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This paper explores the promise of simple adaptive networks as models of human
learning. The least-mean-squares (LMS) learning rule of networks corresponds to the Re-
scorla—Wagner model of Pavlovian conditioning, suggesting interesting parallels in human
and animal learning. We review three experiments in which subjects learned to classify
patients according to symptoms which had differing correlations with two diseases. The
LMS network model predicted the results of these experiments, comparing somewhat fa-
vorably with several competing learning models. We then extended the network model to
deal with some attentional effects in human discrimination learning, wherein cue weight
reflects attention to a cue. We further extended the model to include conjunctive features,
enabling it to approximate classic results of the difficulty ordering of learning differing types
of classifications. Despite the well-known limitations of one-layer network models, we nev-
ertheless promote their use as benchmark models because of their explanatory power, sim-
plicity, aesthetic grace, and approximation, in many circumstances, to multilayer network
models. The successes of a simple model suggest greater accuracy of the LMS algorithm as
against other learning rules, while its failures inform and constrain the class of more com-

plex models needed to explain complex results. © 1988 Academic Press. Inc.

We believe the adaptive network, or
‘‘connectionist,”” approach, briefly intro-
duced in this issue, has considerable po-
tential for solving some of the perennial
problems of theoretical psychology. The
articles in this issue, as well as the two
volumes of papers edited by Rumelhart and
McClelland (McClelland & Rumelhart,
1986; Rumelhart & McClelland, 1986b),
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testify to the vitality and promise of this
approach to theory in psychology.
Adaptive network models are being eval-
uated by several different methods. A first
method, exemplified in the works of Sej-
nowski and Rosenberg (1986), Rumelhart
and McClelland (1986a), Elman and
McClelland (1988), and Hinton (1986), is to
show how a complex adaptive network can
learn structured information that organizes
and underlays performances as diverse as
speaking from written text, verb-tense pro-
duction, contextual influences on phoneme
recognition, the semantic components of
family trees, and so on. Typically, the
models required to produce such complex
phenomena have several layers of hidden
units and presume considerable structure
in the input units and/or the output units
(e.g., the NETtalk model of Sejnowski &
Rosenberg, 1986). Such demonstrations are
valuable and have a status something like
‘‘existence proofs’ in mathematics or
proofs in computer science that a program
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is correct or computationally sufficient. In
such cases, one is satisfied if major regular-
ities and salient phenomena (e.g., over reg-
ularizing irregular verbs, as in go-ed) are
being roughly captured by the simulation.

A second method for evaluating such
models, perhaps one more familiar to ex-
perimental psychologists, is to apply an
adaptive network model to a familiar ex-
perimental paradigm that has been exten-
sively studied and to see to what extent the
model can account for some of the well-
known results in that area, and perhaps
predict detailed quantitative aspects of re-
sults of new experiments which may dis-
criminate among alternative theories. This
has been the traditional research strategy
of many workers in cognitive psychology.
That approach to testing network models
was followed by McClelland and Rumel-
hart (1981) in their word perception model,
by McClelland and Elman (1986) in their
speech perception model, and by Dell
(1986) in his model of errors in speech pro-
duction. It is also the approach we have
followed for the research we shall report.
Because we are interested in human
learning and categorization, those are the
areas that have attracted our initial efforts.
After we present some new experiments on
classification learning and show how the
network model handles them, we extend
the model to handle several phenomena
suggesting selective attention and hy-
pothesis testing in concept learning.

In developing an adaptive network model
for any specific learning task, three sets of
assumptions are required.

® First, one must assume a particular
“‘architecture’ of the connected units: will
it be only a feed-forward system, or one
with recurrent (return) connections or
within-layer connections? Will there be
hidden units intermediate between input
and output layers? If so, how many layers
of hidden units? How many units and how
will they be connected?
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® Second, one must decide how to rep-
resent the learning materials within this ar-
chitecture. In particular, what corresponds
in the network to presentation of an experi-
mental stimulus pattern? What metric over
the set of “‘output units’’ corresponds to a
behavioral response that one can measure
in the experiment?

e Third, one must decide how learning
occurs. By what algorithm or rule are the
connection weights to be adjusted trial by
trial to simulate adaptive learning in the
network?

The many options in these decisions sug-
gest that it is difficult to test the adaptive
network framework in general. Rather, one
can only test a specific realization of the
framework. By noting the circumstances
where it predicts accurately versus those
where it has shortcomings, we can gather
generalizations about which network as-
sumptions and learning algorithms are gen-
erally adequate to explain results across
broad ranges of experimental conditions.

SoME HISTORY AND
BEGINNING CONSIDERATIONS

A long tradition of research in learning
has been based on the idea that mecha-
nisms of learning would be the same
throughout mammalian species. This as-
sumption of phyletic continuity underlay
much of the research interest in condi-
tioning in animals (rats, cats, monkeys, pi-
geons) and it justified the facile mixing of
results from human and animal learning ex-
periments in the writings of prominent
‘‘learning theorists’’ such as Edward
Thorndike, Edwin Guthrie, Edward
Tolman, and Clark Hull (see Bower and
Hilgard, 1981). The early models of neural
networks for learning (e.g., McCulloch &
Pitts, 1943; Rashevsky, 1937) fell squarely
within this tradition as did Rosenblatt’s
(1961) later ‘‘Perceptrons’’; both ap-
proaches aimed to derive processes of
complex learning from configurations and
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elaborations of a small set of elementary
associative processes that could be ob-
served in lower animals.

About 25 years ago, however, the popu-
larity of theories based on animal condi-
tioning began to wane, whereas theories
and studies of human memory underwent a
major transformation as well as a growth
spurt. The theoretical view of memory was
revolutionized by ideas spun off from the
metaphors of information processing and
the mind-as-computer—notions of
memory stores, selective coding, capacity
limits, organization, labeled semantic net-
works, rule-based symbol manipulation,
production systems, and so on. Such con-
cepts and theories seemed to have more of
the power needed to deal with the richness
of language and its role in encoding,
storing, and retrieving human memories.
Consequently, the theories of associative
conditioning were somewhat *‘left behind”’
in the enthusiasm to embrace the new per-
spective. However, the separation of these
two major fields for studying learning has
never been a happy one, and it has insti-
gated periodic attempts at reconciliation,
including recent trends towards ‘‘cogni-
tive’’ theories of animal memory (e.g.,
Roitblatt, 1987, Wagner, 1981).

The current resurrection of adaptive net-
works, as models of complex abilities such
as parsing, reading, and speech recognition
and production (see, e.g., Cottrell, 1985;
Waltz & Pollack, 1985), may be cause to
renew the traditional interest in subsuming
human and animal learning under one set of
associative mechanisms. Given the volumi-
nous studies of learning in animals along-
side current attempts to model cognition
with elementary associative processes, a
reasonable tactic is to search for and ex-
ploit any correspondences which might
exist between animal and human learning.
This is the tactic we have taken in part of
our research, best exemplified in Experi-
ments 1, 2, and 3 of Gluck and Bower
(in press) to be reviewed below.
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Our initial interest was in finding some
correspondences between associative prin-
ciples underlying human and animal
learning. As a start, we decided to use the
Rescorla—- Wagner model of associative
learning (Rescorla & Wagner, 1972; Wagner
& Rescorla, 1972). The Rescorla—Wagner
model is one of the most widely accepted
descriptions of conditioning in animals and
is founded on a wide range of confirmatory
results.! Desiring to relate the Rescorla—
Wagner model to human learning and to
test some of its unique predictions within
that domain, our interest in adaptive net-
works for this purpose was aroused by a
paper by Sutton and Barto (1981). They
noted that the Rescorla—Wagner rule for
association formation was a special case of
the least-mean-squares (LMS) learning rule
widely used in training adaptive networks.
(The LMS rule is variously called the Wi-
drow-HofT rule, after its originators, or the
delta rule because of its use of differences.)

For the previous year we had been car-
rying out experiments on human category
learning, wherein subjects learned to clas-
sify patterns of stimulus features. Given

! Despite the many successes of the Rescorla—
Wagner model, it does have several well-known limi-
tations and shortcomings. First, it does not explain
learned irrelevance of a cue that has first been ran-
domly paired (uncorrelated) with an unconditioned
stimulus (US). Conditioning in the former case is se-
verely retarded, relative to a neutral cue, by that ear-
lier learned irrelevance (see Baker & Mackintosh,
1977). Second, one cannot drive to zero strength a
conditioned inhibitor (with V = —\) by presenting it
without the US—although the Rescorla—Wagner
model says that that should happen (see Zimmer-Hart
& Rescorla, 1974). Third, reducing the number of USs
(shocks) per trial from two to one in the two-phase
experiment causes unblocking and learning of the
second, redundant cue, in contradiction to the model
(Dickinson, Hall, & Mackintosh, 1976). Despite these
limitations, the Rescorla—Wagner model has remained
for the last 15 years as the most elegant and widely
accepted model of the associative changes occurring
during classical conditioning; the wealth of confirmed
implications arising from this deceptively simple
model has been substantial.
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that interest and the Sutton-—Barto obser-
vation, we were motivated to develop an
adaptive network model for our simple
form of human category learning and to test
the Rescorla—Wagner learning rule in that
context. Because of its popularity in recent
work by Medin and others, we chose as our
test situation a simulated medical diagnosis
task; student subjects learned to classify
hypothetical patients (described by one to
four medical symptoms) into one of two
disease categories, receiving feedback
about the correct diagnosis after each deci-
sion. After describing the model for this
task and three tests of the model’s predic-
tions, we will discuss how the model deals
with attentional and/or hypotheses-testing
behaviors during discrimination learning.

The Basic One-Layer Network

Figure 1 shows the simplest one-layer
network possible to deal with the case of
two output (disease) categories. The input
nodes correspond to the four medical
symptoms. Presentation of a simulated pa-
tient corresponds to activating those input
units representing that patient’s symptom
pattern. For example, a patient with
bleeding gums, a runny nose, and stomach
cramps might correspond in the model to
turning on input units s,, 53, and s,. If a pa-
tient does not have a specific symptom, we
assume that the corresponding input unit
has zero activation. Mathematically, each
patient p can be represented as a vector
with four binary components (symptoms),
where the jth component, x,;, has value o;
or 0 according to whether patient p does or
does not have symptom s;.

