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Abstract

Computational models of the hippocampal region link psychological theories of associative learning with their underlying physiological

and anatomical substrates. Our approach to theory development began with a broad description of the computations that depend on the

hippocampal region in classical conditioning (Gluck & Myers, 1993, 2001). In this initial model, the hippocampal region was treated as an

Information-processing system that transformed stimulus representations, compressing (making more similar) representations of inputs that

co-occur or are otherwise redundant, while differentiating (or making less similar) representations of inputs that predict different future

events. This model led to novel predictions for the behavioral consequences of hippocampal-region lesions in rodents and of brain damage in

humans who have amnesia or are in the earliest stages of Alzheimer’s disease. Many of these predictions have, since been confirmed by our

lab and others. Functional brain imaging studies have provided further supporting evidence. In more recent computational modeling, we have

shown how some aspects of this proposed information-processing function could emerge from known anatomical and physiological

characteristics of the hippocampal region, including the entorhinal cortex and the septo-hippocampal cholinergic system. The modeling to

date lays the groundwork for future directions that increase the depth of detail of the biological modeling, as well as the breadth of behavioral

phenomena addressed. In particular, we are working now to reconcile these kinds of incremental associative learning models with other

models of the hippocampal region that account for the rapid formation of declarative memories.

q 2005 Published by Elsevier Ltd.
The hippocampus and associated structures, often termed

the hippocampal region, have long been thought to play a

critical role in memory, although there has traditionally

been very little consensus on what precisely that role is. In

humans, the hippocampal region lies within the medial

temporal lobe, and humans with bilateral medial temporal

damage exhibit anterograde amnesia, a profound deficit for

learning new ‘declarative’ memories for facts and auto-

biographical events. These amnesic patients can, however,

learn new ‘non-declarative’ memories such as simple habits,

skills, and conditioned reflexes (Squire, 1987). In the past,

researchers have often adopted the simple rule of thumb that

declarative learning depends on the hippocampus but non-

declarative learning does not.

This simple dichotomy breaks down quickly, however,

when one looks at more complicated types of non-

declarative learning. For example, a canonical form of
0893-6080/$ - see front matter q 2005 Published by Elsevier Ltd.

doi:10.1016/j.neunet.2005.08.003

* Corresponding author.

E-mail address: gluck@pavlov.rutgers.edu (M.A. Gluck).
non-declarative learning is classical eyeblink conditioning,

in which an animal or human receives an airpuff to the eye

that evokes a protective eyeblink response. If this airpuff

(called the unconditioned stimulus or US) is repeatedly

preceded by a cue such as a tone (called the conditioned

stimulus or CS), the animal learns to respond to the cue by

giving an anticipatory eyeblink (called the conditioned

response or CR), so that the eyelid is closed at the time of

expected airpuff arrival (Gormezano, Kehoe, & Marshall,

1983). A basic form is delay eyeblink conditioning, in

which the CS and US overlap and co-terminate. Delay

eyeblink conditioning is spared in animals with hippocam-

pal-region damage (Fig. 1(A), left; Schmaltz & Theios,

1972) and in humans with medial temporal amnesia

(Fig. 1(A), right; Gabrieli, McGlinchey-Berroth, Carrillo,

Gluck, Cermack and Disterhoft, 1995). However, in slightly

more complicated forms of eyeblink conditioning, the

hippocampus does play a role. For example, latent inhibition

is a phenomenon whereby prior exposure to the CS alone

slows subsequent acquisition of a CS–US association

(Lubow, 1973); hippocampal-region damage abolishes the

effect in rabbits, so that exposed and non-exposed animals
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Fig. 1. Hippocampal-region damage spares simple eyeblink conditioning in (A) animals (after Schmaltz & Theios, 1972) and humans (after Gabrieli et al.,

1995). However, hippocampal-region damage in rabbits (B) abolishes latent inhibition in the eyeblink conditioning paradigm (after Solomon & Moore, 1975;

see also Shohamy et al., 2000). The Gluck and Myers (1993) cortico-hippocampal model correctly accounts for data showing that (C) hippocampal lesion

produces no impairment in ‘simple’ delay conditioning but (D) does abolish latent inhibition.
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learn at the same speed (Fig. 1(B); Solomon & Moore,

1975).

In an effort to link psychological theories of learning with

underlying neural substrates, we began with a broad

description of the information-processing computations

that appear to depend on the hippocampal region in classical

conditioning (Gluck & Myers, 1993, 2001). As reviewed

below, this model led to several novel predictions for the

behavioral consequences of hippocampal-region lesions in

rodents and of brain damage in humans who have amnesia

or are in the earliest stages of Alzheimer’s disease. Many of

these predictions have, since been confirmed by our lab and

others while brain imaging studies have provided further

supporting evidence.

The modeling to date lays the groundwork for future

directions that increase the depth of detail of the biological

modeling, as well as the breadth of behavioral phenomena

address. Several of these future directions are described at

the end of this paper, along with a summary of preliminary

progress. In particular, we are working to reconcile models

of incremental associative learning (including classical and

instrumental conditioning) with models of the hippocampal
region that account for the rapid formation of declarative

memories.
1. ‘Top-down’ model of cortico-hippocampal function

in associative learning

What information-processing role does the hippocampus

play in classical conditioning? To address this, we

developed a computational model of cortico-hippocampal

interaction based on connectionist theories of learning and

representation (Gluck & Myers, 1993, 1995, 1996, 2001).

