A-4 is recursive in that the expression for Wj(t + 1) depends 
on Wj (t) and also A (t) and dj (t). For stationary stochastic inputs, the 
expected matrices E[A(t)] and E[dj(t)] are independent of t, so we 

may rewrite A (t) as A and dj (t) as dj, and El.4 (t)A (t)r Wj (t)] becomes 

E[AA rlE [ ~ ( t ) l .  Hence 

E [ W A t  + 1)] = BE[4A]  + {I - BE[AAr]}E[WAt)] .  (A-5) 

Because the inputs are stochastically stationary, it can be shown that 
as long as O is small enough that the magnitudes of the eigenvalues 
of {I - BE[AAr]} are less than 1, the weights will converge and 
lira E[Wj(t + 1)] = lim E[Wj(t)] = E[Wj] (Parker, 1986). Hence 

E [ W j ]  = ~ E [ 4 A ]  + { I -  BE[AAr]JE[Wj] .  (A-6) 

If all the rows (or, equivalently, columns) of E[AA r] are linearly 
independent, then E[AA r] is invertible, and a unique LMS solution 
exists for the weights. If E[AA r] is not invertible, then see below. 
Equation A-6 reduces to 

E[ ~ 1 = E[AA TI-IE[djA], (A-7) 

which is the optimal LMS solution to the learning problem. With 
sufficiently small /3, the LMS rule will converge to this solution 
regardless of the initial configuration of the weights. If E[AA r] is not 
invertible (i.e., the determinant is zero), then there exists more than 
one set of weights that will give an LMS solution (see Appendix B). 
In this latter case, the convergence of the network does depend on 
the initial weights. 

From Equation A-7, we can derive a closed-form expression for 
the asymptotic values of the weights for categorization problems in 
which the likelihoods of the features (symptoms) within a category 
(disease) are independent of each other. This expression will be in 
terms of the overall probabilities of the categories (i.e., the base-rate 
frequencies) and the probabilities of the features given the categories. 

Because this derivation and the expressions are quite cumbersome 
for four symptoms, we illustrate the method by deriving an expression 
for the weights in a simpler arrangement that uses only two symptoms, 
sl and s2, and two disease categories, C1 and 6"2. As noted earlier, the 
asymptomatic weights in a network for a forced choice between two 
mutually exclusive alternatives (using +1 / -1  as feedback) ean be 
derived from a network in which there are two output nodes, one for 
each choice. Each of the output nodes in such a network corresponds 
to one of the two categories, receiving a +1 reinforcement in the 
presence of that category and a 0 reinforcement in its absence. If 
these two output nodes are C, and C2, then w~, the asymptotic weight 
of the association between si and the output node in the single-output 
note network, equals w~ ~ - w~2, the difference between the association 
strengths between s~ and the two output nodes in the two-output node 
model. Because of this, we simply derive an expression for the weights 
into one of the output nodes (in the two-output node network), for 
example, C~, assuming that it receives feedback of 1 when C~ occurs 
and 0 when C2 occurs. In this case, the relevant terms of Equation 
A-7 become 

[ P(Sl) P(s, & s2)]-' 
E[AAr]-' = LP(Sl & s2) P(s2) ] 

1 [ P(s2) 
- -  P ( S I ) f f ( S 2 )  - -  [-P(Sl & $2) 

P(& & sz) 2 

For C~, 

- - P ( s I  • $2)] (A-8) 
P(&) ] " 

& c,)1 
E[d,A] = LP(s 2 & C~)J" (A-9) 
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Thus, by combining Equations A-8 and A-9, we obtain the weights 
of the cues toward Cj of 

E[Wjd = E[AArlE[&AI 

P(s, & C,)P(s2) - P(s, & C,)P(s, & s2) ] 
- P(s2 & C,)P(Sl &. $2) + P(S2 & Cl)P(s l )J  

e ( s l ) e ( s 2 )  -- P(SI • 5"2) 2 
(A-10) 

Considering the top term of Equation A-10, the association between 
st and C~, we obtain 

P(s, & G)P(s2) - P(s2 & C~)P(st & s2) 
e(Sl)P(s2) -- P(s, & s2) 2 

P(s, & CI)P(s2)] - [P(s2 & C,)P(sl & s2!] 
j 

P(s~ & s2) 2 
1 

e(s, )e(s2) 

= P(C, I s, ) - P(C~ I s2)P(s21 s, ) 
1 - P(s, I s2)P(s2ls,) 

(A-11) 

E[w,,] = 

Equation A- 11 shows that the expected value of the weight between 
symptom Sl and disease category Cj is proportional to the evidential 
weight of sj for C~, for example, P(CJIsl), minus the evidential 
weight of the other symptom, s2, for that category weighted to reflect 
the degree to which s2 co-occurs with s~. The asymptotic weights are 
also inversely proportional to one minus the contingency between 
the two symptoms, for example, P(Sl I s2)P(s2 [ s~); but, because the 
denominator is common to all weights in the network, this term does 
not influence comparisons among weights. If one increases the expres- 
sion to include three and four symptoms, one will see analogously 
that the overall weights are determined by the conditional probabili- 
ties of C1 given s~ minus the conditional probabilities of the other 
symptoms, weighted by their independent degrees of co-occurrence 
with Sl. 