Subjects understood that each patient

SYMPTOM 1 (a/f0) —>
DISEASE (+A/-})

SYMPTOM 2 (o/0) —> 1

SYMPTOM 3 (o/0) —

SYMPTOM 4 (x/0) —>

FI1G. 1. A simple one-layer network with four input
nodes and one output node.
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had either of two diseases but not both. A
network model with two mutually exclu-
sive categories can be simplified to a net-
work with one output node (as in Fig. 1);
this one output node reflects the difference
in strength of activation in favor of cate-
gory (disease) 1 over category (disease) 2.
In principle, one could add a bias term,
which must be exceeded to get a preference
for a particular response. A bias term can
be introduced by adding a constant input
node, corresponding to the context, which
is always turned on with a +a; input acti-
vation, and which is then adjusted by the
LMS algorithm just like the other weights.
In this paper, we have not used the bias
term in any of the model’s applications. In
general, the model with a bias term does
not fit our three initial experiments as well
as the network model without a bias term.

Each input activation, x,; is multiplied by
its weight, w;, and the sum appears on the
output node, reflecting the extent to which
the network favors disease 1 over disease 2
as the classification of patient p. Weight w;
reflects the strength of differential associa-
tion between symptom j and disease 1
(versus 2). These weights are adjusted trial
by trial by some learning rule so as to adapt
to the correlations between symptoms and
diseases.

Training of the network is carried out by
presenting it with a series of patients
(symptom patterns) and telling it which dis-
ease each has. We represent the training
feedback on each trial as \, if disease 1 is
correct, and A, if disease 2 is correct. For n
input nodes, the learner is presumed to
compare the calculated output o, =
3%_1 X,wy to the desired output (A; or \y),
and then to adjust each of the weights that
contributed to the outcome so as to bring
the calculated output closer to the desired
output for that stimulus pattern. The
change on the trial in the jth weight, w), is
achieved according to the LMS rule:

Aw; = B\, —

op)xpj
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n
= B<)‘p - E kawk>xpj
k=1

B()\] - 2 xpk"l’k>xpj
k=1
= [1]

B()\z - > xpkwk)‘xpf
k=1

if disease 1

if disease 2

Several features of Eq. [1] should be
noted. First, no change in weights occurs
for nonpresented stimuli, for which Xp; 18
zero. Second, the change in association of
s; to a disease on a given trial is smaller the
closer the actual output is to that desired
for the input pattern. Thus, a given training
experience will cause a big change in the
weights (associations) only if something
““‘unexpected’’ happens. This also de-
scribes the conditions that produce
blocking in classical conditioning (Kamin,
1969). Third, as noted by Sutton and Barto
(1981), Eq. [1] is equivalent to the Re-
scorla—Wagner conditioning model
wherein the strength V; of cue i/ is altered
according to AV; = B(A — XV,), where the
summation is taken over cues that are pre-
sented on the trial. Their Vs are equivalent
to our ws; they suppress the x,; notation,
but these are implicit in the terms that ap-
pear in their equations. Fourth, in prin-
ciple, the full network in Fig. 1 has 11 pa-
rameters—four input activation values (o,
..+, o), four starting weights (w,, ..., w, on
trial 1), two training signals (X, for disease 1
and \, for disease 2), and the learning rate,
. But these parameters can be greatly re-
duced to essentially one, as we have done.
We assume A\, = —\, = \ due to equal
payoffs for the two categories, assume the
initial w;s are zero, and assume the as are
equal due to equal salience of the four sen-
sory inputs. Moreover, for given training
contingencies, one can show that the
asymptotic weights are unique up to a mul-
tiplicative factor of (A/a). Consequently, we
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lose no generality by setting A = « = 1, as
we have done in our calculations. All these
restrictions leave only B as the unknown
parameter. It determines the speed of
learning, or equivalently, the speed of con-
vergence to the least-mean-squares solu-
tion. For a given training sequence, Eq. [1]
implies a learning curve (in ws and/or
choice probability) that is usually nega-
tively accelerated with a rate of approach
to asymptote depending on B. The model
can be tested by its fit to the learning curve
observed under different conditions.

If the correlations between the stimulus
patterns and outcomes are trained long
enough, the LMS rule settles into a unique
asymptotic set of weights independent of B
(provided B > 0). This is termed the LMS
solution to the problem. These weights de-
termine the performance of the network.
Therefore, the model can also be tested by
its predictions about asymptotic perfor-
mance after many learning trials. Of
course, asymptotic predictions provide
only an indirect indicator of the learning
rule, but they are nonetheless useful when
they differ from those of alternative
models. The reader should note that these
asymptotic predictions of the LMS net-
work will often be parameter-free, deter-
mined only by the structure of the learning
problem and the LMS rule.

Fifth, Eq. [1] can be viewed analytically
as one of a class of functions that will opti-
mize the accuracy of the model’s predic-
tions according to some criterion. Several
criteria are plausible, including (1) mini-
mizing the squared errors or discrepancies
between the network’s output and the de-
sired output, averaged across all patterns,
(2) minimizing the average percentage
errors of the outputs, or (3) minimizing the
expected cost of the errors. Equation [1]
follows from adopting the first criterion,
minimizing the squared errors of prediction
(see Eq. [2]). Letting o0, and \, represent
the actual output and desired output of the
network for stimulus pattern (patient) p,
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the expected value of the squared error,
e, is

E(e) = EI\, — 0,7

n 2
E |:<7\p . E kaM’k> j| . [2]
k=1

The expectation is taken over all types of
input patterns, whereas the inner sum is
over the n input nodes associated with pat-
tern (patient) p. Weight w;s contribution to
minimizing the expected squared error can
be obtained by differentiating E(e) with re-
spect to w;. In particular, using the chain
rule,

3E(¢e) B SE(e) 8()p
ow; B do, dw;
= =20\, — 0,)X,

This derivative is proportional to the
weight change dictated by the LMS rule,
with a negative constant of proportionality.
These weight changes carry out a **steepest
descent’” search for a minimum E(e) in
weight space (see Stone, 1986; Widrow &
Hoff, 1960). The set of weights which pro-
duce a minimum E(e) is called the LMS so-
lution for that problem.

We use the error-correcting rule in Eq.
[1] because it is simple, has historical pre-
cedents in Widrow and Hoff’s (1960) adap-
tive learning networks, and importantly, is
identical to the Rescorla—Wagner model of
associative learning. Further, a number of
useful theorems have been proven about
the LMS rule in adaptive networks (Ko-
honen, 1977; Parker, 1985, 1986; Stone,
1986).

Many readers well recognize in Eq. [2]
the ingredients of a linear regression anal-
ysis, wherein the input variables x,; are
treated as predictor variables for a criterion
variable A, which is 1 or —1 for that pat-
tern. Equation {2] provides a maximum
likelihood, and least-squares, estimation of
the w;s as regression weights. Like regres-
sion weights, the w;s reflect the correlation
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between the predictor variable, x;, and the
criterion, after correcting for intercorrela-
tions among the predictor variables. Thus,
Eq. [1] provides an iterative procedure to
change the w;s trial by trial so as to con-
verge asymptotically to the least-squares
estimates of the regression weights. This
correspondence implies that a linear-re-
gression model would show many of the
phenomena captured by the Rescorla-
Wagner model when applied to a fixed set
of stimulus—response pairings. The net-
work model also bears an interesting rela-
tion to discriminant functions, the Bruns-
wick lens model, logistic regression, and a
Bayesian-inference model (see Slovic &
Lichtenstein, 1971). However, to pursue
these relationships would take us too far
afield here.

Although the mathematical properties of
the LMS learning rule have been well ex-
plored, we wish to address the question of
whether the rule provides an empirically
accurate account of how people learn. As a
first step in evaluating the LMS rule as a
component of human learning we began by
exploring the accuracy of its predictions for
asymptotic behavior of adults who have
learned probabilistic classification (*‘dis-
crimination’’) problems.

Experiment 1

Following procedures used by Medin and
his associates, our subjects learned to clas-
sify stimulus patterns (hypothetical medical
patients) into one of two disease catego-
ries. In the first experiment of Gluck and
Bower (in press), students, serving as med-
ical diagnosticians, read the medical charts
of hypothetical patients, each described by
the presence or absence of each of four
symptoms. The symptoms were imperfect
indicators, however, and had only probabi-
listic relations to the diseases. Thus, the
situation was similar to paradigms for
studying multiple-cue probability learning
(Castellan, 1977) or the training of fuzzy,
ill-defined categories (Medin & Smith,
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1984). The student diagnostician classified
each patient as having one or the other of
two fictitious diseases, then received feed-
back regarding the correct diagnosis.
During training, subjects eventually
learned which symptoms were more or less
diagnostic of each disease. At the end of
training, subjects were asked to directly es-
timate the conditional probability that a pa-
tient who had symptom s; (but with no in-
formation about his other symptoms) had
one disease or the other. These probability
estimates provide differentiating results for
several models we considered.

Experiment 1 was designed to distin-
guish the predictions of the LMS network
model (in Fig. 1 and Eq. [1]) from three
popular, competing models of category
learning: (1) exemplar models which pre-
sume that the learner stores all the exem-
plars of each category and then classifies a
new instance according to its relative simi-
larity to the stored exemplars of each cate-
gory (e.g., Medin & Schaffer, 1978; No-
sofsky, 1984), (2) feature-frequency models
which presume that the learner stores rela-
tive frequencies of occurrence of cues
within the categories and then classifies an
instance according to the relative likeli-
hood of its particular pattern of features
arising from each of the categories (Franks
& Bransford, 1971; Reed, 1972) and (3)
prototype models which presume the
learner abstracts the central tendency
(average description) of each category and
then classifies instances according to their
similarity to this average prototype (e.g.,
Fried & Holyoak, 1984; Homa, Sterling, &
Trepel, 1981).

Considering subjects’ estimates of the
probability of each disease given each
symptom, these models make one of two
predictions. Exemplar models predict that
subjects would access all, or a random
sample of the training exemplars which
contained the specified symptom and note
how often this symptom occurred with
each disease. Thus, these models predict
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that subjects’ estimates of the conditional
probabilities will reflect the observed con-
ditional symptom-to-category probabilities
of the training sequence, a form of *‘proba-
bility matching.”” A pure prototype model
which ignores the differing base rates of the
diseases would predict that subjects’ esti-
mates of the probability of a disease given a
symptom will reflect the closeness of that
symptom to the value of that symptom in
the prototypes of the two diseases. In the
feature-frequency model, subjects are pre-
sumed to keep track of how often the
symptoms (features) occur with each cate-
gory (disease) and then transform these to
conditional probability estimates. Thus, the
feature-frequency model makes predictions
identical to those of the exemplar model,
viz., the estimates should reflect the nor-
mative conditional probabilities of the dis-
ease given each symptom as it was realized
in the patterns shown in the training se-
quence. Estes (1986) provides a fuller de-
scription of the commonalities and differ-
ences between these models.

