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Current adaptive network, or “connectionist,” theories of human learning are
reminiscent of statistical learning theories of the 1950s and early 1960s, the most
influential of which was Stimulus Sampling Theory, developed by W. K. Estes
and colleagues (Atkinson & Estes, 1963; Estes, 1959). Both Stimulus Sampling
Theory and adaptive network theory are general classes of learning theories—
formal frameworks within which theorists search for a small number of concepts
and principles that will illuminate a wide variety of psychological phenomena
when applied in varying combinations. To the extent that adaptive networks
represent cumulative progress in theory development, we should expect them to
incorporate the strengths of Stimulus Sampling Theory but overcome the prob-
lems that limited these earlier approaches to modeling associative learning.
This chapter reviews Stimulus Sampling Theory (SST), noting some of its
strengths and weaknesses, and compares it to a recent network model of human
learning (Gluck & Bower, 1986; 1988a). We will see that the network model’s
learning rule for updating associative weights represents a significant advance
over Stimulus Sampling Theory’s more rudimentary learning procedure. In con-
trast, Stimulus Sampling Theory’s stochastic scheme for representing stimuli as
distributed patterns of activity can overcome some limitations of network theo-
ries that identify stimulus cues with single active input nodes. This leads us to
consider a distributed network model that embodies the processing assumptions
of our earlier network model but employs stimulus-representation assumptions
adopted from Stimulus Sampling Theory. In this distributed network, stimulus
cues are represented by the stochastic activation of overlapping populations of
stimulus elements (input nodes). Rather than replacing the two previous learning
theories, this distributed network combines the best established concepts of the
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earlier theories and reduces to each of them as special cases in those training
situations where the previous models have been most successful.

STIMULUS SAMPLING THEORY

Stimulus Sampling Theory treats learning as a stochastic process in which stimuli
are represented as populations of independent variables, called stimulus elements
(for reviews, see Bower & Hilgard, 1981; Neimark & Estes, 1967). On any
individual experimental trial, only a subset of these elements is presumed to be
sampled by the subject. Each element in the set is assumed to be completely
associated with one of the possible responses available to the subject. Tradi-
tionally, two different, but often functionally equivalent modeling schemes have
been employed to describe how stimulus elements are sampled. One scheme
supposes that each stimulus element has a certain independent probability of
being sampled whereas the other scheme assumes that a fixed number of stimuli
are taken from the total population on each trial. Once a subset of the population
has been sampled, choice behavior is determined by the proportion of sampled
elements associated with each response. For example, if 75% of the sampled

- elements are associated with response R, and 25% with response R,, the model

predicts that the subject will respond R, with probability .75. Reinforcement
occurs through the total conditioning of all sampled elements, each of which
becomes associated with the reinforced outcome.

Probability Learning

Many early applications of Stimulus Sampling Theory were concerned with
probability learning experiments where subjects were trained to predict which of
several randomly chosen outcomes would occur. The most basic probability
learning situation involves two possible outcomes, which we refer to as E, and
E,. At the beginning of each trial, subjects give one of two possible responses:
R, if they expect E|, and R, if they expect E,. The stimulus conditions in this
experiment are represented by a single population of stimulus elements. If D
denotes the proportion of elements connected to R, at the beginning of trial n,
then p,, is both the probability that a randomly selected element will be connected
to R, and the probability that the subject will respond R, on that trial. If 6 is the
probability that an individual element is sampled, the theory implies a learning
equation described by changes in p, where
_ {(1 —0)p, + 0 if R, is reinforced )
Pret = 11 - g)p, if R, is reinforced.

If the reinforcing event, E;, occurs with constant probability 7, we can rewrite
Equation 1 as
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Pnir = 7l(1 — O)p, + 6] + (1 —mA — B)p,
=(1-0)p, + 0nw 2)

Following extended training, Equation 2 predicts that p,, the probability of
responding R;, will come to match 1r, the objective probability of E; occurring.
One way to see this is to compute the long-term average proportion of E; events

T
(ar) and show that this is equivalent to (% 2 pn) , the long-term average prob-
n=1

ability of responding R, (see Hilgard & Bower, 1975, p. 386). Alternatively, we
can rewrite Equation 2 in terms of the expected change in p, Ap, from trial n to
trial n + 1,

Ap = 0(w — p,). 3

Equations 1 and 3 characterize a “linear model” of learning, expressing how p,,,
the probability of responding R, changes as a linear function of p, _,. From
Equation 3 we see that the system will stabilize (i.e., the expected change in
p,Ap = 0) when p, = m. This implies that p,, the proportion of R, responses,
will come to match w, the average proportion of E, events. This appears to be a
non-optimal strategy because “probability matching” generally yields a lower
expected proportion of correct responses compared to a “probability maximiz-
ing” strategy in which a subject always chooses the most likely outcome. This is
most easily seen with reference to a two-choice task. A correct response occurs
whenever the subject responds R, on an E, trial (which will occur with proba-
bility w2), or when the subject responds R, on an E, trial (which will occur with
probability (1 — m)?). Thus, probability matching yields an expected proportion
correct of w2 + (1 — w)2. Note that this is always less than or equal to the
proportion correct expected from adopting a probability maximizing strategy. For
example, if w = .8, a probability matching strategy results in a long-run average
of .68 correct whereas a probability maximizing strategy (choosing R,) yields a
long-run average of .8 correct.

The probability matching prediction of Stimulus Sampling Theory has been
tested in a wide variety of training situations and, for the most part, these
predictions have been confirmed. For example, Suppes and Atkinson (1960, p.
196) report an experiment in which 7 = .60 and the observed proportion of R,
responses was .596 (averaged for 30 subjects over the last 100 out of 240 trials).
The model also makes fairly accurate predictions regarding the shape of learning
curves under a variety of reinforcement schedules (Estes, 1964). Other tests of
Stimulus Sampling Theory have demonstrated its ability to predict sequential
statistics that describe the extent to which a subject’s response on trial n + 1 is
influenced by his responses and/or the reinforcing events on trial n (Atkinson,
Bower, & Crothers, 1965; Suppes & Atkinson, 1960). The theory has also been
applied, with considerable success, to such diverse phenomena as spontaneous
recovery and forgetting (Estes, 1955), reaction time distributions (Bush &
Mosteller, 1955), and recognition memory (Bower, 1972).
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FIG. 9.1. Generalization through shared elements for two stimuli S,
and S, that are: (A) slightly similar {(small overlap) or (B) very similar
(large overlap).

Stimulus Generalization and Discrimination Learning

In Stimulus Sampling Theory, stimulus generalization between distinct stimuli is
conceived to arise from common elements shared by both stimuli, an approach
drawn from Thorndike’s (1898) “connectionism” theory of Stimulus-Response
formation. For example, the response associated with stimulus S, in Fig. 9.1 will
generalize to stimulus S, to the extent that they share common stimulus elements.
It has long been known that if a stimulus such as a high frequency tone, S, is
associated with some significant event (R,), this conditioning will generalize to
other similar stimuli such as a low tone (S,). Within Stimulus Sampling Theory
the generalization of the §, — R, association to an §, — R, association is
predicted to be in direct proportion to the amount of overlap between the §, and
S, stimulus pools. This common-elements approach to stimulus generalization
has been successfully applied to a range of generalization phenomena (Atkinson
& Estes, 1963; LaBerge, 1961).