To numerically calculate the actual asymptotic values for the four 
symptoms from Experiment 1, go back to Equation A-7. One can 
express E[AA r] and E[dA ] in terms of the overall frequencies of the 

disease categories, P(R) and P(C), and the likelihoods of the four 
symptoms given the diseases. Because at = 1 if si is present and 0 if 
si is absent and because P(R) + P(C) = 1, one can derive that E[aiaj ] 
= P(s~ & sj I R)P(R) + P(s~ & sj I C)P(C) if i is not equal to j and that 
E[a~aj] = E[a 2 ] = P(& I R)P(R) + P(& I C)P(C) = P(s~) i f / =  j.  We 
wish to obtain the symptom covariance matrix, E[AAr], which, as 
noted before, is 

E[a 2] " " E[a4al ] 1 

E[AA r] = : 

E[ala4] E[a~] ] 

Using the relations noted already plus the probabilities from Experi- 
ment 1, one obtains 

.347 .121 .121 .139] 
[.123 .375 .139 .179 I 

E[AAT] = [ . 1 2 1  .139 .433 .225]" 

[..139 .179 .225 .578 / 

Similarly, one can calculate the correlations between the training 
signals and the symptoms, E[dA]. Because d = 1 if Disease R is the 
correct diagnosis and -1  if Disease C is correct, one will have E[dai] 
= P(s~l R)P(R) - P(s~[ C)P(C). Using the probabilities from Exper- 
iment l, one has 

r P ( s l I R ) P ( R ) - P ( s I I C ) P ( C ) ]  [ _ 0 4 1  
]P(s2 I R)P(R)  - P(s21 C)P(C) [ = .14 

E[dA] -- [P(s3 I R)P(R)  - P(s3 I C)P(C) ] ] - . 2 6 0 ] "  
[.P(s4 I R)P(R)  - P(s4 I C)P(C).] [ .- .462.] 

Substituting these into Equation A-7, one obtains the asymptotic 
values of the weights for the one-output node network: 

1 - 3 4 7 . 1 2 1  .121 1.1 F_041 V 4 3 0 1  
.121 .357 .139 .1791 .14 = i - . 0 4 3 1  

w =  .121 .139 .433 .2251 i - .2601  i - . 3 0 6 1 ,  
1.139 .179 .225 .578_] 1-.462..] 1- .7711 

and these are plotted in Figure 3. The asymptotic weights for Exper- 
iment 2 can be derived in a similar manner. 

A p p e n d i x  B 

To derive the asymptotic values of the weights for Experiment 3, 
one proceeds as in Appendix A, calculating the expected symptom 
covariance matrix: 

E[AA r] = 

-3 
.105 
.105 
.12 
0 
.195 
.195 
.18 

.105 .105 .12 0 .195 .195 .18- 

.325 .12 .155 .22 0 .205 .17 

.12 .375 .195 .27 .255 0 .18 

.155 .195 .5 .38 .345 .305 0 

.22 .27 .38 .7 .48 .43 .32 
0 .255 .345 .48 .675 .42 .33 

.205 0 .305 .43 .42 .625 .32 

.17 .18 0 .32 .33 .32 .5 

One then calculates the covariance vector between the training signals 

and the symptoms: 

- 0 - 

- 0 . 1 2 5  

-0 .225  
- 0 . 4  

E[dA] = - 0 . 5  

- 0 . 3 7 5  
-0 .275  
-0 .1  

At this point, apply Equation A-7 to calculate the asymptotic weights. 
In contrast to the analyses of Experiments 1 and 2, however, the 
stimulus environment for Experiment 3 underdetermines the asymp- 
totic weights. In this situation, the asymptotic values depend on the 
initial values of the weights. (This situation should be recognizable to 
those familiar with the model's analysis of the Kamin, 1969, blocking 
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experiment.) In a situation such as this, E[AA T] is not invertible. If, 
however, one assumes that the initial weights are all zero, then it can 
be shown (Parker, 1986) that instead of the inverse, E[AAr] -~, it is 
permissible to use the pseudoinverse, E[AA v]+, where 

E[AA r]+ = 

1.54 .268 .312 
.268 1.42 .262 
.312 .262 1.298 
.366 .229 .146 

-1.126 .100 .004 
.147 -1.06 .055 
.103 .106 -.981 
.049 .139 .171 

m 

.366 -1.13 .147 .103 .049 

.262 .100 -1.06 .106 .139 
1.298 .004 .055 -.981 .171 
.146 -.161 -.024 .060 -.932 
.004 1.06 -.166 -.070 .095 
.055 -.166 1.04 -.073 .005 

-.981 -.070 -.073 1.02 -.026 
.171 .095 .005 -.026 1.08 

When the stimulus environment underdetermines the asymptotic 
weights, there is an infinite set of solutions that minimize the expected 
mean squared error; under these circumstances the pseudoinverse 
provides a solution with the smallest magnitude of weights, as mea- 
sured by the sum of the squares of the weights. When one applies 
Equation A-7 with the pseudoinverse instead of the inverse, the 
asymptotic values of the weights are 

.224 
--.026 
--.152 
--.350 

W =  
- . 4 0 8  
- . 1 5 6  
- . 0 3 0  

.166 

and these points are plotted in Figure 7. Simulation results provide 
further confirmation that these are, in fact, the asymptotes reached 
when the network is started with all zero weights. 

To explore the network model's sensitivity to the initial configu- 
ration of weights, we began by training the network to asymptote by 
using reversal category feedback; that is, we reinforced rare-disease 
trials with -1  instead of + 1 and common-disease trials with + 1 
instead of - 1. This resulted in weights that are just the negation of 
the asymptotes given earlier. Using these weights as an initial config- 
uration, we then switched back to the normal training procedure. 
The network subsequently asymptoted at the original weights already 
given. Because the asymptotic weights from the first phase of training 
were just the reverse of what is actually required for the second phase 
of training, we take these results to suggest that the weights originally 
derived are quite robust to variations in the initial weights. 
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