To creat predictions that differentiate the
LMS network from the alternative models,
we sought a learning task in which the or-
dinal relationships among the asymptotic
weights (across diseases) predicted by the
LMS model differs from the ordering pre-
dicted either by the objective posterior
conditional probabilities of the categories
given the features or by the relative likeli-
hoods of the features given the categories.
We discovered that one way to arrange
such a situation was to unbalance the
overall frequencies of the two diseases
(their “‘base rates’’) so that one occurs far
more often than the other. We will call
these the common (C) and rare (R) dis-
eases.

In Experiment 1, patients with the
common disease were presented three
times as frequently as patients with the rare
disease. Patients’ symptoms were selected
so that the probability of each of the four
symptoms occurring in patients suffering
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from each of the two diseases was that
shown in Fig. 2A. The lower numbered
symptoms (different for every subject)
were more typical for the rare disease while
the higher numbered symptoms were more
typical of the common disease.

Using the base rates of P(R) = .25 and
P(C) = .75 and the probabilities in Fig. 2A,
Bayes’ theorem provides the conditional
probability of the two diseases given the
four symptoms considered separately (see
Fig. 2B). For any single symptom the
Bayesian probability of the rare disecase
was always less than or equal to the proba-
bility of the common disease.

Direct probability estimates. After 250
training trials of predicting diseases and re-
ceiving feedback, subjects were finally
asked to estimate directly the probability
that a patient exhibiting a particular
symptom was suffering from the rare dis-
ease. They were explicitly told that infor-
mation about presence versus absence of
the other symptoms was to be considered
unavailable when they made these judg-
ments, and later questioning indicated their
correct understanding of this point.

Figure 3 shows both the actual probabili-
ties in the training patterns as well as the
probability-matching behavior predicted by

1.0

A B

3 5

08 |- L
@ 2
2 2
2 (3
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- 17
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a © R
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L o2 PRy =25 a b
o P(C) = 75 a

0 L | L |
1 2 3 4 1 2 3 4

Symptoms

F1G. 2. Experiment | design: (A) The probabilities
of each of the four symptoms occurring in patients suf-
fering from each of the two diseases. The lower num-
bered symptoms were more typical of the rare disease
while the higher numbered symptoms were more typ-
ical of the common disease. (B) The conditional prob-
abilities of each of the two diseases given the presence
of each of the symptoms computed from (A) using the
base rates and Bayes’ theorem.
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exemplar-storage and feature-frequency
models. But the LMS rule predicts that fol-
lowing training, subjects’ estimates of the
probability differences will follow a dif-
ferent pattern, reflecting the underlying
strengths of the feature-to-category asso-
ciative connections. These asymptotic con-
nection weights can be calculated from Eq.
[1] by deriving equations for the expected
trial-by-trial weight change in each of the
feature-to-category connections, setting
these expected changes to zero at asymp-
tote, and solving the resulting four simulta-
neous equations in four variables. As noted
earlier, the asymptotic connection weights
depend only on the reinforcement proba-
bilities in Fig. 2B and not on the learning
rate, B.

The expected asymptotic association
strengths turn out to be .430, —.043, and
—.306, and —.771 for w; through wy, re-
spectively; these are plotted in Fig. 3. We
assume that these differential association

£
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F1G. 3. Results and predictions for Experiment 1.
The normative probabilities of the rare disease given
each of the symptoms are shown as a dashed line
(with the scale along the left vertical axis). These also
correspond to the predictions of exemplar and feature
frequency learning models. The predictions of the
LMS rule, based on asymptotic levels of associations,
are shown as shaded areas above or below the middle
axis to indicate that they are to be interpreted relative
to the scale on the right. These predictions are unique
to within a scalar multiple. Hence, the critical aspect
of the predictions is the relative degree to which they
are either above or below the zero line, corresponding
to a prediction of .5 on the left scale. The observed
means of subjects’ estimates of P(R|s,) are shown as a
solid line (using the scale along the left vertical axis).
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weights are monotonically related to the di-
rect estimates that subjects make for each
symptom-—disease conditional probability.
In particular, the direct estimate of the
probability of disease R should be above,
equal to, or below .50 accordingly as the
theoretical w; is above, equal to, or below
zero, respectively. (Recall, the ws are dif-
ferential weights for one category versus
the other.)

Our initial comparisons will use only
these ordinal properties of the weights of
the different symptoms. The relevant or-
dinal comparisons are graphed in Fig. 3,
showing the objective posterior conditional
probabilities and the theoretical associative
weights along with the data. The most
striking difference between the objective
probability measures in Fig. 3 and the theo-
retical associative weights in Fig. 3 occurs
for symptom 1 (denoted s,). This symptom
was paired as often with the rare disease as
with common disease; hence, the condi-
tional probabilities were objectively .5.
However, the LMS rule predicts that s; will
be somewhat more associated with the rare
disease than the common disease, i.e., that
wy > 0.

To see the basis for this prediction, we
note that the asymptotic symptom—dis-
ease weight reflects the degree to which a
symptom has been a valid predictor of a
disease relative to the predictive value of
other symptoms that might be present at
the same time. Although s, has the same
predictive value for the two diseases, it is a
relatively better predictor for the rare dis-
ease than are any of the other symptoms.
On rare disease trials in which s, occurred,
the other symptoms were less likely to be
present; and if they were, they were more
strongly associated with the other disease.
Hence, according to Eq. [1], w,; was
pushed overall more toward + 1, indicating
the rare disease, than toward —1, indi-
cating the common disease.

Turning now to the data in Fig. 3, com-
parison of the actual with the estimated
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conditional probabilities indicated that
while subjects correctly learned the rela-
tive strengths of the conditional probabili-
ties within a particular disease category,
they appreciably overestimated the condi-
tional probability of the rare disease given
each of the symptoms. The data for s, are
critical for distinguishing between the
models. The data indicate that subjects be-
lieved that patients with symptom s, were
significantly more likely to be suffering
from the rare disease than from the
common disease. This result is exactly as
predicted by the LMS network model.

Predicting choices to patterns. We have
also used the LMS model to predict suc-
cessfully the observed choice proportions
given each of the 15 possible symptom pat-
terns. For each symptom pattern, we ob-
tained the summed weights and converted
that activation into a probability of as-
signing that patient to the rare disease cate-
gory. For this conversion, we used the lo-
gistic output function, viz.,

|
P(R|pattern) = ——— . 3]
-8 3 wery
I+ e #

The logistic output function is a close ap-
proximation to the normal integral function
of the difference between the strengths of
the two response alternatives, which was
the choice rule proposed long ago by Thur-
stone (1927) and Hull (1943). It is also the
oft-used output function used in connec-
tionist networks (see McClelland and Ru-
melhart, 1986).

Figure 4 shows the fit of the logistic to
the 15 patterns’ choice proportions esti-
mated from the last 50 training trials. The
best-fitting value of 0, as estimated by least
squares from the observed proportions, is
3.20. The correlation between observed
and predicted choice proportions is .94
with an average absolute discrepancy of
.07, suggesting a reasonable fit of the model
to these data. However, the 2 is 46.2(14), p
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F1G6. 4. Predicted vs observed proportions of
choices of the rare disease given 15 different symptom
patterns, labeled « through o, from Experiment 1 of
Gluck and Bower (1987).

< .001, suggesting significant deviations
from the model. We would point out that
many of the choice proportions are based
on relatively small samples, so have large
standard errors.

An interesting fact is that the observed
and predicted choice proportions are close
to the objective probabilities that any par-
ticular pattern has been paired with the
rare disease. This is a form of **probability
matching’’ at the level of entire patterns of
symptoms and it corresponds to predic-
tions of Estes’ pattern model (Estes, 1960).
We note that such probability matching vi-
olates the ‘‘optimal’’ decision rule which
dictates that one should always assign the
rare disease to any patients whose sum of
weighted symptoms exceeds zero, and oth-
erwise assign the common disease to them.
Of course, this suboptimality has often
been commented upon in the literature on
probability matching (e.g., Estes, 1972).

Setting aside these choice proportions,
the primary focus of our ordinal analyses
was on the subjects’ direct estimates of the
conditional probabilities of each disease
given each symptom singly. The relevant
differences between these probability esti-
mates, shown in Fig. 3, confirm the predic-
tions of the LMS rule. Importantly, sub-
jects conformed to prediction in believing
that symptom s, was a stronger predictor of
the rare disease than of the common dis-
ease, although objectively the two diseases

175

were equally likely whenever symptom s,
appeared. Subjects behaved as though they
were neglecting the higher base rate of the
common disease.

This result suggests that our learners fell
prey to a common form of ‘‘base rate ne-
glect’’; in making predictions, they errone-
ously judged that the presence of a
symptom (s,) highly representative of the
rare disease was strong evidence for diag-
nosing the rare as opposed to the common
disease. This result brings to mind several
results in research on probability judg-
ments: people consistently overestimate
the degree to which evidence that is repre-
sentative or typical of a rare event is actu-
ally predictive of it (Kahneman & Tversky,
1973). Most studies demonstrating such ne-
glect of base rate in judgments have used
natural categories with familiar prototypes
(e.g., feminists or engineers), and base rate
information has generally been presented
to subjects as abstract numerical informa-
tion (Tversky & Kahneman, 1982). Our
demonstration of base rate neglect has
arisen where information about categories
and base rates was learned by subjects
from examples. Of course, there is no as-
surance that the two forms of base rate ne-
glect are generated by similar causal mech-
anisms.

Our results for direct probability esti-
mates raise one or another problem for the
three competing models of category
learning introduced earlier. In brief, the
problem is that these models fail to predict
the subjectively high diagnosticity of
symptom s,. Rather, they expect that direct
estimates of the conditional probability of
the rare disease given symptom s, will
match the objective probability (of .50)—
and that was not so. Although the network
model predicts more accurately in this in-
stance, the other models, especially
Medin’s context model, have dealt suc-
cessfully with a range of results that the
simple network model would have diffi-
culty explaining (e.g., Medin, Altom,
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Edelson, & Freko, 1982; Medin & Schwan-
enflugel, 1981). Such results arise when-
ever the correct category depends on the
joint value of two or more stimulus dimen-
sions in a nonlinear manner. We will return
later to this topic.