The model conceptualizes the brain as a series of interacting

modules, each implementing the information-processing

functions subserved by a particular brain region.

For eyeblink conditioning, the cerebellum is the

necessary and sufficient substrate for the storage and

expression of learned CS–US associations (Thompson,

1986). CS information arrives as input to the cerebellum,

as does information about the US (airpuff); cerebellar output

drives the behavioral CR (eyeblink). Learning occurs via

plasticity at neuronal synapses in cerebellum that associate
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the CS with the US. This biological learning can be

formalized as the least-mean square (LMS) algorithm

(Widrow & Hoff, 1960), which has relations both to

biological plasticity mechanisms such as long-term poten-

tiation and depression (e.g. Levy, Brassel, & Moore, 1983)

and to mathematical models of conditioning (Rescorla &

Wagner, 1972).

We formalized the cerebellar substrates of eyeblink

conditioning in a connectionist network, shown in Fig. 2(A)

(Gluck, Myers, & Thompson, 1994; Thompson, 1986). This

network learns to map from inputs specifying the presence

of CSs and contextual cues, to a pattern of activation in an

internal layer of nodes, via a layer of weighted connections.

This activation pattern constitutes a re-mapping or re-

representation of the input, which is then mapped to output

driving the behavioral CR via a second layer of weighted

connections. On each trial, the system ‘error’ is the

difference between the actual response (CR) and the desired

response (US). The LMS rule can be used to modify the

weights between the internal-layer and output-layer nodes,

proportional to this error. However, no such error measure is

defined for the internal-layer nodes, and so LMS cannot be

used to modify the weights on the inputs to the internal-

layer. As a result, no learning takes place in the weights

between the input-layer and internal-layer nodes. That is to

say, the ‘representation’ is fixed. Nevertheless, for many

simple problems (such as delay eyeblink conditioning) this

system with only one layer of modifiable weights can

generate outputs that capture the behavior of an animal

learning a conditioned response.

What does the hippocampal-region add to this? We

proposed that the hippocampal-region develops new

representations that encode important stimulus–stimulus

regularities in the environment (Gluck & Myers, 1993). In

particular, if two CSs reliably co-occur or are otherwise
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Fig. 2. (A) A connectionist model of the cerebellar substrates of motor-reflex co

conditioning.
redundant, their representations become compressed, or

more similar. Conversely, the representations for two CSs

that predict different USs become differentiated, or highly

dissimilar. Gluck and Myers (1993) suggested that the

hippocampal-region performs this kind of redundancy

compression and predictive differentiation.

We implemented this theory in a connectionist network

model shown in Fig. 2(B) (Gluck & Myers, 1993, 2001).

Hippocampal-region processing is implemented via a

predictive autoencoder (Baldi & Hornik, 1989; Hinton,

1989), which learns to map CS inputs, through an internal

node layer, to outputs that reconstruct those inputs and also

predict the US. This network, unlike the cerebellar network,

is able to modify both layers of weighted connections

through a learning algorithm such as error backpropagation

(Rumelhart, Hinton, & William, 1986). In the process,

internal-layer nodes form a representation of the input that

tends to compress redundant information while preserving

and differentiating information that predicts the US, just as

required by our hypothesis.

This hippocampal-region network then provides these

new representations to the cerebellar network. A random

recoding of the hippocampal-region network’s internal-

layer activations becomes the ‘desired output’ for the

internal layer of the cerebellar network, and the error is the

difference between this and the output of the internal layer

of the cerebellar model. The cerebellar network then uses

the LMS error-correcting rule to adapt the input-to-internal

layer weights, just as it uses LMS to adapt internal-to-output

layer weights. Over time, representations develop in the

internal-layer nodes of the cerebellar network that are linear

recombinations of representations developed by the hippo-

campal region network.

Within this model framework, broad hippocampal-

region damage is simulated by disabling the hippocampal-
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region network (Fig. 2(A)). In this lesioned model, no new

hippocampal-dependent representations are formed, and the

training signal to the cerebellar network internal layer is

silenced. As a result, the cerebellar network cannot adopt

any new representations, although it can still learn to map

from its existing representations to new behavioral

responses by modifying its upper layer of weights.

This computational model of hippocampal-region func-

tion correctly accounts for data showing that hippocampal-

region damage does not impair simple delay conditioning

(Fig. 1(C); compare Fig. 1(A)) but does impair more

complex behaviors such as latent inhibition (Fig. 1(D);

compare Fig. 1(B)). Similarly, the model accounts for many

other trial-level conditioning phenomena in both intact and

hippocampal-lesioned animals (Gluck & Myers, 1993;

Myers & Gluck, 1994; Myers, Gluck, & Granger, 1995),

and has even been applied to other domains such as human

category learning (Gluck, Oliver & Myers, 1996) and rodent

odor discrimination (Myers & Gluck, 1996). Several novel

predictions of the computational model have since been

tested and confirmed in animal studies of hippocampal-

region lesion (e.g. Allen, Chelius, & Gluck, 2002a; Allen,

Padilla, & Gluck, 2002b; Shohamy, Allen, & Gluck, 2000).