The application of this approach to discrimination learning has, however,
been problematic. Consider the case in which stimulus S, is paired with response
R, and stimulus §, is paired with response R,. Stimulus Sampling Theory’s
learning rule expects the distinctive elements in S; and S, to become totally
conditioned to R, and R,, respectively. The common elements, however, will be
conditioned to both responses in weighted proportion to the R, and R, reinforce-
ment frequencies. Responding to stimuli will therefore be controlled by the
correctly conditioned distinct elements as well as the “mixed conditioned” com-
mon elements. Thus, the model predicts, incorrectly, that perfect discrimination
should never occur. People and animals can, of course, be trained to respond
differentially to distinctive stimuli, even when the stimuli are quite similar.

It might seem simple enough to propose a mechanism for discrimination
learning whereby the subject learns to “adapt out” the shared common cues and
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attend only to the unique cues. Several theorists have proposed “attentional”
extensions to Stimulus Sampling Theory. One approach is to postulate additional
mechanisms that render common elements ineffective during the course of dis-
crimination learning (Bush & Mosteller, 1955; Lovejoy, 1968; Restle, 1957,
Sutherland & Mackintosh, 1971). Other approaches include the addition of spe-
cialized observing responses (Atkinson, 1958; Levine, 1970) or modified deci-
sion processes (Laberge, 1962). One problem with these approaches is that by
nullifying the effect of the shared common elements, they predict that these
common elements will have no influence on transfer tasks. Several studies have
shown that even with complete discrimination training, the common elements
can still exert a strong influence on subsequent transfer tasks when subjects are
asked to classify novel combinations of cues (Binder & Feldman, 1960; Binder
& Taylor, 1969; Flagg & Medin, 1973; Robbins, 1970).

Estes (1959) considered still another approach in which the stimulus situation
on a given trial is viewed as a unique pattern rather than as a collection of
component cues. This pattern model has a desirable property that the component-
cue model lacks: the ability to predict perfect discrimination between two stim-
ulus patterns in the presence of common elements. Mitigating this advantage,
however, is the failure of the pattern model to provide an adequate account of
stimulus generalization. A natural combination of the component and pattern
theories is the mixed model first proposed by Estes and Hopkins (1961) and later
developed quantitatively by Atkinson and Estes (1963). According to this model,
associations are formed during discrimination training, between the component
cues and the responses as well as between the pattern cues and the responses.
Once the pattern cues are learned, they are presumed to dominate in discrimina-
tion tasks. In generalization tasks, however, the component cues mediate re-
sponding. Whereas the mixed model has had some success in resolving the
overlap problem, the interactions between the component and pattern processes
have not been completely evaluated for the full range of discrimination and
generalization tasks. In summary, an entirely satisfactory resolution to the “over-
lap problem” has not been developed that successfully reconciles stimulus gener-
alization and discrimination learning (Bower & Hilgard, 1981; Medin, 1976).

Binder and Estes (1966): A Stimulus-Sampling-Theory
Interpretation

To better appreciate the subtleties involved in trying to resolve the overlap
problem in discrimination and generalization, we now consider in detail a study
by Binder and Estes (1966). This study illustrates an additional problem with
Stimulus Sampling Theory; its inability to account for a phenomena that Binder
and Estes termed the “relative novelty” effect. We describe this study (and
subsequent extensions and elaborations by other investigators) and then use these
data as a test base to compare Stimulus Sampling and adaptive network in-
terpretations of discrimination learning.
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Binder and Estes (1966) conducted systematic studies of the effects of catego-
ry frequency on learning, following a line of research begun by Binder and
Feldman (1960). Subjects were trained to classify patterns composed of several
simple component cues. Following this training, they classified novel combina-
tions of the component cues. Stimulus patterns ab and ac were reinforced with
responses R, and R,, respectively. The critical manipulation was the unbalanced
presentation frequencies of the different reinforcements; ab — R, trials occurred
three times as often as ac — R, trials.

A Stimulus-Sampling-Theory interpretation of this experiment posits three
populations (pools) of elements corresponding to each of the three cues. Presen-
tation of the ab pattern activates elements in both the a pool and the b pool. With
the unbalanced presentation frequencies of the two reinforcements, Stimulus
Sampling Theory predicts that after extended training, all stimulus elements from
the b pool will be associated with R,, the more common outcome, and all
elements from the ¢ pool will be associated with R,, the less common outcome.
The a pool, however, will contain some elements associated with R, and others
associated with R,. Because R, was presented three times as often as R,, Stim-
ulus Sampling Theory predicts that 75% of the elements in the a pool will be
conditioned to R,, and 25% will be conditioned to R,. Therefore, Stimulus
Sampling Theory expects that the presentation of symptom a alone should, on
average, activate a stimulus sample with the majority of elements predicting the
common category. This result accords with data from studies by Binder and
Feldman (1960) who used a 2:1 ratio of ab — R, to ac — R, presentations and
observed response proportions for the shared common cue (a) of .65 and .29 for
R, and R,, respectively (compared to predicted values of .67 and .33). With a 4:1
ratio of presentations frequencies, they observed response proportions for the
common cue of .76 and .20 (compared to predicted values of .80 and .20).

As noted earlier, Stimulus Sampling Theory is unable to account for people’s
ability to discriminate between similar stimuli that activate overlapping popula-
tions of hypothetical elements. The same problem exists when the common
elements are explicit, as in the Binder and Feldman (1960) and Binder and Estes
(1966) studies. As Binder and Estes noted, as long as subjects are randomly
sampling elements from the a pool, it is possible that ab patterns will be incor-
rectly classified with the rare outcome and ac patterns incorrectly classified with
the common outcome (p. 3). Not surprisingly, subjects learned to master per-
fectly the ab — R,/ac — R, discrimination with relative ease. Because of this
shortcoming of the Stimulus Sampling model, Binder and Estes suggested that it
might be necessary to augment Stimulus Sampling Theory with a mechanism by
which subjects could learn to “respond selectively to cues which are reliable
predictors of reinforcing events . . . and to ignore or ‘adapt to’ common
cues . . . which are not uniformly correlated with reinforcement” (p. 4). As
described earlier, several schemes for doing just this were proposed in the liter-
ature. However, the perfect discrimination attained by subjects in this task would
seem to suggest that subjects had learned to “adapt to” or ignore the common a
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cue. This is inconsistent with the previously described transfer effect wherein
subject’s transfer classification of the a cue indicates that they have clearly
learned that a predicts R,, the more common reinforcement. Thus, the use of
explicit common elements (cues), as in the Binder and Feldman (1960) and
Binder and Estes (1966) studies makes clear the difficulty in reconciling discrim-
ination and generalization behaviors.