Experiment 2

In the second experiment of Gluck and
Bower (in press), we tested a basic prop-
erty of the LMS model, namely, that dif-
ferent cues compete to be the more valid
predictor of an outcome. To the extent that
a stimulus cue is redundant with a stronger
or more valid cue in predicting an outcome,
the model and Eq. [1] expect that that cue’s
associative strength will be greatly atten-
uated. Thus, in our category-learning para-
digm, we expected to attenuate the ap-
parent diagnosticity of symptom 1 (found in
Experiment 1) by making some of the other
symptoms truly reliable and strong pre-
dictors of the rare disease. To test this pre-
diction, Experiment 2 was designed identi-
cally to Experiment 1 in all respects except
that symptoms 2 (s,) and 3 (s;) were
changed to be more valid predictors of the
rare disease and common diseases, respec-
tively. In particular, the probability of s,
given the rare disease was set at .90 and the
probability of s, given the common disease
was set at .90. This outcome is predicted as
well by the equivalent linear regression
model, viz., the regression weight of one
variable is reduced accordingly as it is par-
tially correlated with a second, more valid
predictor.

As predicted by the LMS rule, the re-
sults obtained in Experiment 2 showed that
the apparent diagnosticity of symptom 1 for
the rare disease was significantly atten-
uated by introducing greater validity for
symptom 2 toward the rare disease. The di-
rect estimate of the conditional probabili-
ties of the rare disease given symptoms 51
(without information of other symptoms)
dropped from .67 (in Experiment 1) down
to .59 in Experiment 2. This was a signifi-
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cant reduction, as the model predicted. It
was as though symptom 1 ‘‘lost its punch,”’
or its claims on the subject’s attention,
when it was put into competition with a
truly diagnostic symptom for the rare dis-
ease. It is this competitive nature of cue—
outcome association learning that gives the
LMS rule its distinctive advantage over
other learning rules. The rule implies that
people do not learn sets of independent
cue-outcome associations, but rather the
relative diagnosticities of the various cues.
In further testing, the model was some-
what close in predicting the asymptotic
choice proportions for each of the
symptom patterns: using Eq. {3] with 6 =
4.6, the predictions yielded a fit to the ob-
served proportions with a correlation of .97
and an average discrepancy of .09 (x2 (14)
= 53, p < .001). The observed choice pro-
portions were close once again to the ob-
Jective probability-matching values.

Experiment 3

We noted in both Experiments 1 and 2
that the observed choice proportions for
symptom patterns were close to the objec-
tive probabilities, as predicted by Estes’
pattern model.? The correspondence was
sufficiently close as to make the pattern
model a strong competitor to the LMS net-
work model. Consequently, Experiment 3
of Gluck and Bower (in press) sought to
find evidence that would discriminate be-
tween the two theories. One crucial point
we noted is that the pattern model treats
symptom patterns as unanalyzable wholes
(configural Gestalts), each one of which
differs equally from the other patterns.
(The “‘mixed”’ model of Atkinson & Estes,
1963, was proposed to deal with generaliza-

2 Medin’s context model can also predict proba-
bility matching to patterns in case the similarity pa-
rameters are set to zero; i.e., a test pattern matches
only its own representations in memory and any mis-
matches would be discarded. Of course, the model
would then fail to generalize to novel patterns.
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tion from patterns to stimulus compo-
nents.) As a consequence of this unana-
lyzability assumption, the pattern model
treats presence versus absence of a single
symptom within a pattern as equivalent to
presence of a symptom versus its comple-
ment (or opponent) symptom in the pat-
tern. But suppose instead of presence vs
absence of the four symptoms in Experi-
ment 1, that we substituted presence of the
symptom versus its opposite symptom,
such as runny nose vs stuffy nose.? Each
patient would then be described by exactly
four symptoms, by selecting one from each
of the four opponent pairs of symptom
values. Such an experiment would still
have 24 = 16 distinct stimulus patterns. If
these were to have the same correlations
with the diseases as did the patterns in Ex-
periment 1, then the pattern model has no
grounds for expecting a difference in out-
come for the two cases.

The theoretical situation is different for
the LMS network model. In fact, there are
at least two different ways to represent the
opponent-symptom situation within the
network framework, and they make signifi-
cantly different predictions. The two net-
work representations are depicted in Fig. 5.
Network A represents each opponent-
symptom pair as a single input node which
receives activation of +a or —a depending
on which member of the opponent pair is
presented on a given trial (patient). Alter-
natively, network B represents each
symptom s; and its opponent of the pair, s7,
as two distinct input nodes, one, and only
one, of which is activated for each patient;
this comprises eight input nodes. Notice
that network A has a built-in negative cor-
relation between any symptom and its op-
ponent, whereas network B is silent on this
issue. Insofar as it takes a stand on the
issue, the linear regression model would

3 Tversky (1977) called these substitutive features
(e.g., color of eyes) rather than additive features
(presence/absence of glasses).
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SYMPTOM 1 (+a/-a) —
DISEASE (+A/-\)
SYMPTOM 2 (+a/-a) —> 'L

SYMPTOM 3 (+o/-0) —

SYMPTOM 4 (+a/-a) —>

SYMPTOM 1 (a/0) >
SYMPTOM 1* (0/a) —

SYMPTOM 2 (a/0) — DISEASE (+A/-1)
SYMPTOM 2% (0/a) — 4
SYMPTOM 3
SYMPTOM 3*

(@/0) —
(0/a) —

SYMPTOM 4 (a/0) —
SYMPTOM 4* (0/a) —

FiG. 5. (A) A four-component network for classi-
fying the stimuli from Experiment 3 which represents
each opponent-symptom pair as a single input node
which receives activation of +a or —a depending on
which member of the opponent pair is presented on a
given trial (patient). (B) An eight-component network
for classifying the stimuli from Experiment 3 which
represents each symptom s, and its opponent of the
pair, s, as two distinct input nodes, one (and only
one) of which is activated for each patient.

treat the experiment in terms of network A.
If it tried to represent the experiment in
terms of an eight-variable linear regression
equation similar to network B, it would
compute a perfect negative correlation be-
tween each s; and s7. Hence, the eight-vari-
able regression model would collapse to a
four-variable model with input values of
+1/—1 rather than + 1/0.

Both of these network representations
are plausible and, indeed, correspond to
different stances in the adaptive network
literature. One obvious difference is that
network A implies strong symmetry in acti-
vation for a given pattern and its comple-
ment (obtained by using the alternate
values in the pattern). For example, if pat-
tern s,—-s,-s3—5, yields output activation
G, then its complementary pattern sj—s,—
s53—55 will yield output —G. Therefore, the
eight complementary pairs of patterns pro-
vide strong tests of this symmetry predic-
tion from network A. On the other hand,
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network B, treating the eight symptoms as
distinct, makes no such strong predictions.
In viewing this experiment in terms of ei-
ther network, we note that a symptom
never can occur alone; rather, it always
occurs in company with three other
symptoms, so by the LMS rule it cannot
acquire dominating associations. The com-
petitive nature of the LMS rule thus leads
to different outcomes for Experiment 3
than for Experiment 1 (under both network
models).

Turning first to the models’ predictions,
Fig. 6 shows the predicted weights for the
eight-component model. Also shown are
the probability-matching predictions of
Estes’ pattern model, and, for comparison,
the association weights predicted by the
LMS model for Experiment 1.

Several features of these predictions may
be noted. First, the pattern model’s predic-
tions of probability estimates for the posi-
tive symptoms s,, $,, 53, and s, in Experi-
ment 3 (see Fig. 6) are identical to what
they were in Experiment 1 (see fig. 3).
Second, the predictions of the LMS model
of the subjects’ direct estimates of P(R|s,)
for symptoms s, through s, (viz., the w;s)
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differ mainly by being less extreme (i.e.,
closer to .5) in Experiment 3 than they had
been in Experiment 1. Thus, compared to
Experiment |, symptom s, in Experiment 3
should appear to be somewhat less diag-
nostic of the rare disease, while symptoms
s3 and s, will appear less diagnostic of the
common disease. Third, these two models
differ in their predictions for symptom sj.
The pattern model implies that s, will be
somewhat associated with the common dis-
ease, whereas the LMS model predicts that
s4 will be more associated with the rare dis-
ease.

These differing predictions led us to con-
duct Experiment 3. As noted, the statistical
design of Experiment | (see Fig. 2) was re-
peated with the exception that each
present/absent symptom (e.g., fever or not)
was replaced by two mutually exclusive
features (e.g., stuffy/runny nose), one of
which was always present for each patient.
One slight difference was that Experiment
1 did not present a pattern in which a pa-
tient had none of the four symptoms,
whereas the analogous case, of all compli-
mentary features, was presented in Experi-
ment 3. Thirty-six college student subjects
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FI1G. 6. Results and predictions for Experiment 3. The normative probability of the rare disease
given each of the symptoms is shown as a dashed line, with the scale along the left vertical axis. These

also correspond to the predictions of exemplar and fe

ature frequency learning models. The predictions

of the LMS rule are shown as shaded areas above or below the middle axis to be interpreted relative to
the scale on the right. The observed data from subjects’ estimates of P(R|s;) are shown as a solid line,
using the scale along the left vertical axis. The data from Experiment 1 are also shown for comparison.
Note that the normative conditional probabilities for symptoms 1 through 4 were unchanged from

Experiment 1 to Experiment 3.
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classified 250 patients, receiving feedback
on each. After training, the subjects’ esti-
mated the conditional probability of each
disease given each of the eight single
symptoms (four mutually exclusive pairs).

Figure 6 shows the objective conditional
probability estimates for the rare disease
for each of the eight symptoms. The data of
Experiment 1 are also shown for compar-
ison. A number of conclusions may be
drawn from these findings.

First, we consider the implications for
the four-component model. As noted ear-
lier, network A which represents the pairs
of opponent symptoms by +a/—«a on four
input nodes predicts that judgments of
P(R|s;) should be symmetric to P(R|s;)
around .5. The data, however, disconfirm
this strong prediction. To take just one ex-
ample, subjects’ estimates of P(R|s;) and
P(R|s3) were both significantly below .5,
whereas one should be above .50; thus, this
pair and several others violate the sym-
metry prediction of network A.

Also model A predicts for any symptom
pattern T and its complementary pattern T*
that the choice probabilities are con-
strained by the relation P(R|T) + P(R|T*)
= 1. These predictions contrast sharply
with the normative values of these proba-
bilities. Contrary to this model’s predic-
tions, the observed choice proportions
were very close to the normative probabili-
ties. Thus, these observations permit the
rejection of network model A.