These and other results confirm the basic predictions of our

model, and suggest that that the hippocampus and related

structures are intimately involved in even ‘simple’

procedural learning tasks such as classical conditioning.
2. Applications to memory disorders in humans

Learned irrelevance is a conditioning phenomenon, in

which prior uncorrelated exposure to the CS and US slows

subsequent learning of the CS–US association (Mackintosh,
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1973). It is similar to the more well-known latent inhibition

paradigm (Lubow, 1973), in which an animal is pre-exposed

to CS alone trials (rather than uncorrelated CS and US trials

as in learned irrelevance), in that both produce slower

learning of a subsequence CS–US association. One novel

prediction of our cortico-hippocampal model of Fig. 2(B)

was that latent inhibition and learned irrelevance should

depend on the hippocampal-region. This prediction was

later confirmed by our laboratory in a study of eyeblink

conditioning in rabbits: hippocampal-region lesions abol-

ished the learned irrelevance effect of uncorrelated prior

exposure to the CS and US (Fig. 3(A); Allen et al., 2002a,b).

One immediate question was whether this applies to humans

as well. To test this, we developed a paradigm that embeds

the logical structure of learned irrelevance within a

computer-based learning task. In this task, people had to

learn that a color change (conceptually similar to a CS)

predicted a salient screen event (similar to a US). Learning

this association was markedly slowed in controls who were

previously exposed to the CS and US uncorrelated with each

other (Fig. 3(B)). This learned irrelevance effect was

abolished in amnesic individuals with bilateral medial

temporal damage (Myers et al., 2000). In other words,

learned irrelevance appears to depend on the hippocampal

system in humans just as in rabbits.

Another implication of our model for human learning

comes from two-phase studies in which initial learning is

followed by a transfer test (Myers et al., 2002a,b; Myers,

Shohamy et al., in press; see also Eichenbaum, Mathews, &

Cohen, 1989). One example is a concurrent discrimination

task, in which subjects see pairs of colored shapes and must

choose the correct member of each pair (Fig. 4(A)). This

simple form of learning does not depend on hippocampal

mediation in the computational model (Myers & Gluck,
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Fig. 4. (A) A computer-based concurrent discrimination task. On each trial, subjects see two colored objects (Top) that differ in color or shape but not both.
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1996). However, we predicted that during this simple

learning, the hippocampal region sets up representations

that will allow subsequent generalization later, when task

demands change. As a result, the model predicts that

hippocampal damage may appear to spare initial learning,

but the learning will be qualitatively different, and thus there

will be impairments on subsequent transfer.

To test this idea, we administered our colored-shape

discrimination task to a population of healthy elderly

individuals, some of whom had hippocampal atrophy

(HA) visible on magnetic resonance images (MRI) of the

brain. As shown in Fig. 4(B), both the HA and no-HA

individuals could learn well (Myers et al., 2002a,b). But

this initial learning was followed by a transfer phase in

which irrelevant features changed. For example, having

learned to choose a black mushroom over a black frame

(as in Fig. 4(A)), the transfer might include a choice

between a green mushroom and a green frame. In other

cases, shape might be the irrelevant feature: having

learned to choose a red diamond over a yellow diamond,

people might be challenged to choose between a red
circle and a yellow circle. Under these circumstances,

healthy elderly with no HA generalized very well,

making few errors (Fig. 4(C)); by contrast, elderly with

even relatively mild HA were impaired at generalizing

(Myers et al., 2002a,b). Apparently, although, they had

learned the initial task quickly, they had done so without

the benefit of hippocampal representations that support

subsequent transfer. The same kind of spared learning but

impaired transfer has also been observed in elderly

individuals with HA using an acquired equivalence task,

in which individuals first learn a number of associations,

and then have to generalize when the familiar items are

presented in novel recombinations. Under these con-

ditions, healthy elderly tend to generalize well, while

those with HA generalize poorly (Myers, Shohamy,

Gluck, Grossman, Kluger and Ferris, 2003a). Since mild

hippocampal atrophy is a risk factor for subsequent

development of Alzheimer’s disease, even in individuals

who are not yet showing any behavioral impairments (de

Leon, George, Stylopoulos, Smith, & Miller, 1989),

transfer tasks such as this, which are sensitive to
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hippocampal atrophy in otherwise healthy individuals,

may have some clinical utility as a diagnostic tool.