The Relative Novelty Effect

Stimulus Sampling Theory also fails to account for another aspect of Binder
and Estes’ data. During the transfer task, subjects were given the the novel
feature combination (bc). Stimulus Sampling Theory expects that early in train-
ing bc should be more associated with R,, the more common outcome, because
there will be more b elements associated with R, than ¢ elements associated with
R,. Once learning is complete, however, Stimulus Sampling Theory predicts that
bc should, on average, activate an equal number of oppositely associated ele-
ments, predicting that bc should be equally associated with the two reinforce-
ments. In summary, Stimulus Sampling Theory predicts that bc will be associ-
ated either with the more frequent reinforcement (R,) or with both
reinforcements equally. Surprisingly, subjects were more likely to classify the bc
pattern with R,, the less frequent outcome. Binder and Estes called this the
“relative-novelty” effect because the probability of a stimulus component con-
trolling choice behavior (c in this case) appears to be inversely related to its
presentation frequency during training. Subsequent replications and extensions
of this result have been presented by Binder and Taylor (1969), Medin and
Robbins (1971), and Medin and Edelson (1988). Heretofore, no satisfactory
explanation has been offered for it.

GENERALIZATION AND DISCRIMINATION
IN ADAPTIVE NETWORKS

Stimulus Sampling Theory was strongly motivated by the principle that

- . we can hope to understand the processes that guide adult human behavior only
within a rather broad framework in which they can be meaningfully related both to
the more primitive or elementary processes from which they develop during the life
of the individual and to those of lower organism. . . . Typically, evolution works
through endless variations on a limited repertory of themes . . . as a consequence,
clues to understanding complex processes of human cognition sometimes come
from studying simpler forms. (Estes, 1982, p. 315)

Subsequent developments in learning theory all but abandoned this unified ap-
proach to understanding human and infrahuman learning. Animal research con-
tinued to be primarily concerned with elementary associative processes whereas,
by the mid-1960s, human learning began to be characterized in terms of informa-
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tion processing and hypothesis testing, concepts borrowed from artificial intel-
ligence and computer science. The recent emergence of “parallel distributed
processing” models based on “connectionist” networks, however, presents an
alternative to the rule-based symbolic models of the 1970s and early 1980s. Like
the earlier statistical learning theories, these network models embody the as-
sumption that many complex human abilities can best be understood as emerging
from configurations of elementary associative processes.

In recent papers, we have used adaptive networks to explore the relationship
between human learning and the elementary associative learning processes that
can be studied in simpler organisms. We began by studying a simple adaptive
network model of human learning that extends Rescorla and Wagner’s (1972)
description of classical conditioning to human classification learning (Gluck &
Bower, 1986, 1988a, 1988b; Gluck, Bower, & Hee, 1989). The learning rule is
the same as the least mean squares (LMS) learning rule for training one-layer
networks, first proposed by Widrow and Hoff (1960). The model has been fit to
data from experiments on probabilistic classification learning with multiple cues.
Although this simple model can be applied only to a restricted range of experi-
mental circumstances, it has shown a surprising accuracy in predicting human
behavior within that range, including data on people’s choice proportions during
learning, the relative difficulty of learning various classifications, and their re-
sponses to generalization tests involving novel combinations of cues. The ingre-
dients of the basic network model are shown in Fig. 9.2A.

Presentation of a stimulus or pattern of cues corresponds to activating one or
more of the sensory elements on the left. They, in turn, send their activations to
an output unit along associative lines that have amplifier weights, the w,. The
weighted inputs are summed at the output node, and this output 2”_,w;a;, is
converted into a response measure. In classical conditioning, the inputs are
single to-be-conditioned stimuli such as lights and bells that are paired with the
unconditional stimulus, such as food for a hungry dog; the output node reflects
the animal’s expectation of the unconditional stimulus given the cues presented.
In a classification experiment involving human adults as subjects, the stimuli
might be patterns of, say, medical symptoms displayed by a patient, and the
output reflects the degree to which the model expects such a patient to have some
target disease (classification) versus alternative diseases (Fig. 9.2B).

The network operates in a training environment in which reinforcing feedback
(the correct classification) is given after each stimulus pattern. The central axiom
of the model is its learning rule, which is that the weights, the w,’s, change on
each trial according to

Aw, = Sa,()\ -2 w,.aj) @

j=1
Here, \ is the training signal which might be +1 if the category is reinforced
(e.g., US present) and 0 otherwise (e.g., no US). The cue-intensity parameter, a;,
is assumed to be 1 if cue i is present on the trial, and 0 if it is absent. The learning
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FIG. 9.2. A simple one-layer
network that can learn the asso-
ciations between four stimulus
cues and two possible out-
comes. (A). The network’s clas-
sification prediction is a func- A
tion of the activation on the
output nodes. Associative
weights between feature nodes

and category nodes are up-
dated according to the error-
correcting principle of the Re-
scorla—Wagner (1972) model of
classical conditioning, equiv-
alent in this application to Wid-

row and Hoff's (1960) LMS rule

of adaptive network theory. (B).

The network applied to a classi- B
fication experiment involving
human adults as subjects, nigh

where the stimuli are patterns  favr

medical symptoms displayed

by a patient and the output re- 2%, Bur
flects the degree to which the

model expects such a patient to stomach Midosis
have some target disease (clas- -

sification) versus alternative
diseases.

oye
strain

rate, B, is a parameter (on the order of .01 in most simulations) that determines
how much the weights change when the output differs from the training signal, A.
Equation 4 is variously called the delta rule, the least-mean-square (LMS) rule,
or the Rescorla—~Wagner conditioning rule (cf. Sutton & Barto, 1981).

Comparing Network and SST Learning Rules

It is instructive to compare Equation 4 of the LMS rule to Equation 3, the linear
operator rule from Stimulus Sampling Theory. If we identify p in Equation 3, the
probability of responding R, with w,, 8 with B, we can re-express the linear
operator rule in the terminology of adaptive networks as

Aw, = B\ — w)). G)

Comparing the linear operator rule (Equation 5) of Stimulus Sampling theory
with Equation 4 of the Rescorla—Wagner/LMS rule, we note one key difference.
Weight changes in the Rescorla—Wagner/LMS rule are governed by the dif-
ference (or discrepancy) between the reinforcement (A) and the network’s expec-
tation of the reinforcement, E'.'=leaj (the output), which is sensitive to all the

J
cues present on a trial. In contrast, Stimulus Sampling Theory operates on each
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cue independently; weight changes depend only on the difference between the
reinforcement and the current association between cue i and the reinforcing
outcome. Note that in training situations where individual component cues are
present as complete patterns (as in probability learning studies), Equation 4 of the
LMS rule reduces to Equation 3 of Stimulus Sampling Theory. Thus, it is only in
training procedures involving patterns of multiple cues that have the opportunity

n
to “compete” among themselves to reduce the error, (A — z w;a;), will we
j=1
expect to see divergent predictions from SST and the LMS network.