Turning to the eight-component network
model B, here the LMS rule predicts that
symptom s, will still be considered more
diagnostic of the rare disease, in contrast to
the .5 value expected by the probability-
matching models. The data support the
LMS prediction. Second, model B pre-
dicted that the opponent symptom s, would
be considered diagnostic of the rare dis-
ease; the results support this outcome as
against the probability-matching prediction
of the pattern model (see Fig. 3). Third, in
Experiment 3, we expected the probability
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estimates for symptoms 1, 3, and 4 to
“‘shrink’” toward .5, reflecting less compet-
itive dominance than in Experiment 1. This
too was observed.

Overall, then, the probability ratings ap-
pear to support the eight-component LMS
model B as against the four-component
LMS model A and Estes’ pattern model.
Both the eight-component LMS model and
the pattern model predict a V-shaped graph
over the eight symptoms in Fig. 3, but the
LMS model predicts a V that rises above
the .5 baseline at both ends. Also, the pat-
tern model expects the probability esti-
mates in Experiment 3 for s, s,, §3, and s,
to be identical to those in Experiment 1.
But in fact the two profiles for these
symptoms deviate significantly from one
another. The results here are not simply re-
gression to chance due to slow learning
with more cues in Experiment 3; rather, the
alternative models do not account for the
salient results predicted by the LMS
model, namely, the significant overexpec-
tation of the rare disease given s, and sj.

Discussion of Experiments

The results of these three experiments
provide preliminary converging evidence
that the LMS rule is more general than for-
merly believed and is not limited to animal
learning or to unobservable subcognitive
changes in associations. Medin and
Edelson (in press) have also obtained evi-
dence that co-occurring cues compete for
associations according to their relative va-
lidity. One limitation of the Gluck and
Bower (in press) experiments is that they
focus only on the asymptotic performance
of subjects after extensive training. Thus,
these studies only indirectly evaluate the
learning process specified by Eq. [1]. More
precisely, the results provide evidence for
asymptotic LMS optimization, not for the
learning rule which converges to that
asymptote. The advantage of focusing on
the asymptotic performance was that the
model provided parameter-free predictions
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about behavior which contrasted with the
predictions of popular alternative models.
Clearly, however, further work must be
done to more directly evaluate the learning
process itself.* MacMillan’s (1987) study of
zero-contingency cues is a very promising
step in that direction, providing more direct
evidence for the LMS learning rule.

Exploring farther afield, we have reex-
amined a few other phenomena of classifi-
cation in light of the one-layer network
model. As one instance, this model (as
does Medin’s & Hintzman’s (1986) MI-
NERVA 2) appears to handle much of the
data previously cited in support of the pro-
totype model. In particular, the model ex-
plains the graded typicality effects found in
those classification experiments in which
category exemplars are distortions of a
central prototype (e.g., Franks & Brans-
ford, 1971; Posner & Keele, 1968: Reed,
1972). Provided that a wide range of distor-
tions of the prototype has been shown
during trailing, the network will estimate
weights that will cause the full prototype to
be rated as most typical of the category,
even though it was not shown during
training. The adjusting weights are also
sensitive to the frequency of particular ex-
emplars within a category, so that items
near the more-frequent exemplars come to
be classified more accurately, as reported
in the literature (e.g., Neumann, 1974; No-
sofsky, 1988).

We have hardly begun our examination
of the extensive literature on category
learning using this simple network model.
It is clear already that it will encounter dif-
ficulties fitting data obtained when people
learn discriminations based on correlated
cues (Medin et al., 1982) or learning cate-
gories based on nonlinear combinations of
cues (Medin & Schwanenflugel, 1981). We

4 W. K. Estes (personal communication, 1987) has
reported some success in fitting the LMS rule to the
learning curves of choices produced by subjects being
tested with specific sequences of classified patterns.
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shall return to this point in the next section.
We are nonetheless encouraged not only
that the LMS rule of adaptive network
theories which fits these human learning
data links with the Rescorla—-Wagner
model of conditioning, but that it also im-
plies the phenomenon of base rate neglect
which has proven to be a robust phenom-
enon in the literature of judgment and deci-
sion. We turn now to examine several phe-
nomena which were once considered
beyond the scope of simple conditioning
models, namely, selective attention and hy-
pothesis testing during category learning.
We first extend the network model to deal
with some attentional effects in category
learning, wherein cue weight reflects atten-
tion to a cue. Second, we extend the model
to include conjunctive features and show
how this enables it to fit classic results on
the difficulty ordering of learning differing
types of classifications.

ATTENTIONAL PHENOMENA IN LEARNING

One deficiency of the association-based
learning theories of the early 1960s was
their difficulty in accounting for attentional
phenomena in discrimination learning (e.g.,
Sutherland & Mackintosh, 1971). But some
progress has occurred in extending condi-
tioning models to account for attentional
phenomena in animal learning (Rescorla &
Wagner, 1972). It may be timely, therefore,
to reexamine the relevance of conditioning
models for attentional phenomena in
human learning.

Two broad classes of models have been
proposed in the conditioning literature to
account for attentional phenomena (Re-
scorla & Holland, 1982). The first, and
oldest, class of models emphasized varia-
tions in the processing of the stimulus cues
(the CSs) due to a limited attentional ca-
pacity. As examples, the theories of Suth-
erland and Mackintosh (1971) and Trabasso
and Bower (1968) both suggested that mul-
tiple CSs compete for a share of the or-
ganism’s attention. For instance, in the
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blocking experiment of Kamin (1969), pre-
training to the CS, stimulus was presumed
to cause the animal to attend exclusively to
this stimulus during the compound CS§,; +
CS, training, effectively rendering the CS,
stimulus nonfunctional; thus, no new asso-
ciation to CS, could occur during training
on the compound. Related theories by
Mackintosh (1975) and Pearce and Hall
(1980) similarly emphasized variations in
the processing of cues due to their history
of informativeness.

An alternative class of models accounts
for attentional phenomena such as blocking
by postulating variations in associative
learning due to differential processing (or
impact) of the unconditioned stimulus
(US). This view, originally proposed by
Kamin (1969) and formalized by Rescorla
and Wagner (1972), claims that the effec-
tiveness of the US for promoting associa-
tive learning varies with the degree to
which the US is surprising or unantici-
pated. In particular, the degree to which an
outcome causes a stimulus element to be-
come associated to it on a trial is propor-
tional to the degree to which that outcome
is surprising (unexpected) given all the
stimulus elements present on that trial (Eq.
[1] has this property). In such a model, a
cue that acquires a strong association to an
important outcome acts like a salient cue
that attracts attention insofar as it largely
controls the subject’s behavior.

Within the animal conditioning literature,
investigators have long debated the relative
merits of these two models (see the review
by Rescorla & Holland, 1982). In the litera-
ture on attention in human learning, how-
ever, all the models use the first approach,
that of limited attentional capacity. For in-
stance, models of attention in human
learning, such as the earlier models of
Zeaman and House (1963) or Trabasso and
Bower (1968), or Nosofsky’s (1986) recent
generalization of the Medin and Schaffer
(1978) context model, employ limited ca-
pacity assumptions.
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In light of our evidence for the LMS rule
in human learning, it is instructive to ex-
amine some conditioning phenomena
which have strongly bolstered the differen-
tial association model of Rescorla and
Wagner in contrast to the selective atten-
tion theories. Two phenomena in animal
conditioning, namely, overexpectation and
supernormal conditioning, provide discrim-
inating analogs to ponder for human
learning. First, in the overexpectation par-
adigm, two stimuli, CS, and CS,, are first
separately conditioned to the same uncon-
ditioned stimulus, and are then presented
simultaneously in a compound CS, + CS,
paired with the US. The LMS model im-
plies that the initial training to the indi-
vidual cues will drive both w, and w, to
their asymptotic strength of A, so that the
compound association strength w;, + w,
will equal 2\ asymptotically.’ On such
compound trials, because the US that
occurs is overpredicted the association
strengths of the two cues are expected to
actually decrease rather than increase. Fur-
thermore, if a neutral stimulus, CS§,, were
to be presented along with the CS, + CS,
compound, all followed by the overex-
pected US, CS, should become irhibitory,
according to Eq. [1]. These startling pre-
dictions have been confirmed by Rescorla
and Wagner (1972) and Kremer (1978). Be-
cause limited attentional capacity models
cannot predict that the old stimuli will lose
stength during compound training nor that
the novel stimulus will gain inhibitory
powers, the results provide quite discrimi-
nating evidence in favor of the LMS ap-
proach.

A second discriminating result is super-
normal conditioning which arises whenever
a compound CS, + CS, stimulus paired
with a US includes a stimulus, CS,, which

5 Rescorla and Wagner use V, to denote the associa-
tive strength between CS; and a US. But their Vs are
formally equivalent to our weights, the ws, so we will
continue to use the weight terminology.
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has previously been conditioned as an in-
hibitor (predicting absence of a US). To be
specific, suppose the prior inhibitory con-
ditioning of CS§, causes w, to equal —A\,
whereas CS, begins as a neutral cue with
w, = 0. The LMS rule implies that training
with only the compound CS; + CS, paired
with the US will change the two weights
equally, so that their difference will always
equal their initial difference, X. This means
that w, will increase more rapidly than it
would have in a control condition where
both weights were initially equal. More-
over, if a conditioned inhibitor (CS)) is pre-
sented in compound with a former condi-
tioned excitatory stimulus (CS;) and the
compound is reinforced, then the excit-
atory CS; will acquire even greater
strength. This occurs because the strength
of the compound (w;, + w;) will be less
than the asymptote \, so that the LMS rule
will strengthen CS5 even more than it was
at the end of its initial training. Rescorla
(1971) and Wagner (1971) confirmed that
both these training procedures produce su-
pernormal conditioning of the excitatory
stimulus component. Limited attention
models do not provide as direct an explana-
tion for these results as does the LMS
model.

A third major attraction of the Rescorla—
Wagner model has been its ability to ac-
count parsimoniously for both excitatory
and inhibitory conditioning (Wagner & Re-
scorla, 1972). For example, if in a condi-
tioned inhibition experiment CS,~US trials
are intermixed with CS, + CS, — no US
trials, the Rescorla—Wagner model cor-
rectly predicts that such training should re-
sult in CS, acquiring inhibitory properties.
Moreover, the presence of a familiar inhibi-
tory cue will block the acquisition of inhibi-
tory power by a new second cue which is
paired with the first one in predicting ab-
sence of the US. Limited capacity attention
models, however, are silent about such
issues, and so suffer in comparison to the
Rescorla—Wagner account.
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Attention Optimization and the LMS Rule

Despite such evidence from the animal
learning literature favoring the LMS rule
over the selective attention theory, the
latter holds a favored position in the litera-
ture on human discrimination learning. A
recent example is Nosofsky's (1984, 1986)
very elegant model of how subjects dis-
tribute their attention among the available
cues in the task. So, as a first step in evalu-
ating the LMS model as an attention-like
mechanism in human learning, we tried to
fit some of the same results as did No-
sofsky with his model.