On the other hand, we expect a different pattern of results

in patients with Parkinson’s disease. Parkinson’s disease

results in neuronal death and dysfunction of the basal

ganglia, a brain area involved in learning new stimulus-

response associations based on feedback. In these patients,

the initial learning may be slow, but—since, these patients

have an intact hippocampal system—transfer and other

hippocampal-dependent function should be spared. In fact,

this appears to be the case in our learned irrelevance,

discrimination, and acquired equivalence tasks (Myers et

al., 2003a,b; Shohamy, Myers, Geghman, Sage, & Gluck,

2005).
3. Converging evidence from functional brain imaging

in humans

Another method for testing predictions of the model for

human learning is functional brain imaging. In particular, our

model expects that the medial temporal lobes should be very

active early in training when subjects are learning about

stimulus–stimulus regularities and evolving a new stimulus

representation, but less active later in training when other

brain regions (e.g. the basal ganglia) are using these

representations to perform the task. In a functional

neuroimaging study (Poldrack, Clark, Pare-Blagoev, Sho-

hamy, Creso-Moyano and Myers, 2001), we used a

probabilistic category learning task developed in our

laboratory that we call the ‘weather prediction’ task based

on an early study by Gluck and Bower (1988). This task

involves learning to predict the weather (‘sun’ or ‘rain’)

based on the presence or absence of four different tarot cards

with various geometric features. Each of these cards is

partially diagnostic of either rain or sun. Although the

probabilistic nature of this task precludes perfect perform-

ance, subjects do gradually improve their ability to predict

the weather correctly based on these cards. As expected by

the Gluck and Myers (1993) model, fMRI documented that

activity in the hippocampal-region (medial temporal lobe)

was highest early in training and then tapered off; in contrast,

basal ganglia activity was low at first and increased during

training. This was consistent with our earlier amnesic study

using the same task (Knowlton, Squire, & Gluck, 1994), in

which we found a deficit in amnesic patients during late-

stages of training which our modeling suggests is due to a

failure to acquire appropriate stimulus representations early

in training (Gluck, Oliver, & Myers, 1996).
4. Biological substrates of representational processing
in the hippocampal region

While the original cortico-hippocampal model (Gluck &

Myers, 1993, 2001) had considerable success at accounting
for behaviors of intact and hippocampal-lesioned animals

and humans, it has several limitations. The first and most

obvious is that it treats the entire hippocampal region as a

single functional unit. We describe below how aspects of the

earlier model have been mapped onto more physiological

mechanisms.
5. Learning rates and septo-hippocampal cholinergic

modulation

The medial septum/diagonal band complex, a structure

lying in the basal forebrain, provides important cholin-

ergic inputs to the hippocampus. Physiological studies

and prior computational models by Michael Hasselmo

suggest that this septo-hippocampal cholinergic input can

modulate whether the hippocampus is acting primarily to

store new, incoming information, or to retrieve pre-

viously-stored information (Hasselmo, 1999; Hasselmo &

Schnell, 1994; Meeter, Talamini & Murre, 2004).

Further, the hippocampus has outputs that travel back

to the septum, suggesting that the hippocampus might be

able to self-regulate its own storage/retrieval dynamics

by dynamically adjusting the amount of cholinergic

inputs it receives. Collaborating with Hasselmo, we

implemented this idea within our computational model

by assuming that the hippocampal learning rate is

dependent on the amount of septo-hippocampal cholin-

ergic input (Fig. 5(A)), and that the amount of

cholinergic input is determined by a self-regulating

feedback loop from hippocampus to medial septum

(Myers, Ermita, Harris, Hasselmo, Solomon and Gluck,

1996; Myers, Ermita, Hasselmo, & Gluck, 1998; Rokers,

Myers, & Gluck, 2000).

This model of septo-hippocampal cholinergic function

can account for a range of data regarding the effects of

septal lesion as well as the effects of various cholinergic

drugs. For example, as shown in Fig. 5(B), the model

correctly predicts that reducing levels of hippocampal

acetylcholine (through septal lesions or administration of

an anticholinergic drug) reduces learning, while increasing

acetylcholine (through administration of a cholinergic

agonist) can speed learning—but only to a certain point.

Too much acetylcholine leads to a very high learning rate

in the model, at which point the system becomes unstable.

The same effect is seen in normal animals given a high

dose of cholinergic drugs (see Myers et al., 1996). In

recent studies in our lab, we have also confirmed several

predictions of this model regarding the consequences of

medial septal lesions on eyeblink conditioning (Allen

et al., 2002b).

One interesting prediction of our septo-hippocampal

model is that the memory deficits following hippocampal

disruption (e.g. via medial septal lesion) might be subtly

different from those following outright hippocampal

removal. That is, with hippocampal lesion, areas like the
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cerebellum may be able to accomplish some simple

learning on their own. However, with the hippocampus

present but dysfunctional, ‘noisy’ hippocampal outputs

will disrupt cerebellar function, slowing learning. In other

words, a dysfunctional hippocampus might be worse than

none at all.

We tested this prediction by comparing patients with

anterograde amnesia following either medial temporal

(hippocampal) or basal forebrain damage. Both patient

groups show a similar abolition of new declarative learning.