Stimulus Sampling Theory follows the tradition of Hull (1943) and Spence
(1936) in assuming that the temporal contiguity, or joint occurrence, of a cue and
a reinforcing outcome is sufficient for associative learning. This view, however,
came under serious attack in the late 1960s, just as interest in Stimulus Sampling
Theory began to wane. The work of Kamin (1969), Rescorla (1968), and Wagner
(1969) demonstrated that the ability of a previously neutral conditioned stimulus
(CS) to become conditioned to an unconditional stimulus (US) depends on the CS
imparting reliable, nonredundant, and predictive information about the expected
reinforcement. For example, in Kamin’s (1969) “blocking” experiment, a light,
the CS, was first conditioned to predict a shock, the US. In a subsequent training
phase, a compound stimulus consisting of a light and a tone was paired with the
shock. Surprisingly, learning of the tone — shock association hardly occurred at
all compared to control subjects who had received no pretraining to the light.
One interpretation of blocking and related effects is that animals are learning to
modulate the processing of sensory cues in order to adapt out (ignore) the
irrelevant cues such as the tone in the given example (Mackintosh, 1975; Pearce
& Hall, 1980). These explanations are reminiscent of extensions to Stimulus
Sampling that sought to reconcile stimulus generalization with discrimination
learning (e.g., LaBerge, 1962; Restle, 1957). Kamin (1969) suggested an alter-
nate interpretation of these attention-like effects. He proposed that the blocking
effect results not from modulation of CS-processing but rather from modulation
of US-processing. If the effectiveness of a US for producing associative learning
depends on the relationship between the CS and the expected outcome, little
additional learning would occur once the animal had already learned to anticipate
(predict) the US (Kamin, 1969).

Rescorla and Wagner provided a precise formulation of Kamin’s proposal
(Rescorla & Wagner, 1972; Wagner & Rescorla, 1972) and it is this rule that we
employ to train the weights in our adaptive network model of human learning,
Rescorla and Wagner’s conditioning model assumes that the association between
a stimulus and its outcome changes on a trial proportional to the degree to which
the outcome is unexpected (or unpredicted) given all stimulus elements present
on that trial (Equation 4). The Rescorla—Wagner model accounts for the blocking
effect as follows: When in Phase 1, CS, has been initially conditioned to the US,
w, approaches 1 (assuming A = 1 for US trials). If the initial associative strength
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of the novel stimulus, w,, is zero, then the compound stimulus strength, w, +
w,, will already equal 1 at the beginning of Phase 2. By Equation 4, the incre-
mental change in the associative weight of both stimuli is predicted to be zero
when the compound is paired with the US during Phase 2. In contrast to cue-
adaptation theories that assume that “attentional” phenomena are mediated by
variations in CS processing. Rescorla and Wagner showed how many of these
same phenomena could be more readily understood as resulting from variations
in US processing.

LMS and the Overlap Problem

Turning back to the “overlap” problem of Stimulus Sampling Theory, we see
that the Rescorla—Wagner/LMS rule provides a mechanism for effectively adapt-
ing out common irrelevant cues. Consider two stimulus patterns, P 1 and P 2,
that are represented by distinct populations of stimulus elements, S; and §,, as
well as a common population, S... If S, is associated with a reinforcing event, R,
associative strength will accrue to both S, and S_. This association will gener-
alize to P 2 via the overlapping elements in S, that are shared with P 1.

In a discrimination training procedure, however, P 1 might be associated with
R, and P 2 with R,. One possible network representation of this problem is to
have a single output node that receives a training signal of +1 when R; is
reinforced and a training signal of —1 when R, is reinforced. Under these
conditions the competitive learning principle of the Rescorla—Wagner/LMS rule
will seek a solution whereby w, + w. = +1 while w, + w. = —1. One possible
solution is to have all of the associative strength accrue tow;, = +1 and w, =
—1, with w_, = 0 “adapting out” so that the system achieves errorless discrimina-
tion (see also Rudy & Wagner, 1975, p. 290). As we see later, however, it is
possible under some training procedures for the LMS network to find other
solutions that do not require that w. = 0. A major challenge for the LMS
network—and all models of learning—is to try and reconcile the role of common
elements in both stimulus generalization and discrimination learning.

LMS and Probability Matching

Like Stimulus Sampling Theory, the LMS network will generally predict
probability matching in choice behavior when the output activations (or a mono
tonic transformation of them) are converted to choice probabilities using a like-
lihood ratio rule (Gluck & Bower, 1988a). The relationship between the Least
Mean Squares solution and probability matching can most easily be seen with
reference to a single output node that is reinforced (A = 1) with probability =. If
A is the output activation of the node, then the squared error will be (1 — A)? with
probability 7 and A2 with probability (1 — ). Thus, the expected mean squared
error (MSE) is

E[MSE] = w(1 — A)? + (1 — mA2. (6)
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To find the value of A that minimizes the expected mean squared error, we
differentiate Equation 6 with respect to A:

d(E[MSE]) _
TdA

By setting d(E[MSE]) = 0 we solve for A to find that the minimum squared error
occurs when A = 1 (see also Gluck & Bower, 1990, p. 108). Thus, we expect
that the LMS algorithm will converge to a set of weights that result in the closest
possible approximation to having the output activations reflect the observed
probabilities of reinforcement for each pattern in the training set. Because the
approximation to probability matching on the output activations is not neces-
sarily bounded between O and 1 (as are the p in Stimulus Sampling Theory) it
may be necessary to transform the network’s output activations before mapping
them onto expected choice probabilities. Examples of using the LMS network to
fit observed data on probability matching can be found in Gluck and Bower
(1988a), Estes, Campbell, Hatsopoulos, and Hurwitz (1989), and Shanks (1989).

=2m(l — m) + 2(1 — mA. @)

Binder and Estes (1966): An Adaptive-Network
Interpretation

We return now to the Binder—Estes study to see what the LMS network predicts
here. Medin and Edelson (1988), in their replication and extension of the Bind-
er—Estes study, noted that the “relative-novelty” effect is qualitatively consistent
with competitive learning rules, such as the Rescorla~Wagner rule. Their logic
goes as follows: Assume that cues a and b compete to predict the common
category while cues a and ¢ compete to predict the rare category. Because a
occurs more often with the common rather than the rare category, it will presum-
ably acquire more associative weight to the common category. Thus, a will
compete with b to predict the common category, thereby diminishing b’s associa-
tion to the common category. For pattern ac to predict the rare category, symp-
tom ¢ will have to overcome the association of a to the common category. This
leads us to expect that when b and c are paired together, c’s association to the rare
category should be stronger than b’s association to the common category. Thus, a
competitive-learning principle might expect that the novel test pattern bc should
be judged more strongly associated with the rare category, as observed by Binder
and Estes (1966) and Medin and Edelson (1988).

Given this reasoning, we might expect that the LMS network model in Fig.
9.2, which incorporates Rescorla and Wagner’s competitive learning rule, should
account for the relative-novelty effect. However, as Medin and Edelson (1988, p-
75) note the Rescorla—~Wagner model predicts that with extended training, b and
¢ will accrue all the associative strength, leaving a with none. Figure 9.3 shows
an adaptive network model of the Binder—Estes/Medin-Edelson experiment.
The network has three input nodes: one for each of the three symptoms. All
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FIG. 9.3. An adaptive network A
model of the Binder-Estes task
using a local representation

scheme with one input node for g O_ O
each of the three stimulus com-
ponents and a single output output

node that receives reinforce- C

ment of +1 for the more

common outcome and —1 for the less common (rare) outcome. This
one-output node model is equivalent in this application to a two-out-
put node model in which each output nodes receives reinforcement of
1 (category present) or 0 {category not present).

weights are initialized at 0. The presence or absence of cue-i is represented by an
input node activation, a;, of 1 or 0, respectively. The output node is reinforced
with A = +1 for the common category and A = —1 for the rare category. This
one-output-node model, with +1/—1 reinforcements, yields identical predic-
tions to a two-output-node model with 1/0 reinforcements where each output
node corresponds to one of the possible outcomes (see Gluck & Bower, 1988a,
footnote 2, p. 234, for more details on this correspondence).