Nosofsky’s model calculates how a sub-
ject should best distribute his attentional
capacity over the available cues so as to
optimize his classificatory performance.
One implication is that the subject should
pay more attention to more valid (predic-
tive) cues and less to irrelevant cues. In the
model, differential attention to a stimulus
dimension (e.g., dark vs light, circle vs el-
lipse) is reflected by more or less general-
ization between the values on that dimen-
sion. Values along unattended dimensions
are less noticed and thus more similar.
These intradimension similarity values are
then used along with the Medin and
Schaffer (1978) exemplar model to calcu-
late response proportions to stimulus pat-
terns in a variety of discrimination-and-
transfer experiments (see Nosofsky, 1984,
1986). In this respect, the model is com-
mendably accurate.

An acknowledged shortcoming of No-
sofsky’s model, however, is that it is static.
It simply assumes that subjects during the
course of training adopt an optimal distri-
bution of attention (over the stimulus di-
mensions), but the model does not specify
a step-by-step learning mechanism that
could arrive at this optimal distribution as a
result of training. How do subjects divine
the optimal allocation of attention? We
asked whether the asymptotic performance
of the LMS rule might turn out to be nearly
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equivalent to the optimum performance
dictated by Nosofsky’s model of attention.
Let us examine a specific case.

Nosofsky (1984) analyzed an experiment
by Medin, Dewey, and Murphy (1983) in
which subjects learned to classify head-
shot pictures of women that varied along
four binary dimensions: hair color (light or
dark), hair length (long or short), shirt
color (light or dark), smiling face (open or
closed mouth). The category structure used
in this experiment is presented in Table 1
where 1 and 2 denote the two values on
each dimension, labeled at the top of the
columns. During training, pictures Al to
AS were assigned to category A, while pic-
tures B1 to B4 were assigned to category
B. Table 1 also shows seven novel test pat-
terns (N1 to N7) which were presented in a
testing session after training. Models may
be tested by their ability to account for the
probabilities of different category re-
sponses to these test patterns.

Nosofsky’s model characterized the at-
tention to each dimension by a similarity
parameter which reflects the weight of that
dimension’s contribution to the classifica-

TABLE 1
CATEGORY STRUCTURE FROM MEDIN ET AL. (1983)

Dimension

Exemplar 1 2 3

N

Category A Al
A2
A3
A4
AS

PO — =
—_— N —
—_ D e
—_— e B2

Category B Bi
B2
B3
B4

RN
N b = b
MNo— B9 b

Transfer test N1
patterns N2
N3

N4

NS5

N6

N7

B9 MBI B e — —
[ N N S N S S N N
S e L L
RO o = B — N =
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tion judgments given to the test patterns. A
highly relevant or informative dimension
(such as dimension 1 in Table 1) would be
reflected in a high attention weight. These
weights are parameters that can either be
estimated by fitting subjects’ classification
performance or they can be derived theo-
retically from an optimization scheme as
Nosofsky did.

We have used the LMS rule to simulate
the experiment of Medin et al. by training
simulated Monte Carlo subjects to asymp-
tote on the stimuli in Table 1. Figure 7
shows the theoretical parameters estimated
from the Medin et al. data. The three lines
in the figure are the observed attention
weights as estimated from the data (based
on transformations of the similarity param-
eters in Medin’s context model), the pre-
dictions from Nosofsky’s (1984) attention
optimization model, and the normalized as-
sociation strengths derived from the LMS
network model for this experiment. Recall,
the magnitudes of these values correspond
to the asymptotic importance of the dimen-
sions in the categorization task, i.e., the in-
formativeness of the dimension for distin-
guishing the categories and/or controlling
the response. These predictions are com-

0.5

. . LMS modet
optimal weights: predictions

04 1= context model

0.3

0.2 observed weights:

context model

Normalized Weights

|
1 2 3 4

0.0

Appearance Dimensions

F1G. 7. Analyses of stimuli and data from Medin et
al. (1983) showing the observed attention weights as
estimated from the data (based on transformations of
the similarity parameters in Medin’s context model),
the predictions from Nosofsky’s (1984) attention opti-
mization model, and the normalized association
strengths derived from the LLMS rule. (Adapted from
Nosofsky, 1984, with permission).
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pletely parameter-free for the LMS model
since they are a function solely of the
structure of the way the examples in Table
1 are classified.

Figure 7 shows that stimulus dimension 2
was the least important whereas dimen-
sions 1, 3, and 4 were about equal in im-
portance for both the data and the two
models. Nosofsky’s attention optimization
hypothesis and the LMS rule deliver al-
most identical predictions. Not only do
both provide close predictions of the data,
but the predictions of the two models, in
each dimension, differ from the data in the
same direction. Thus, both models appear
to be capturing the same regularities and
characterizing the informativeness of the
stimulus dimensions similarly.

To further compare the two models, we
analyzed the models’ predictions of choice
probabilities for the nine training exem-
plars and the seven test exemplars (see
Table 1). Figure 8B shows a scatterplot of
the observed choice probabilities (from the
experiment of Medin et al., 1983) compared
to the predictions of the context model.
Figure 8A plots the same data against the

A
1.0
§w0.8
25
O': 0.6 |
ox
wo
=504}
xo 0
‘l-gn:
mﬂ.
o 0271
0 ‘ .
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LMS MODEL PREDICTIONS

GLUCK, MARK A., Evaluating an Adaptive Network Model of Human Learning , Journal of
Memory and Language, 27:2 (1988:Apr.) p.166

GLUCK AND BOWER

LMS rule. Predictions of choice probabili-
ties from the LMS rule were made by en-
tering the asymptotic association strengths
(toward the two categories) shown in Fig. 7
into Eq. [3] with 8 = 1.5. Predictions from
the context model, as reported in Medin et
al. (1983), were made by fitting four simi-
larity parameters, one for each dimension
of appearance of the women’s pictures. As
shown by the points clustering near the di-
agonal, both the LLMS and Medin models
do exceptionally well in predicting sub-
Jjects’ choice probabilities for the different
patterns. The predictions of the models are
quite similar to one another for the 16 indi-
vidual patterns (see Table 1).

Given the similar predictions of the LMS
and Nosofsky’s models, an interesting
question is whether there is some formal
relationship between the two. Recently, D.
Rumelhart and R. Golden (personal com-
munication, 1987) have shown that under
certain conditions the LMS model with the
logistic output function closely approxi-
mates Nosofsky’s attention optimization
model. The approximation is good when-
ever it is possible to find a set of attention

1.0

o o
-] -]

PROPORTIONS
o
»

OBSERVED CHOICE

o
(N

00 02 04 06

08 1.0

CONTEXT MODEL PREDICTIONS

F1G. 8. Choice probabilities from one of the conditions (*‘last name infinite’’) reported by Medin et

al. (1983) showing comparisons of the predictions

(A) the LMS rule with no free parameters and (B)

the context model with four similarity parameters estimated from the data. Al through AS refer to
instances of the A category, and B1 through B4 are instances of the B category. Each instance corre-
sponds to a vector of binary values on four stimulus dimensions. See Table 1 for the identities of the

different exemplar types.
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weights such that the members of each cat-
egory are tightly clustered about a central
prototype. In this case, the weights discov-
ered by the LMS procedure correspond
closely to those found by the Nosofsky op-
timization procedure. The only difference
arises because Nosofsky minimizes per-
centage errors, whereas the LMS scheme
minimizes the square of the difference be-
tween the activation sum entered into the
logistic and a target of 1 or —1. In this
case, the parameter 0 corresponds to the
parameter D in Nosofsky’s optimization.
The approximation improves further when
the weights of the network model are
chosen so as to minimize the sum squared
error of the output rather than the activa-
tion sums. In any event, the close fit of the
LMS rule to Nosofsky’s attention optimi-
zation model suggests examining other suc-
cessful applications of Nosofsky’s model
(1986). We are continuing these theoretical
investigations.

HYPOTHESIS-TESTING MODELS

Historically, notions of selective atten-
tion in human discrimination learning have
had greatest currency in hypothesis-testing
models of concept identification. Such
models were proposed and investigated by
Bruner, Goodnow, and Austin (1956),
Restle (1962), Bower and Trabasso (1964),
and Trabasso and Bower (1968). The typ-
ical concept identification task presents
subjects with stimuli such as geometric
patterns varying in N binary dimensions
(shape, size, color, position, etc.) and asks
them to learn a simple classification rule
(e.g., ‘‘Large figures are As, small figures
are Bs’’). The basic hypothesis model for
such tasks assumes that a subject selects
and tries out different hypotheses regarding
the correct rule. The hypotheses are coor-
dinated with exclusive attention to one
stimulus (e.g., the color or shape dimen-
sion); and the hypothesis is selected from a
small set of hypotheses (e.g., the 2N one-
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dimension classificatory rules). The model
assumes that the subject starts each trial
with one hypothesis, uses it to notice the
hypothesized feature of the presented stim-
ulus pattern, and classifies the pattern ac-
cording to the hypothesis. The hypothesis
is either maintained, reversed, or rejected
depending on the feedback for a given
choice.

A lingering difficulty for these simple hy-
pothesis-testing models was their inability
to deal adequately with people’s learning to
identify concepts involving more than
simple, one-dimensional rules. In order to
come close, the simpler models had to as-
sume that subjects were systematically
sampling from the complete ‘‘power set’’
of all 2N¥*! possible hypotheses involving
single stimulus values, doublets, triplets,
etc., in various logical combinations (see
Hayes-Roth & Hayes-Roth, 1977; Hunt,
1962; Reitman & Bower, 1973; for excep-
tions, see Bourne, 1970; Hunt, Marin, &
Stone, 1962). It was known that learning
was more difficult the greater the number
of stimulus dimensions (values) that had to
be included in the correct rule. The experi-
ment by Shepard, Hovland, and Jenkins
(1961), to be described below, provides one
demonstration of this fact. Nevertheless,
there has been no simple, compelling ex-
planation for that elementary fact within
hypothesis-testing theories. This defi-
ciency, along with the upsurge of interest in
models for learning ill-defined concepts,
caused interest in hypothesis models to
wane over the past decades.