However, whereas medial temporal amnesia spares simple

delay eyeblink conditioning in animals and humans, basal

forebrain amnesia impairs it (Fig. 5(C); Myers, DeLuca,

Schultheis, Schnirman, Ermita and Diamond, 2001; Myers,

Bryant, DeLuca, & Gluck, 2002a,b). This finding has

potential clinical relevance: currently, ‘amnesia’ is gener-

ally treated as a single clinical syndrome; better under-

standing of the ways in which non-declarative memory is

differentially affected by medial temporal vs. basal

forebrain damage should allow the development of
rehabilitation techniques targeted at each population’s

unique pattern of impaired and spared abilities.
6. Redundancy compression and the entorhinal cortex

The hippocampal region is comprised of several distinct

and interacting units, including the hippocampus proper

(subfields CA1 and CA3), the dentate gyrus, the entorhinal

cortex, and the subiculum (Fig. 6). Each of these areas has

unique anatomical and physiological characteristics, and

each may be expected to provide a unique information-

processing function that contributes to the workings of the

hippocampal region as a whole.

The entorhinal cortex is the primary path by which

sensory information reaches hippocampus. Building on an

earlier model of paleocortex by Richard Granger and

colleagues (Ambros-Ingerson, Granger, & Lynch, 1990;

Coultrip, Granger, & Lynch, 1992), we noted (Gluck &

Granger, 1993) that the anatomical and physiological
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characteristics of the entorhinal cortex would be consistent

with an emergent function of clustering and compressing

input patterns. In collaboration with Granger, we suggested

that the entorhinal cortex might, therefore be the place

where redundancy compression, one of our postulated

biases for hippocampal-region re-representation, could take

place (Myers et al., 1995).

In Myers et al. (1995), we proposed a model of

superficial entorhinal cortex as an unsupervised competitive

network: a layer of units representing superficial entorhinal

layer II excitatory neurons, receiving sparse multimodal

inputs, and grouped into small patches whose members are

reciprocally connected with an inhibitory interneuron

(Fig. 7(A)). The result of excitatory–inhibitory interaction

in each patch is the emergence of lateral competition,

approximating ‘winner-take-all’ activity. The winning

nodes undergo LTP-like plasticity, increasing their

likelihood of winning the competition when similar inputs

are presented in future. The resulting network performs

unsupervised clustering based on surface similarities among

stimuli, but also based on stimulus co-occurrence: two

stimuli which appear together are treated as a single,

compound stimulus and assigned to the same cluster. Later,

learning about one stimulus will generalize to other stimuli

in the same cluster. This assignment of co-occurring stimuli
to the same representational cluster results in the same kind

of representational compression which Gluck and Myers

(1993) previously proposed to be one constraint biasing new

stimulus representations in the hippocampal region. Myers

et al. (1995) therefore proposed that the entorhinal cortex

contained sufficient circuitry to implement stimulus–

stimulus redundancy compression.

When this entorhinal cortex model is connected to our

existing cerebellar model (Fig. 7(B)), the resulting model

continues to show those hippocampal-region-dependent

phenomena that depend on redundancy compression. For

example, latent inhibition and learned irrelevance are two

effects that we have explained as resulting from com-

pression of cues and contexts during the initial exposure

phase (Myers & Gluck, 1994). Both effects are disrupted by

broad hippocampal-region damage in animals and in the

computational model; however, the entorhinal-cerebellar

model of Fig. 8(B) can demonstrate both these effects,

suggesting that the effects should survive selective

hippocampal lesions (sparing entorhinal cortex) in animals.

We confirmed these predictions of our model empirically:

selective hippocampal lesions disrupt both latent inhibition

and learned irrelevance in rabbit eyeblink conditioning,

while lesions that include the entorhinal cortex abolish both

effects (Allen et al., 2002a,b; Shohamy et al., 2000).
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Of course, the entorhinal cortex is only one component of

the hippocampal region, and our entorhinal model only

computes one portion (redundancy compression) of our

proposed hippocampal-region function. Ongoing work,

described in more detail below, seeks to add additional

modules representing other hippocampal-region substruc-

tures with additional functionality, to try to capture the full

range of hippocampal-region contributions to incremental

learning.
7. General discussion and future directions

Our general approach has been to work ‘top-down’,

starting with connectionist network models that instantiate

information-processing theories of the computations

required to explain behavior, and then showing how these

functions could arise ‘bottom-up’ from the anatomy and

physiology of specific brain regions. In this way, compu-

tational models can help to elucidate the principles of

learning and memory at multiple levels of analysis, from

behavioral processes through neural circuits.

There are many limitations to our work to date, some

of which we have begun to address in ongoing work. We

turn now to review these opportunities for future

modeling. They fall into two main categories: (1)

modeling which seeks to add greater biological depth
and detail to the past work, and (2) modeling which

expands the behavioral breadth to a wider range of

learning and memory phenomena.
8. Future aims to enhance biological depth

Although we have made some progress at replacing

components of our original Gluck and Myers (1993) ‘top-

down’ model with biologically-plausible components, much

still remains to be done. As described above, we have

argued that certain features of our earlier theory of

hippocampal-region function can be mapped to specific

brain substrates: redundancy compression to the entorhinal

cortex and learning rate modulation to septo-hippocampal

feedback loops. Several important future aims for elaborat-

ing the biological details of our model framework for

associative learning are noted below, along with some

preliminary results where available.