Figure 9.4 graphs the changes in weights for the three input nodes (cues)
during training, the output activations for the training patterns during learning,
and the output activations (responses) for the transfer patterns at each stage in
learning. These simulations are from a network run for 200 trials with a learning
rate, 3, of .03; so long as { is sufficiently small, however, the important ordinal
predictions of the model are independent of the particular parameter value
chosen. The simulation in Fig. 9.4 confirms Medin and Edelson’s observation
that extended training with the Rescorla—Wagner/LMS rule results in cues b and
¢ acquiring all the predictive strength: asymptotically, wy = +1, we = —1,
whereas cue a adapts out, with w, = 0. Thus, b is completely associated with
R,, the common category, c is completely associated with R, the rare category,
and q has no associative strength at all. As shown in Fig. 9.4A, a does acquire a
pre-asymptotic association to the common category (i.e., a positive weight).
Thus, the network’s early response to pattern a is consistent with both Binder and
Feldman’s (1960) and Medin and Edelson’s (1988) results on the common-cue
test (a). Medin and Edelson (p. 75) and subsequently we (Gluck & Bower,
1988a) incorrectly suggested that the relative-novelty effect will also emerge
from the Rescorla—Wagner model as a pre-asymptotic effect. As the simulations
in Fig. 9.4 demonstrate, this is clearly incorrect. Figure 9.4C shows that the
network’s response to the transfer pattern, bc, favors the common category at all
stages of learning prior to asymptotic learning. Because of the imbalance in
presentation frequencies, the response to bc remains positive despite a’s transient
association to the common category, because w, increases in strength towards
+1 much faster than the w,_ approaches —1. Early in training, during the tran-
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sient association of a to the common category, b’s association to the common
category is always greater than c’s association to the rare category. Thus, at no
time during the course of training will the Rescorla—Wagner model—or, equiv-
alently, the adaptive network model of Gluck and Bower (1988a)—predict the
“relative novelty” effect on the bc test.

Understanding the Network’s Solution

Why does the network’s behavior in this training situation differ from our
intuitive expectation of what a competitive learning rule should do? When the
network is trained as just described, the LMS rule converges on the “solution
vector,” W[a,b,d = [0,+1,—1]. Note that this is only one of many possible
solution vectors that would be equally effective in solving the ab/ac discrimina-
tion. For example, if W, , ., = [.2,.8,—1.2], this would also result in errorless
performance. In a deterministic task that can be perfectly solved by the network
(i.e., MSE = 0), the set of solution vectors is unaffected by variations in the
presentation frequencies of the individual training patterns. This type of prob-
lem, for which multiple solutions exist, can be contrasted with other discrimina-
tion problems that have unique solutions. For example, the nondeterministic
classification task in Experiment 1 of Gluck & Bower (1988a, Appendix A) has a
unique solution that can be derived analytically. When a unique network solution
exists, the LMS algorithm will converge on that solution independent of the
initial weights, assuming a sufficiently small learning rate (Widrow & Hoff,
1960). In situations where multiple solutions exist, such as the Binder—
Estes/Medin—Edelson task, the final weights obtained with the Rescorla—
Wagner/LMS algorithm will be sensitive to their initial values (Gluck & Bower,
1988b, Appendix B; Parker, 1986). The sensitivity of the LMS rule to initial
conditions is familiar to animal learning theorists as the property that allows the
Rescorla—Wagner model to account for the effect of pretraining in Kamin’s
(1969) blocking study.

If many different solutions are equally “good” in minimizing the expected
squared error, why does the network converge to [0,+1,—1] rather than another
solution, for example, [.2,.8,—1.2]? To see why, it is helpful to consider the set
of all possible solution vectors as being a subset of the three-dimensional
“weight space” that characterizes all possible states of the three-weight network.
If the network begins with all weights set to zero, then the solution with the
smallest sum squared weights represents the “closest” solution to the initial
conditions, where closeness is measured by Cartesian distance. Parker (1986)
has shown that if the weights in the network are initialized at zero (or randomly
distributed with zero mean), the asymptotic weights will tend toward the solution
closest to the initial conditions. For the network model of the Binder—
Estes/Medin—Edelson task we expect, on average, a solution where cues “b”
and “c” have all the weight because the solution to the simultaneous linear
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equations w, + wy = +1 and w, + wc = —1, with the smallest sum-squared
weights is w, = 0, wg = +1, we = —1. (See Gluck & Bower, 1988b, Appendix
B, for more details on deriving the expected asymptotic convergence when
multiple solutions exist).

STIMULUS SAMPLING AND THE RESCORLA-WAGNER
MODEL

It is clear from the analyses presented that neither Stimulus Sampling Theory nor
our LMS network model provides an adequate account of the effects of category
frequency on discrimination learning and transfer generalization when the train-
ing patterns share common cues. Stimulus Sampling Theory accounts best for
transfer effects involving single component cues. This “component matching”
principle was summarized by Binder and Tayler (1969) as: “If two or more
different responses have been reinforced in the presence of a given cue during
training, then with any later tests the probability that any one of these responses
will be evoked by the given cue is equal to its relative frequency of reinforce-
ment” (p. 91). In contrast, adaptive network theory, and the Rescorla—
Wagner/LMS rule in particular, provides a better account of discrimination
learning when the reinforcement contingencies for cues are dependent on the
context in which they appear. The LMS rule converges on a set of weights that
(as closely as possible) produce “pattern matching” probabilities as activations
on the output nodes when the individual cue weights are combined additively. To
paraphrase Binder and Taylor: The LMS network seeks a solution whereby if two
or more different responses have been reinforced in the presence of a given
pattern during training, then with any later tests the output activation evoked by
the given pattern for one of these responses will be equal to its relative frequency
of reinforcement.

A possible rapprochement between the explanatory abilities of Stimulus Sam-
pling Theory and the Rescorla—Wagner model has been suggested by Rescorla
(1976) and Blough (1975). These authors have shown that integrating the learn-
ing rule from Rescorla—Wagner’s (1972) conditioning model with the stimulus-
representation assumptions from Stimulus Sampling Theory can account for
several animal learning behaviors. We first review the applications of this hybrid
model to animal learning behavior and then consider its implications for human
classification learning.

Rescorfa (1976)

Rescorla (1976) highlighted an important implication of the Rescorla—Wagner
mode] when it is applied to a distributed representation in which similar stimuli
share common features. Traditional learning theory says that the optimal way to
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train an associative connection is by direct reinforcement of the target stimulus.
Rescorla, however, reported a paradoxical case where training to a generalized
stimulus enhances performance to a target stimulus more than reinforcement to
the target stimulus itself. This paradoxical outcome and the circumstances that
produce it are predicted by Equation 4 of the Rescorla—Wagner/LMS rule.