Complex concept problems require the
subject to base the response on two or
more dimensions of stimulus variation. No-
sofsky has applied his attention model to
the learning of concept problems of dif-
fering complexities, estimating how sub-
jects distribute their attention across rele-
vant and irrelevant stimulus dimensions for
such complex problems. For example, he
fit his model to the results of the experi-
ment of Shepard et al. (1961) to be de-
scribed below. However, while his model
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can describe this optimal attention distribu-
tion at the asymptote of learning, it does
not explain how the subject comes to learn
this attention distribution. Also, in order
for the model to predict eventual errorless
performance, Nosofsky must assume that
the stimuli become very dissimilar as
learning progresses.

We wanted to see whether our network
model can be upgraded to account for the
salient findings on problem difficulty. We
will begin by fitting the network model to
the concept-learning data of Shepard et al.,
to which we now turn.

Shepard et al. investigated adults’ ability
to learn to classify eight stimuli comprised
of three separable, binary dimensions.
Such a stimulus set can be partitioned into
two categories of four exemplars each in 70
different ways. But there are really only six
distinct types of classifications if we ignore
the identity of the three dimensions. For
example, a categorization separating the
four large from the four small stimuli would
be structurally equivalent to one in which
the four black and four white stimuli are
categorized differently. Figure 9 shows one
example of each of the six classification
types. In type I classifications, only one di-
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Fi1G. 9. Examples of the six types of classifications
used by Shepard et al. (1961). From ‘‘Learning and
memorization of classification,”” by Shepard, et al.
(1961). Psychological Monographs. Reprinted by per-
mission.
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mension is relevant and two are irrelevant;
in type II classifications, two dimensions
are relevant; in type VI classifications, all
three dimensions are equally relevant.
Types 1II, IV, and V are intermediate in
complexity between type 11 and type VI.
Shepard et al. trained subjects to classify
the eight exemplars into their appropriate
binary categories using standard proce-
dures: subjects saw the eight stimuli in re-
peated cycles, one at a time, assigning each
to category 1 or 2, and received feedback
about the correct answer. The six different
problem types of Fig. 9 were compared in
speed of learning. A major finding of the
experiment was a consistent ordering of
difficulty of the classification types. For
both trials to learn the classification and
total errors made during learning, the order
of difficulty of the problem types was (eas-
iest) I < II < IIL, IV, V < VI (hardest).
Shepard et al. explained their results in
terms of supposed attentional effects in the
different problems. Using data from sub-
jects’ confusion errors and trials to crite-
rion learning, Shepard et al. showed that
the different tasks induced behavior which
one could interpret as the subjects selec-
tively attending to one or more dimensions
as demanded by the task. For example, in
type 1 problems, subjects appeared to be
attending predominantly to the one rele-
vant dimension (brightness in Fig. 9); in
type Il problems, subjects appeared to at-
tend predominantly to the two relevant di-
mensions (e.g., brightness and shape in II
of Fig. 9). Nosofsky (1984) showed that
this particular distribution of attention
across problem types could be described
by assuming that subjects attend selec-
tively to relevant dimensions so as to opti-
mize their performance. However, we will
show below that the LMS rule for such
tasks also provides a distribution of
strengths (attention) which is similar to the
optimum characterized by Nosofsky.

On Nonlinear Classifications

While classification types 1 and 1V are
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linearly separable tasks, types II, 1II, V,
and VI are not. The simple model in Fig. 1
cannot achieve errorless performance on
such problems. Network models have two
ways to handle such tasks. First, theorists
can postulate intermediate (hidden) units
which receive input from each of the stim-
ulus values on the dimensions. Figure 10
shows a possible two-layer network. For
example, the presentation of a small white
square would cause activity to occur on
three input nodes corresponding to small,
white, and square and these activations
would be sent on to intermediate units
which code conjunctions such as small
square. If the classification depends on a
disjunction of the conjunction of features,
such as having black triangle or white
square both assigned to the same category
(a type II problem), then one expects dif-
ferent hidden units to end up effectively
coding each possible conjunction of the rel-
evant single features, with these in turn
being strongly connected to the appropriate
output (category) nodes. These hidden
units act like filters that create internal
codes, in that they reduce full patterns to
units that fire only for the relevant cues,
thus stripping away the irrelevant cues.
Numerous demonstrations have shown
that such muitilayered networks have great
power for learning complex discrimina-
tions. In fact, most of the extant network
models use two or more layers. However,

Hidden
Units

Sensory
tnput

Response
Output

Stimulus
Coding

Response
Learning

F1G. 10. Diagram of a hypothetical two-layer net-
work which encodes stimuli in the first stage and then
selects a response in the second stage.
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before we rushed to embrace such a two-
layer network approach, we wanted to first
see how well the results could be fit with a
patched up version of a one-layer network
which we call the configural-cue model.

The Configural-Cue Model

The basic idea here is to expand the defi-
nition of the input stimulus to include sen-
sory nodes that correspond to each pos-
sible single feature, conjunction of fea-
tures, triplets of features and so on, all of
these in a one-layer network. For three bi-
nary dimensions, there are 26 such input
codes. Let us assume that the appropriate
nodes are turned on at the first (sensory)
layer when the corresponding stimulus pat-
tern is presented. Presentation of an n-di-
mensional stimulus pattern would then cor-
respond to presentation of the complete
power set of all possible subsets of that
pattern, each being associated to whatever
category is correct on that trial. Thus, pre-
sentation of a small white square would
cause seven input nodes to become active:
small, white, square, small white, small
square, white square, and small white
square (see, e.g., Fig. 11). This power set
coding of stimuli at the input layer essen-
tially takes hidden units for all possible
conjunctive combinations of cues and
brings them out to the sensory input layer.
The method appears to be quite wasteful of
coding units, after all, codes are created for
every possible feature configuration,
whether or not the code is ever needed.
Whereas multilayered networks economize
by having fewer sensory units and tuning
some nonspecific hidden units to code
needed conjunctions, the configural cue
model economizes by simplifying the com-
putation of changes in the weights during
learning. The unpalatable aspect of the
configural cue model is the exponential
growth of the number of possible configu-
rations as the number of stimulus dimen-
sions becomes larger. In practice, we have
used the model only with the learning of
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small -
large -Q
black -0
white e
triangle -0
square -
small & black -0 1 1
small & white -e
small & square —
small & triangle =0
white & square el
black & triangle -0
small & white & triangle  — ¢y

small & white & square -

Fi1G. 11. A one-layer configural cue network for
modeling learning of the Shepard et al. (1961) tasks.
The solid input nodes correspond to the seven nodes
activated by presentation of a small white square:
small, white, square, small white, small square, white
square, and small white square. Note that only a
subset of all 26 input nodes are shown.

stimulus patterns varying in less than four
dimensions.

To check the predictions of the config-
ural cue model, we simulated the Shepard
et al. study using the LMS rule for modi-
fying weights. For each classification type,
the network was presented many times
with randomly chosen exemplars from the
sets of eight in Fig. 9, each paired with the
correct classification. To economize on the
millions of computations needed for 300
stat-subjects per six conditions, we used as
our measure of learning the mean squared
error (averaged across 300 Monte Carlo
simulations) throughout training. Figure 12
graphs the mean squared error over
training trials for each condition; this mea-
sure is closely related to the percentage of
incorrect classifications.

Examining the simulated curves in Fig.
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F1G. 12. Mean squared error plotted over trials
from simulations of learning the six classification
types of Shepard et al. (1961) using a one-layer config-
ural cue network. Each curve is based on 300 simu-
lated subjects in that condition using a B of .02.

12, one is led to several conclusions. First,
by any criterion, problem I is clearly the
easiest and problem VI the hardest.
Second, the relationship between problems
II, 1IL, 1V, and V depends on which stage
of practice is selected for comparison.
During early trials, problems I1I and IV are
easier than II and V, later, problems 11 and
IV interchange their order, so that the
overall ordering late in practice is I < [II <
II < IV < V < VI The initial ordering of
the problems is understandable in terms of
the number of partially valid cues that en-
able above chance performance. Exam-
ining the partitions in Fig. 9, the numbers
of partially valid cues are zero for problem
type 11, one (color) for type V, two (color
and shape) for type 1II, and three (color,
shape, and size) for type 1V. Early in
training the network will acquire large
weights to these partially valid single cues,
enabling a rapid early decline in errors:
however, this low error rate will delay
complete learning, especially in problems
types IV and V.

The crossovers in the learning curves
predicted in Fig. 12 cannot be tested on the
data of Shepard et al., since learning curves
were not reported. If we were to measure
learning rate by the trials before the
average error rate attained some small per-
centage (say, 10%), then our simulations
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imply about the same ordering of the six Similarly, in problems of type 11, the rel-
problems as observed by Shepard et al., evant doublet cues beat out the triplet cues
except that types II and III are reversed. because they occur twice as often as the
We are unsure how much weight to place triplets, and so their conditioning will block
on this discrepancy; the original data were that of the triplets. Of course, the doublets
obtained in a complex within-subjects ex- in type 1l problems beat out the single fea-
periment in which only a few subjects tures because the single features alone are
learned six replications of all six problem uncorrelated with the correct classification
types in Latin-square order and substantial in this case.

practice effects occurred. Thus, a replica- The general principle is that the LMS
tion of the basic experiment would tell us rule assures that a more frequent valid cue
whether this misordering is reliable. will block or beat down the conditioning of

The asymptotic weights to which the net- another valid cue that appears less often. It
work converges for the different problems is this subtle aspect of the LMS algorithm,
reflect the S—R contingencies for those reminiscent of the overshadowing and
problems. Thus, for type I, the model con- blocking effects in classical conditioning,
verges to large weights for the single rele- that allows the configural cue model to dis-
vant cues such as black and white but small play a compelling feature of human
weights everywhere else. For the type 11 learning, namely, subjects’ apparent drift
problem, it converges to large weights on toward “‘increasing complexity of hypoth-
the relevant conjunctions, such as black tri- eses testing’’ in which simple hypotheses
angle and white square, but it has small or cues appear to be tested before more
weights eisewhere. For type VI, it con- complex hypotheses.
verges to large weights on the triplets and Earlier we noted that an inelegancy of
small weights elsewhere. this configural cue model is that the