8.1. Dentate gyrus

The entorhinal model described above assumes that the

entorhinal cortex is a substrate for representational

compression, one of the functions that Gluck and Myers

(1993) ascribed to the hippocampal region. However, in

addition to representational compression, Gluck and Myers

(1993) proposed that the hippocampal region could mediate

representational differentiation: increasing the difference

between representations of stimuli that predict different

future events (e.g. reinforcement). Others have suggested

that the anatomy of the dentate gyrus would be ideally

suited for this function (Hasselmo & Wyble, 1997; O’Reilly

& McClelland, 1994).

Evidence for localizing differentiation in the dentate

gyrus comes from studies by Mark West and others, who

have used multicellular recordings from the hippocampal

region in behaving animals to detect representational

changes. The pattern of firing activity across a set of

neurons is analogous to the activities across a set of

nodes in a neural network, and can be viewed as the

brain’s representation of the current inputs. In one study,

recordings were taken from dentate gyrus while rats

learned a discrimination (respond to stimulus AC but

not to BK) (Deadwyler, West & Lynch, 1979). Early in

discrimination learning, neuronal activity looked similar

after presentation of either A or B. However, as the

discrimination was learned, neuronal discharge in the

dentate gyrus differentiated the two stimuli; specifically,

neurons might respond to both stimuli, but only the

rewarded stimulus (AC) elicited sustained activity. This

and related findings suggest that stimulus representations

in the dentate gyrus are differentiated if the stimuli are

associated with different reinforcement outcomes and/or

different responses (see also Bostock, Muller, & Kubie,

1991; Cahusec, Rolls, Miyashita, & Niki, 1993). Further,
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this differentiation is not visible in entorhinal cortex,

which provides the dentate gyrus’s principal input,

suggesting that it is the dentate gyrus that is performing

the representational differentiation (Deadwyler et al.,

1979).

In preliminary work, we have constructed a compu-

tational model that is based on known anatomical and

physiological characteristics of dentate gyrus (Fig. 8(A)).

The model includes 500 granule cells that receive sparse and

weakly excitatory input from 100 entorhinal afferents via

the perforant path; granule cell outputs (the mossy fibers)

form the principal output of the dentate model. The granule

cells are inhibited by local circuit interneurons, basket cells,

which serve to roughly normalize overall firing activity and

allow ‘winner-take-all’ processing among clusters of

granule cells. Plasticity is implemented via a learning rule

that incorporates aspects of LTP and LTD as observed in the

dentate gyrus.

This preliminary model sparsifies inputs: it takes an input

pattern from a relatively small number of entorhinal nodes

and expands it into a representation across a much larger

number of dentate granule cells. This has the effect of

differentiating representations in general, as posited in the

original hippocampal-region model of Gluck and Myers

(1993).
8.2. Hippocampal subfields CA3 and CA1

The hippocampus proper can be broken down into

several subfields, including CA3 and CA1. Many previous

researchers have argued that CA3 may function as an

autoassociator (Fig. 8(B)), based on its high degree of

internal recurrency. This function would allow CA3 to

rapidly store random patterns and then retrieve them later

when given whole or partial cues (Levy, 1996; McClelland,

McNaughton, & O’Reilly, 1995; Treves & Rolls, 1994). We

are currently working to connect such a CA3 autoassociator

into our system, where it would receive inputs that had been

pre-processed by entorhinal cortex and dentate gyrus and

store them.

From CA3, information travels to CA1 via the Schaffer

collaterals as well as via a direct pathway from entorhinal

cortex (the perforant path). Previous researchers have

suggested that this dual input would allow CA1 to function

as a comparator, specifically comparing the direct entorh-

inal input against the reconstructed pattern provided from

CA3 (Hasselmo & Schnell, 1994). If the patterns are highly

similar, this would mean that the information had been

successfully stored in and reconstructed in CA3. Such a

comparator function is consistent with the finding of so-

called ‘mis-match’ cells in CA1, which become active when
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an animal is confronted with novel or unexpected inputs.

This in turn would signal the system that learning is needed

to store the new inputs, possibly by signaling the septum for

acetylcholine to facilitate hippocampal learning. Finally,

outputs from CA3 and/or CA1 travel back out via subiculum

and entorhinal cortex and eventually to the cortical areas

where they arose.

In future work, we plan to include CA3 and CA1

modules, together with entorhinal, dentate, and cortico/cer-

ebellar modules, and compare them against existing data

from intact and hippocampal-region-lesioned animals, as

well as with existing data regarding the effects of selective

lesions, such as ibotenate lesions of hippocampus that spare

entorhinal cortex.

Additional elaboration of these models would allow for

examining how distribution of different receptor subtypes

(e.g. muscarinic vs. nicotinic cholinergic receptors) might

affect hippocampal processing and response to pharmaco-

logical agents, and investigating possible roles for other

neuromodulators in the hippocampal region such as

dopamine, stress hormones such as glucocorticoids, and

reproductive hormones such as estrogen.

8.3. Basal ganglia and dopamine

We mentioned above that the basal ganglia play an

important role in incrementally-acquired non-declarative

learning, and that such incrementally-acquired learning is

disrupted in Parkinson’s patients, who have basal ganglia

dysfunction (e.g. Myers et al., 2003a; Shohamy et al., 2005).