If we conceptualize the similarity of two stimuli in terms of common or shared
stimulus elements, then we may represent even a simple stimulus like a high-
pitched pure tone as a compound of stimulus elements, denoted AX; another
similar stimulus like a low-pitched pure tone would be represented as another
compound, BX. Here, X denotes the set of common elements, whereas A and B
denote those sets of sensory elements unique to the two stimulus sets. In condi-
tioning the high tone (AX) to a shock US, Equation 4 applies to the separate A
and X components of that stimulus. With repeated reinforcement of AX, the
weights w, and wy will increase together until their sum equals the reinforcing
value of A = 1 where each might be, say, about /2. Were we to continue to
reinforce AX beyond this point, the LMS rule of Equation 4 expects no change in
the strengths of the A and X associations. Now consider what would happen if
we gave trials wherein a generalized stimulus (the low tone, denoted BX) was
paired with shock. Because B begins at low strength, the combination BX begins
with an association strength far below 1. During a block of reinforced trials on
BX, Equation 4 implies that wy and wy will increase. This increase in wy, should
be most apparent when we test the subject again on the original training stimulus,
AX. On such a test, the compound strength w,, = w, + wy will be higher than
before, higher even than if the subject had just continued training on AX alone.
In an experiment of this kind, Rescorla (1976) found just this result. Training to a
generalized stimulus (following initial learning) produced greater conditioned
responding to a target stimulus than did extended training on the target stimulus
itself. This is a most counterintuitive result, and one that provides impressive
support for the Rescorla—Wagner learning rule when combined with a common-
elements representation of stimulus similarity.

Blough (1975)

Nearly concurrently with Rescorla (1976), Blough (1975) described a stim-
ulus sampling model that incorporated a generalization of the Rescorla—Wagner
rule very similar to Widrow and Hoff’s (1960) LMS rule. Blough assumed that a
stimulus continuum (such the pitch of a tone or the wavelength of light) could be
represented as an ordered sequence of overlapping sets of hypothetical stimulus
elements. Presentation of a physically-defined stimulus corresponds to sampling
a subset of these elements according to a unimodal bell-shaped probability dis-
tributed with mode at the internal unit corresponding to the physical stimulus.
Thus, different physical stimuli are assumed to project probabilistically to inter-
nal sensory units that overlap to varying degrees, as illustrated in Fig. 9.5.
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FIG. 9.5. Probability distribu-
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Consider now what happens if stimuli below some point on the continuum are
reinforced at one rate (e.g., on one twelfth of the trials) while stimuli above that
point are reinforced at another rate (e.g., on one third of the trials). What does
the Rescorla—Wagner/LMS rule predict will happen with this differential train-
ing? The predicted asymptotic association strengths for each stimulus element
are shown as a dashed line in Fig. 9.6A. As expected, the model predicts that
subjects should adjust their conditional associations to reflect the two reinforce-
ment levels. The distributed representation of the physical stimuli results in a
smooth transition from one level of responding to the other because elements
nearby the transition point are activated by physical stimuli both above and
below the transition point. This smooth transition is also predicted by the linear
operator rule from SST when applied to the same stimulus representation.

More interesting than the gradual transitions from one level of responding to
the other are the exaggerated “shoulder” and “trough” on either side of the
transition point in Fig. 9.6A. These predicted contrast effects are analogous to
edge-enhancement (so-called “Mach bands”) in sensory psychophysics. The
* unique prediction of the Rescorla—Wagner model is that the elements just a little
bit further away from the transition point should become “superconditioned”
because they frequently co-occur—and hence compete for associative strength—
with near-edge elements whose associative strengths reflect conditioning at
mixed levels of reinforcement.

The plausibility of such contrast effects in discrimination learning were dem-
onstrated by Blough (1975) who trained hungry pigeons to peck a colored key for
food. Keypecks at wavelengths below 597nm were reinforced on one twelfth of
the trials, whereas keypecks at wavelengths above 597nm were reinforced on one
third of the trials. As predicted by Blough’s Stimulus-Sampling extension of the
Rescorla—Wagner model, the animals’ pecking rates showed marked shoulder
and trough effects whereby the cues that were just above and below the transition
point for reinforcement (597 nanometers) appear to be “superconditioned” be-
yond the steady-state levels associated with wavelengths further away from 597
panometers (Fig. 9.6).

A DISTRIBUTED ‘STIMULUS SAMPLING’
NETWORK MODEL

An adaptive network model in which stimuli are represented by stochastically
activating overlapping populations of input nodes (stimulus elements) is one type
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of “parallel distributed network” (McClelland & Rumelhart, 1986; Rumelhart &
McClelland, 1986). Networks like this that embody a distributed representation
use entire patterns of activation across many units to represent different concepts,
with different patterns of activation corresponding to different concepts or fea-
tures (Hinton, McClelland, & Rumelhart, 1986). This is in contrast to a local
representation, in which each unit (node) in the network is taken to represent a
single concept or feature (Feldman, 1985). This “local” representation is what
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we have previously adopted in our models of human learning, as illustrated in
Fig. 9.2B.

A key feature of distributed representations is that each unit is involved in
representing many different concepts. Whereas local representation schemes are
conceptually easier to understand, many network theorists have been led to adopt
distributed representations because of some of their interesting emergent proper-
ties. The most compelling advantage of a distributed representation is its ability
to generalize automatically from previous training to similar novel situations. As
in the earlier Stimulus Sampling Theory, generalization emerges in distributed
representations because similar conceptual entities are encoded by activating
overlapping sets of units. Several researchers have used this property of dis-
tributed networks to account for various aspects of cognitive functioning (Ander-
son, Silverstein, Ritz, & Jones, 1977; Hinton & Anderson, 1981). Another
appeal of distributed representations is the compelling intuition that they are
more biologically plausible than local representation schemes (Lashley, 1929;
Sejnowski, 1988; Thompson, 1965), but we focus here solely on the behavioral
implications of distributed representations.

Although many of the generalization properties of distributed representations
bear a marked resemblance to human behavior, there has been little attempt to
apply these principles to fitting precise details of human learning and generaliza-
tion. Part of the problem has been that there is little consensus among theorists as
to how external stimuli should be identified with distributed patterns of activity.
Building on the previous successes of Stimulus-Sampling-Theory’s stimulus rep-
resentation provides a possible formalism for developing a “distributed” net-
work theory of psychology representation.

Binder and Estes (1966): A Distributed-Network
Interpretation

Incorporation of Stimulus Sampling into the network model requires consider-
ation of two new factors. First, it adds an element of randomness or stochasticity
to our representation of the stimulus conditions operating on a trial. In the
previous “local” network model (Gluck & Bower, 1988a, 1988b), the functional
representation of stimuli was identical to the nominal stimuli as described by the
experimental paradigm. In stimulus-sampling, the functional representation is
presumed to include only a random subset of the nominal stimulus conditions.
The second factor introduced by a sampling representation is the explicit incor-
poration of stimulus similarity through the activation (sampling) of common
stimulus elements.