Since the triplet input nodes are always number of distinct subpatterns to be
perfectly correlated with the correct cate- tracked increases dramatically with the
gory, one might wonder why these triplets number of stimulus dimensions. But in fur-
do not pick up all the conditioning and ther explorations, we have discovered that
swamp out any of the singlet or doublet the model can do remarkably well in fitting
cues, even for the simple problems. This data if we expand the single-element coding
scenario is prevented by the competitive to allow merely doublet coding of simple
nature of the LMS learning rule. Consider conjunctions. For example, a model with
the case of a type I problem where the net- only singlet and doublet coding does a good
work sees a small white square; this turns job accounting for the results which Medin
on the input units for the single cues and and Schaffer (1978) used to reject single-
the double cues, as well as the triplet cue cue (independent) models. Of course,
(see Fig. 11). If white is perfectly relevant, problems of type VI which require subjects
then it alone has occurred always paired to take account of triplets of features would
with category 2 four times as frequently as create difficulties for the doublet model.
the small white square unit; hence, the as-
sociation or weight of the single-feature Two-Layered Models
node will be much stronger. Therefore, by While the configural cue model provides
the LMS rule, the weight for the small afairly good account with no parameters of
white square unit will not get much of a the difficulty ordering of problems of She-
boost in its association to category 2 be- pard et al., it clearly encounters several
cause that category is already being conceptual difficulties in dealing with other
strongly predicted by the white cue alone.  discrimination learning data. Interestingly,
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its difficulties are exactly those raised his-
torically by two-process discrimination
learning theorists (e.g., Kendler &
Kendler, 1962; Lawrence, 1949, 1950;
Sutherland & Mackintosh, 1964: Zeaman &
House, 1963) in arguing against one-pro-
cess discrimination learning theories such
as Spence’s (1936) or Estes and Burke’s
(1953). The two-process theorists argued
that discrimination learning involved the
subjects (1) learning to code the stimuli ac-
cording to the relevant dimension, and (2)
learning which overt responses to make to
the stimuli-as-coded. The configural cue
model conflates and confuses these two
processes, and this creates specific diffi-
culties for it.

The basic difficulty arises from results
showing that subjects (animals or humans)
can learn about the relevance or irrele-
vance of stimuli somewhat independently
of learning what responses to make to
these stimuli. For example, Lawrence’s
(1949, 1950) classic experiments on ‘‘ac-
quired distinctiveness of cues’’ demon-
strated that rats could learn to attend to,
for example, brightness as a relevant di-
mension and ignore, for example, shape as
an irrelevant dimension in one problem,
and later transfer that learning to a new
problem involving similar cues but com-
pletely different responses. Zeaman and
House’s (1963) demonstration that intradi-
mensional shifts are easier than extradi-
mensional shifts, or Kendler and Kendler’s
(1962) demonstration that reversal shifts
are usually easier than nonreversal shifts,
make the same point theoretically.

We would propose that the predictions of
such two-process models might be approxi-
mated by the two-layer network models.
Such a network is depicted in Fig. 10. We
can think of the intermediate layer of
hidden units as representing different pos-
sible stimulus codes or filters for the first
layer, which only register the full sensory
pattern. Thus, the links from the sensory
layer to the hidden units reflect the first
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process, the learning of stimulus codes, in
the two-process theories. The links from
the hidden layer to the output layer would
then reflect the second process, the associ-
ations between the stimuli as coded and the
overt responses.

Such a model should have the potential
to deal with the results mentioned above.
For example, the model should learn in an
initial problem to code relevant cues and
ignore irrelevant cues; and it can then lock
in (clamp) these intermediate codes while
learning different responses to these stimuli
in a second problem. This then could ex-
plain the results on reversal vs nonreversal
shift, and on acquired distinctiveness of
cues, though not on intradimensional
shifts. Two-layer models seem also to show
insightful learning curves for difficult con-
cept problems; the lengthy presolution
level of chance responding corresponds to
the model learning slowly the proper
coding for the hidden units. Furthermore,
the model could learn to cluster together
sets of stimulus patterns on the basis of
their internally correlated features, even in
the absence of feedback information about
a classification (see, e.g., Hanson & Kegl,
1987). Psychologists call this perceptual
learning, predifferentiation, or prefamiliar-
ization with the stimulus set. Prefamiliar-
ization usually facilitates later learning of
discriminative responses to the stimuli (see
review by Gibson, 1969).

A problem with the general two-layer
model is that it is almost too flexible and
unconstrained. A number of distinct
models, such as the two-process model
noted above, arise as special cases of the
general model. As a second example, one
can cast Medin’s context model in this
two-layer format, where each distinct
training pattern turns on its unique hidden
unit, which is then connected to the correct
response. The weights then reflect how
much the different values of a given stim-
ulus dimension behave similarly in acti-
vating hidden units corresponding to dif-
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ferent training patterns. The fact that the
same framework can be used for stating
such disparate models as the two-process
attention model and Medin’s context model
tells us that the general framework does
not materially constrain which of several
instantiations can be dervied within the
framework. In any event, we are currently
exploring by simulation the behavior of
simple two-layered learning networks and
trying to relate the simulations to results on
discrimination learning. Those investiga-
tions are at too early a stage to report.

Discussion of Attentional and
Hypothesis-Testing
Model Explorations

To review the ground covered in this sec-
tion, we began by questioning whether the
network model using the LMS learning rule
could reproduce some apparent attention-
like phenomena from discrimination/classi-
fication learning. First, we found that even
the one-layer model could do a reasonable
job of mimicking the weights (parameters)
of Nosofsky’s optimal attention model for
some experiments. But our weights, which
the LMS rule calculates a priori from the
stimulus structure of the classification, are
interpreted as stimulus—-response associa-
tions rather than as attentional saliencies.
Moreover, for a class of simple problems,
the weights obtained by the LMS rule are
very close to those of Nosofsky’s optimi-
zation model.

Second, we showed that a one-layered
network model with an expanded set of
sensory inputs could approximate the order
of learning difficulty for the six logical
types of problems in the Shepard et al.
(1961) experiment. However, we noted that
this configural cue model encounters
problems in explaining classical results re-
vealing the learning of stimulus codes
which extract relevant stimulus dimensions
from the set of exemplars. We then specu-
lated that two-layer networks, with hidden
units that reductively code the relevant fea-
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tures or featural combinations, might have
the explanatory power of the earlier two-
process theories (e.g., Sutherland & Mack-
intosh, 1971; Zeaman & House, 1963).
Moreover, the two-layer network models
probably have even greater discriminative
powers because they can develop interme-
diate codes for whatever featural configura-
tions are significant (correlated) for the in-
duction task at hand, whereas the earlier
two-process theories really only dealt with
selective coding of single dimensions (e.g.,
“‘look at the shape of the geometric fig-
ure’’) and were silent about how more
complex stimulus codes arose from the
structure of the experienced stimulus set.

CONCLUDING REMARKS

This paper recounts our explorations of
the power of the LMS rule in the context of
a one-layer network. The early work
showed the virtues of the one-layer net-
work, especially the LLMS learning rule. We
are also impressed with its explanation of
some attentional phenomena in discrimina-
tion learning, especially when it was for-
mulated as the configural cue model. Even-
tually, however, arguments were mar-
shalled against both one-layer models and
in favor of at least a two-layer model.

The reader may wonder why we even
bothered investigating the one-layer model
when logical arguments against it have
been known for many years (e.g., Minsky
& Papert in 1969 reviewed its deficiencies).
We believe that the one-layer model should
remain a viable candidate in the tool kit of
the theoretical psychologist for several
reasons. A first reason is the utter sim-
plicity of the one-layer model (akin to the
simple all-or-none model of an earlier era,
see Bower, 1961; Estes, 1960). Psycholo-
gists are attracted to simple models that
provide ‘‘back of the envelope’ quick an-
swers, that are frequently close to the facts
of the case. Simple models are easy to re-
member, make strong predictions (often
parameter-free), and are useful for ex-
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ploring how much of the variance in data
can be explained by elementary learning
processes and highlighting discrepancies
which point the direction toward more so-
phisticated models. Simple models also ex-
emplify the canon of parsimony so dear to
the hearts of experimental psychologists,
viz., do not propose a more complex hy-
pothesis than is required to explain the data
at hand.

A second reason is that by connecting
the Rescorla—Wagner model of condi-
tioning to phenomena of human learning,
the one-layer model suggests the possibility
that the LMS rule may form an algorithmic
building block for human associative
learning. As noted earlier, the assumption
of phyletic continuity underlay much of the
early interest in animal conditioning. A re-
newed attempt at deriving processes of
complex learning from configurations of
the elementary associative processes ob-
served in lower animals seems especially
timely given recent advances in identifying
and modeling the neural substrates of
simple forms of associative learning (e.g.,
Gluck & Thompson, 1987; Thompson,
1986).

A third reason for using the simple model
is that under certain conditions the more
complex, multilayer networks end up
making nearly the same predictions as does
the one-layer network, although they arrive
there by a more complex route. If each
hidden unit produces an output that is a
linear function of its input, then the whole
cascade is linear, and so it can be mimicked
by a one-layer network with suitable
weights. We have found in simulations that
even with nonlinear hidden units (e.g.,
whose output is a logistic function of their
input activations), if all are equally con-
nected to the input units and if all inputs
have independent correlations with the de-
sired outputs, then a one-layer network
often provides a close approximation to the
predictions of a two-layer network.

Obviously, we are in the beginning stage

GLUCK, MARK A., Evaluating an Adaptive Network Model of Human Learning , Journal of
Memory and Language, 27:2 (1988:Apr.) p.166

GLUCK AND BOWER

of our investigations of the explanatory and
predictive power of the LMS learning rule
within one-layer and two-layer associative
networks. We are especially pleased that
these models link up naturally with two
venerable traditions in learning theory,
namely, studies of elementary association
formation in animal conditioning studies,
and potentially with the two-process theo-
ries of discrimination learning and hy-
pothesis testing. It is gratifying to see that
classic results and arguments from old de-
bates are just as forceful and pointed today
in a modern theoretical framework as they
were decades ago when first published. It
provides workers and students with a sense
of continuity of concern with certain fun-
damental problems in the field as well as a
belief in cumulative development and con-
vergence of different theoretical trends.
The authors are pleased to see that a form
of associationism is returning to being a
theoretical contender, if not yet a popular
one, after having been earlier consigned to
the flames by sweeping polemics.

We are pleased that our minimal one-
layer model has taken us so far in ex-
plaining interesting behavioral results and
can guide new experiments whose results
confirm this model and present challenges
to popular competing theories. Our guiding
principles have been simplicity and
economy. We know the simple model may
be approximately correct only in restricted
experimental circumstances, but we feel it
is helpful in exploring this fascinating ter-
rain. Its successes and failures inform us
and materially constrain the class of more
sophisticated models that will be needed to
explain an increasingly complex pattern of
results.
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