Neurons in the ventral tegmental area (VTA) and the

substantia nigra pars compacta send dopaminergic projec-

tions to the basal ganglia, medial prefrontal and other limbic

forebrain regions. Stimulation of this system is a strong

reinforcer in animals, suggesting a role in reward.

Dopamine was initially seen as a generic reward signal,

but release from this system correlates more strongly with

predictors of a reward than with reward itself (Schultz,

Apicella, & Ljungberg, 1993).

One role that has been suggested for dopamine is as a

reinforcing reward signal, guiding instrumental learning and

the association of stimuli to reward (Daw & Touretzky,

2001; Doya, 2000; Schultz, Dayan, & Montague, 1997). As

would be expected if it has such a role, dopaminergic output

obeys a temporal difference rule, which means that it signals

not reward as such but a change in the likelihood of reward

(Schultz et al., 1993; 1997). One may wonder what in turn

controls this reward signal. An intriguing possibility is that

projections from the basal ganglia play a role in the control

of substantia nigra/VTA dopamine release (Brown, Bullock,

& Grossberg, 1999). Integration of this control in a model of

the basal ganglia will be of great value to a better

understanding of learning and memory.

Interaction between the basal ganglia and medial

temporal lobe structures may have an important role in the

generation of firing patterns correlated with instrumental
behavior. The basal ganglia, and in particular the nucleus

accumbens, have strong recurrent connections with the

medial temporal lobe (especially field CA1 of the

hippocampus and the entorhinal cortex). It has been

shown that neurons in hippocampal system subfields exhibit

stimulus-locked firing in instrumental conditioning (e.g.

Deadwyler, West, & Lynch, 1979). It may thus be

hypothesized that hippocampal inputs to the nucleus

accumbens are key to the time-locked firing in this latter

structure shown in instrumental behavior (Peoples et al.,

1997), perhaps by directly activating a representation of the

conditioned response in the nucleus accumbens. We plan to

integrate these ideas into our model system, by allowing the

hippocampal-system modules to interact with a basal

ganglia module that is in turn modulated by dopaminergic

inputs carrying reinforcement signals.
9. Future aims to enhance behavioral breadth

To date, most of our computational modeling has focused

on a relatively constrained area of learning: simple

conditioning and those behaviors (like human category

learning) that can be understood in terms of conditioning

(Gluck & Bower, 1988). However, the hippocampus and

associated structures play clear and important roles in other

domains, including (but not limited to) declarative learning

(Squire, 1987), temporal learning (Levy, 1989) and spatial

learning (O’Keefe & Nadel, 1978). Several future directions

for expanding the behavioral breadth of these models are

suggested below.

9.1. Temporal processing

Even within the limited domain of classical conditioning,

our models do not account for all findings; for example, one

important finding is that when the CS and US do not overlap

(a paradigm known as trace conditioning), hippocampal

lesion disrupts learning (e.g. Moyer et al., 1990). Our

models do not include temporal information, and so cannot

be used to examine these and other paradigms where time is

a parameter. To some extent, this can be addressed by

adding feedback connections to the model (Zackheim,

Myers, & Gluck, 1998); our working hypothesis is that

many of the ‘temporal’ aspects of hippocampal-region

processing can be understood as emerging from the

information-processing functions of the region (Gluck,

Allen, Myers, & Thompson, 2001). Work by Chip Levy

and colleagues suggests one approach to incorporating

temporal and sequence learning into hippocampal models

(August & Levy, 1999; Levy, 1989; 1996).

9.2. Episodic memory

The hippocampus is not only important in associative

learning, but also in learning of autobiographical events
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(‘episodes’) (Eichenbaum, 1992; Marr, 1971; Scoville &

Milner, 1957). Episodic learning seems to pose very

different demands on the hippocampus than the associative

learning tasks discussed above. Associative learning is

sensitive to behavioral outcome, while episodic learning is

thought of as unsupervised, automatic coding of whatever is

present. Episodic learning is fast (often one trial), while

associative learning is incremental and slow. And yet a

single brain system—the hippocampal region—appears to

play a critical role in both kinds of learning.

We set out to reconcile the Gluck and Myers model with

a generic version of an episodic memory model (Meeter,

Myers, & Gluck, 2005). Instead of using a hippocampal

autoencoder, we started with a multilayer model capable of

forming episodic memories, loosely based on earlier

episodic memory models (Meeter, Murre, & Talamini,

2002; Talamini, Meeter, Murre, Elvevåg, & Goldberg,

2005). This simple model of episodic memory, as shown in

Fig. 9, contains three layers. An input layer, modeling the

neocortex, codes for stimuli and context features. A second

layer stands for the parahippocampal region: the perirhinal,

entorhinal and postrhinal/parahippocampal cortices. This

layer has integrated representations, with some nodes

coding mostly for context features and some mostly for

stimuli, but all nodes also getting input of the other kind.

The third layer stands for the hippocampus proper, with

nodes representing dentate granule cells and/or pyramidal

cells in CA3 and CA1. This hippocampal layer forms a

compact code for the whole situation in which the organism

finds itself, for which we use the term ‘ensemble’ (Murnane,

Phelps, & Malmberg, 1999). Such representations form the

basis of episodic memory. (Later, of course, this network

could be elaborated to include more physiological detail, as
Hippocampus:
ensembles

Parahippocampus:
stimuli in context

Neocortex: stimuli

Cerebellum:
classical
conditioning
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outlined above, but in these initial studies, the purpose was

to attempt to reconcile associative and episodic behavior in

a single, simple model system.)