To better understand the unique implications of these two factors, we begin by
considering a “non-overlapping” model, in which the population pools for the
three cues, a, b, and c are distinct and have no common elements. The behavior
of this model will address the implications of adding stochasticity to our model,
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independent of the effects of common-elements. After analyzing the behavior of
this non-overlapping model, we consider an “overlapping”model, which incor-
porates stimulus similarity among the three cues through the activation of com-
mon elements.

Stochasticity in Stimulus Representation

We begin by assuming three distinct pools of input nodes, each having n
elements (Fig. 9.7). Presentation of a stimulus cue is presumed to stochastically
activate the elements in the corresponding pools with probability 8. Thus, on
average, we can expect nf elements to be activated in each population of ele-
ments. Figure 9.8A shows the result of this non-overlapping network model
applied to the Binder—Estes/Medin—Edelson experiments. In Fig. 9.8C we see
that the response to the transfer pattern bc has an initial upward swing due to the
unequal presentation frequencies of the two categories. At asymptote, however,
the associative strength of ¢ for the rare category outweighs the strength of b for
the common category and the model correctly predicts that the compound con-
flicting test, bc, will favor the rare category. Thus, the addition of a stochastic
sampling processes to the network provides a formal instantiation of Medin and
Edelson’s qualitative proposal for how a competitive learning rule can account
for the “relative novelty” effect.

Why does the relative novelty effect emerge in these simulations and not in a
“local representation” network? Note that the formal properties of the network
have not changed. What has changed is only our assumption about how the
external world is represented on the input nodes. If the sampling rate 6 is set to 1,
the distributed model reduces to the local model. The important consequence of

FIG. 9.7. An adaptive network model of the Binder—Estes task using a
representation scheme with one pool of input nodes for each of the
three stimulus components.
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FIG. 9.8. A distributed network model applied to the Binder—
Estes/Medin—Edelson experiments with B = .03, n = 20 and 6 = .2. (A)
shows the expected summed weights (for a given trial) for weights
from each of the three input nodes (cues) during training. Positive
weights and activations favor the common category whereas negative
weights and activations favor the rare category. (B) graphs the ex-
pected output activations for the training patterns during training. (C)
shows the expected responses to transfer tests at each point in train-
ing. Parameter values used were: B = .03, n = 20, and 6 = .2. As in Fig.
9.4, positive weights and activations favor the common category
whereas negative weights and activations favor the rare category.
Each graph is the result of averaging many simulations of these condi-
tions.
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the change in representation is that it alters the nature of the discrimination from
a deterministic problem to a probabilistic problem. With a stochastic representa-
tion of the stimulus environment, there exists a unique set of weights that provide
a least mean squares solution. In situations where there is a unique solution, the
distributed and local network models will make effectively equivalent predic-
tions. For example, we have analyzed the stimulus environments presented in
Experiments 1 and 2 from Gluck and Bower (1988a), and the important ordinal
predictions of the original model are maintained by the sampling network. A
more detailed exposition of the translation from local to distributed representa-
tions, and the conditions under which they make equivalent predictions, can be
found in Stone (1986).

Because the processing assumptions of this SST-Network model are identical
to those of the previously described network, we can use the same analytic tools
for deriving asymptotic solutions (see Appendix A, Gluck & Bower, 1988a). To
do so requires making assumptions about n and 8 (B has no effect on the expected
asymptotic weights). With the values of n = 20 and 6 = .2 used in the simulation
in Fig. 9.8, the expected asymptotic weights for the individual nodes in the three
pools are w, = .057, wg = .160, wc = —.256. An average of n 6 = 4 nodes will
be active on each trial in each pool, so the expected activations resulting from the
presence of each of the component cues alone is .227, .644, and —1.02, fora, b,
and c, respectively.

An intuitive explanation of the relative novelty effect is that the sampling
representation adds an additional constraint to the search for an appropriate
solution. The constraint can be loosely characterized as robustness and is a direct
consequence of introducing “noise” into the training procedure. The network
now searches for a solution that not only solves the ab — R,/ac — R, discrimi-
nation, but is also maximally tolerant of noisy information about cues. For
example, if we knew that the first feature was a but were unsure about the second
feature, we would want the network to prefer the common category. The Re-
scorla—Wagner/LMS rule, by virtue of its competitive nature, searches for a
parsimonious solution in which redundant information is ignored. But a par-
simonious solution may be brittle in that it requires complete and perfect infor-
mation about all features in the stimulus pattern. When multiple solutions are
equally valid, the addition of stochastic noise biases the system toward solutions
that are noise tolerant. Similar results have been found for learning in multilayer
adaptive networks (Elman & Zipser, 1988; Hanson, 1990). We noted earlier that
the LMS rule converges on weights that approximate probability matching on
stimulus patterns in contrast to the linear operator rule from SST that converges
on weights that result in probability matching on component cues. The addition
of stochasticity to the network provides an additional constraint: When multiple
solutions exist that are equally effective in producing “pattern matching,” the
network will prefer the solution that best approximates “component matching.”

The addition of the stochastic sampling representation changes a deterministic
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discrimination into a probabilistic discrimination in which the expected squared
error can never be totally reduced to zero. This does not imply, however, that
choice performance, as measured by expected percent correct, cannot reach
100%. In contrast to Stimulus Sampling Theory, which directly maps associative
weights onto response probabilities, the network model is not committed to a
specific response mapping rule. Rather, it assumes that an unspecified monotonic
rule converts activations into response probabilities. For example, in Gluck and
Bower (1988a,b), we adopted the sigmoidal transform, which has one free pa-
rameter describing the gain or slope of the “S-shaped” sigmoid. As long as all
input patterns are more associated with their correct response than with any
incorrect response, the sigmoidal response rule can bring choice performance
arbitrarily close to 100%, depending on the gain constant. Even with a more
moderate gain constant, the sigmoidal transform has the effect of compressing
activations near the boundary values so that output activations from all large
weights are near unity.

Limitations of the Non-overlapping Representation

One problem with the predictions in Fig. 9.7 is that the model fails to account
for Medin and Edelson’s finding that subjects, under some conditions, judge the
pattern abc to be more strongly associated with the common category. We now
consider the effects of incorporating stimulus overlap, as well as stochasticity, in
our representation of the stimulus cues and show how this effects the predicted
response to the abc pattern.

With three cues, S,, Sg, and S, we could model the overlapping elements
shared by S, and Sg, S, and S, Sg and S, and those shared by all three cues as
shown in Fig. 9.9. A simpler alternative, which we adopt here, is to assume that
presentation of a cue results not only in the activation of nodes in its “own” pool
(with probability 0), but also in the activation of nodes in other pools (with
probability 6').

As 0’ approaches 0, the weights (and output activations) become more biased
towards the presentation frequencies of the categories. Note that in the extreme
case in which @ = 0’, the network has no discriminative input, only random
noise on the input nodes, and the input activations would be uncorrelated with
the stimulus environment. In this case, the distributed network model reduces, in
all aspects, to the Stimulus Sampling Theory account of probability matching
described earlier. Clearly 8’ << 9 if the cues are reasonably discriminable.
Choosing the same values for 6 and n that we used in the simulation in Fig. 9.8,
and setting 8’ = .07, the results of the new simulation are shown in Fig. 9.10. By
comparing Fig. 9.10C with Fig. 9.8C, we see that the incorporation of a
common-elements representation of stimulus similarity alters the model’s be-
havior so that the correct predictions are obtained for both the relative-novelty

!

test (bc — R,) and the combined test (abc — R,). The degree of overlap, % ,

will determine the relative strength of this combined test result.
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5485,

FIG. 9.9. One method for having three overlapping pools of stimulus
elements corresponding to three stimulus cues, Sy, Sz, and S;.

The model also predicts that both the bc and abc patterns should show a
preference for the more common outcome (R,) very early in training, with the bc
pattern reversing its preference with further training. No data is currently avail-
able, however, to test this “crossover” prediction.

In comparing our account of the classification of the relative-novelty (bc) and
the combined patterns (abc), it is important to note that the explanation of the
former is parameter free (0 < 8 < 1). Thus, we expect the “relative novelty”
effect to be strong and reliable. Indeed, it has been replicated by various investi-
gators over the last 20 years (Binder & Estes, 1966; Binder & Taylor, 1969;
Medin & Edelson, 1988; Medin & Robbins, 1971). In comparison, our account
of the combined test (abc) depends critically on the “stimulus confusability” of
the component features as measured by the magnitude of 8’ relative to 8. Here we
can only make the weaker claim that the model is sufficient to account for the abc
—> common preference. However, this dependence on the relative magnitude of
6’ suggests that experimental manipulations designed to influence stimulus con-
fusability might change the results of the combined test. One such manipulation
was used by Medin and Edelson in their fourth experiment. They gave subjects
one of two types of instructions. In the focus condition, subjects were told to
focus on the symptoms that proved most reliable. In the complete condition
subjects were told that they should learn about all of the symptoms. If we assume
that the focus condition decreased the opportunity for stimulus confusion, effec-
tively lowering ', then we expect subjects in the focus condition to exhibit a
stronger “relative novelty” effect on the conflicting test (bc), but less bias for the
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FIG. 9.10. A distributed network model applied to the Binder—
Estes/Medin-Edelson experiments with g = .03, n = 20, and sampling
probabilities of 6 = .2 and 8’ = .07. (A) shows the expected summed
weights (for a given trial) for weights from each of the three input
nodes (cues) during training. Positive weights and activations favor
the common category whereas negative weights and activations favor
the rare category. (B) graphs the expected output activations for the
training patterns during training. (C) shows the expected responses to
transfer tests at each point in training.
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common category on the combined (abc) tests. This is precisely what Medin and
Edelson found. On the conflicting tests, the focus group showed a considerably
larger bias for the rare category than did the subjects in the complete group. On
the combined test, subjects in the complete condition exhibited the same effect
found in the other experiments—they showed a bias for the common category.
Subjects in the focus group, however, showed the opposite effect, exhibiting a
slight preference for the rare category versus the common category. Thus, when
given the “focus group” instructions, subjects behaved much like the network in
Fig. 9.8 with an effective §' of 0.

Summary

Binder and Estes (1966) were able to account for some of their data within the
framework of Stimulus Sampling Theory. They were unable, however, to ac-
count for two phenomena. First, subjects discriminate perfectly patterns that
share common features. Second, subjects exhibit a relative novelty effect in
which two conflicting cues are more strongly associated with a less frequent
outcome. Following Rescorla (1976) and Blough (1975), we have developed a
distributed network model that combines the learning rule from Rescorla and
Wagner’s (1972) conditioning model with the stimulus representation assump-
tions from Stimulus Sampling Theory. This distributed network predicts Binder
and Estes’ relative-novelty effect (bc — less frequent outcome), component
matching on transfer (a — more frequent outcome), and provides a possible
account for Medin and Edelson’s (1988) combined-pattern results (abc — either,
depending on training instructions).

These analyses suggest that it may not be appropriate to apply the Rescorla—
Wagner/LMS rule directly to a veridical representation of stimuli, especially for
deterministic discriminations. In discrimination tasks in which an infinite
number of least-squares optimal solutions exist, the “local” network will often
find a solution that is simple and nonredundant but extremely sensitive to
“noise” or perturbation. These solutions do not yield transfer generalizations in
accord with empirical data. Training the network with a stochastic representation
of the input stimuli results in a “robust” solution that generalizes more effective-
ly. Stimulus Sampling Theory provides a stochastic formalism for representing
input stimuli.

Configural Cues and Stimulus Sampling

In these preliminary analyses of a distributed network model, we have repre-
sented stimulus patterns as collections of component cues (e.g., a, b, and c in the
Binder-Estes/Medin—Edelson experiments). In other work (Gluck, in press;
Gluck, Bower, & Hee, 1989) we have extended this component representation to
include pair-wise conjunctions of features as unique cues. This “configural-cue”
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model accounts for several aspects of complex human category learning and
animal learning. We have not included these “higher order” cues in our analyses
of the Binder and Estes and Medin and Edelson experiments, because the rele-
vant configural-cues, ab and ac, are redundant in this application with the com-
ponent-cues, b and ¢. The consideration of configural-cues does not change the
basic predictions of the network model for the Binder—Estes/Medin—Edelson
discrimination task. In general, however, the configural-cue approach is per-
fectly compatible with a distributed stimulus-sampling representation. Configu-
ral-cues, like component-cues, can be represented as populations of elements.
Furthermore, the geometric interpretation of stimulus similarity as shared com-
mon elements (Figs. 9.1 and 9.9) can be extended to represent configural-cues.
When overlapping elements are activated only by the presence of both cues
(rather than by either alone), they represent unique configurations of the compo-
nent cues, that is, configural-cues.

CONCLUSION

In describing the strategy for theory development that guided the growth of
Stimulus Sampling Theory, W. K. Estes (1982) wrote:

The approach I favored [was] starting with associative concepts already established
for simpler forms of learning and progressively modifying and elaborating them as
successive approximations to an adequate theory are confronted by new facts. . . .
My preferred strategy was not to discard the original concept but rather to extend it
to a broader conception of associations among representations of events, and in
such a way that Stimulus-Response connections would be simply a special case of
the more general concept, perhaps clearly exemplified only in some forms of
conditioning for human beings and in learning of lower organisms. (p. 7)

Like Stimulus Sampling Theory, adaptive networks provide a framework for
theory development that builds cumulatively on the associative concepts origi-
nally established for simpler forms of learning. By extending assumptions re-
garding the representation of events, and the nature of the stimulus-response
connections to be modified, the distributed network model integrates the power-
ful learning rule from the Rescorla—Wagner conditioning model with the stim-
ulus-representation assumptions from Stimulus Sampling Theory. Each of these
models has had a long and successful history within learning theory, the former
being applied primarily to animal learning data and the latter being most often
associated with human learning phenomena. The preliminary explorations re-
ported here suggest that, within the formalisms of adaptive network theory, some
of the shortcomings of each of these earlier models might be addressed by the
strengths of the other.
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