As in the Gluck and Myers (1993) model, the network

simulating the hippocampal region interacts with other

regions in the brain, in which the outputs of memory are

coded. For classical conditioning, the cerebellum is most

relevant, but for other tasks of incremental learning one

would have to include output regions for rewards and

operant behaviors (basal ganglia) and for fear responses

(amygdala). The cerebellar circuit is the only output

structure implemented to date. All three layers of the

episodic network project to the output modules. These

connections allow the output modules to attach behavioral

significance to simple and complex representations of the

same set of stimuli, thereby allowing stimulus configur-

ations to have different associations than the constituent

stimuli on their own.

The model also follows earlier learning theories, such as

Wagner’s Sometimes Opponent Process (Wagner, 1981) in

assuming that responses adapt to familiar stimuli. The first

time a stimulus is presented, nodes respond strongly, but this

response decreases with repeated presentations of the same

stimulus. This has indeed been found experimentally (Li,

Miller, & Desimone, 1993; Xiang & Brown, 1998).

Since the 1970s, many researchers in the field of episodic

recognition memory have argued that recognition judg-

ments can be based on a fuzzy feeling that the item matches

old memories, usually referred to as familiarity (e.g.

Atkinson & Juola, 1974; Humphreys, Bain, & Pike, 1989;

Mandler, 1980; Yonelinas, 2002). When neural responses in

the perirhinal cortex to novel and familiar stimuli are

directly compared, neural responses to a stimulus decrease
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in the perirhinal cortex with increasing familiarity (Li,

Miller, & Desimone, 1993; Xiang & Brown, 1998). These

results are exactly what one would expect from SOP and our

model: a state of high activity at the first presentations, with

decreasing activity after stimulus repetitions. In Meeter

et al. (2005), we agued that this familiarity effect, the

decreased parahippocampal response to familiar stimuli, is

what causes the effects of stimulus novelty on the speed of

conditioning (other accounts can be found in Sohal &

Hasselmo, 2000; Bogacz & Brown, 2002; 2003).

Other analyses presented in Meeter et al. (2005) show

how this model can capture a wide range of behavioral data

on both elementary associative learning (such as conditon-

ing) as well as episodic retrieval, recognition, and

familiarity. An important caveat, however, is that while

this broader model integrates aspects of the earlier Gluck

and Myers (1993) cortico-hippocampal model of classical

conditioning, it is still a connectionist model using abstract

nodes and links. Further work will be required to integrate

these broader behavioral models with the more detailed and

biologically-constrained models described earlier for

specific brain regions of the hipppocampal region. See

also work by James McClelland, Randy O’Reilly, and

colleagues on relevant models of cortico-hippocampal

function in episodic memory (McClelland et al., 1995;

Norman & O’Reilly, 2003; O’Reilly & Norman, 2002;

O’Reilly & Rudy, 2001).

9.3. Consolidation

An issue that often comes up with regard to the

hippocampus is whether memories are consolidated from

the hippocampus to the neocortex or not (for review, see

Meeter & Murre, 2004). Marr (1971) suggested, for

computational reasons, that the hippocampus was only a

temporary store, with older memories being transferred

from the hippocampus to the neocortex. Squire, Cohen and

Nadel (1984) came to the same hypothesis to explain an old

neuropsychological mystery, namely that recent memories

seemed more vulnerable to hippocampal damage than more

remote memories. This hypothesis was also included in the

Gluck and Myers (1993) model. More recently, the view

that memories are encoded has come under attack (Nadel &

Moscovitch, 1997; Nadel, Samsonovitch, Ryan, & Mos-

covitch, 2000), and our recent modeling (Meeter et al.,

2005) has shown that the consolidation hypothesis is not

essential to explain associative learning phenomena.
10. Conclusion

A large body of neurobiological and behavioral data on

associative learning can be accounted for by assuming that

the hippocampal region—including hippocampus proper,

entorhinal cortex, and other associated structures—per-

forms an information processing function: compressing (or
making more similar) the representations of inputs that co-

occur or are otherwise redundant, while differentiating (or

making less similar) the representations of inputs that

predict different future events. This process can be

instantiated in a computational model, where the hippo-

campal region is conceived as a functional unit performing

predictive autoassociation. This leads to an important

question: does such a computational function emerge

naturally from the brain substrate? Here, we have reviewed

our progress to date, both in developing a ‘top-down’ model

to account for behavioral data, as well as attempting to

instantiate the functionality of that top-down model via

‘bottom-up’ modules that are consistent with known

features of the biological substrate.

The current modeling lays the groundwork for future

directions that would increase the depth of detail of the

biological modeling, as well as the breadth of behavioral

phenomena addressed. In particular, we are working now to

reconcile these kinds of incremental associative learning

models with other models of the hippocampal region that

account for the rapid formation of declarative memories.
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