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To what extent are the processes of human learning analogous to the more ele-
mentary learning processes studied in animal-conditioning experiments? This
question, and the broader goal of integrating mathematical models of animal and
human learning, was the focus of my collaborative research at Stanford with
Gordon Bower in the mid-1980s as well as my doctoral dissertation, which he
supervised (Gluck & Bower, 1988a, 1988b, 1990). While working with Gordon,
I also began a parallel line of research with another faculty member at Stanford,
Richard Thompson. This research had the same conceptual starting point as the
cognitive studies with Gordon, mathematical models of animal learning, but asked
a different question: How are these learning principles embodied by neural circuits
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for various forms of classical conditioning (Gluck & Thompson, 1987; Thompson
& Gluck, 1989, 1991).

In the late 1980s, these two research projects—one with Bower and the other
with Thompson—shared only a common conceptual starting point. They were
otherwise completely independent: The neuroscience research with Thompson
made no direct links to cognition and the cognitive work with Bower made no
direct links to neuroscience. These parallel projects continued throughout my
graduate years at Stanford (1982—1987) as well as during several years of post-
doctoral research at Stanford prior to my moving to Rutgers University—Newark
in 1991. In the subsequent 15 years, my research has built upon the foundations
of these two earlier research projects, extending them to create more direct bridges
from neuroscience to human cognition. This newer cognitive neuroscience research
fills in the gaps left by the earlier work with Bower and Thompson, showing how
experimental and computational studies of the neural circuits for classical condi-
tioning in animals has direct relevance for understanding the anatomy, physiology,
neuropharmacology, and genetics of human learning, especially probabilistic cat-
egory learning.

The remainder of this chapter is divided into four sections. In the first, I review
the concept of error correction, and discuss how this learning principle has been a
building block for models of both animal and human learning. Then, I turn to the
neural substrates of error correction learning in classical conditioning, discussing
the functional roles of three brain regions: the cerebellum, the basal ganglia, and
the hippocampus. In the third section, I show how past bridges between animal and
human learning (specifically my earlier doctoral dissertation research with Bower),
provides a behavioral bridge for using models and data on the neural substrates of
classical conditioning to inform our understanding of the cognitive neuroscience
of human learning, especially probabilistic category learning. This research com-
bines two methodologies, functional brain imaging and neuropsychological stud-
ies of patients with localized brain damage. In the fourth and final section, I
briefly review the status of our understanding of the cognitive neuroscience of
category learning, and some exciting new research directions that lie ahead.

ERROR CORRECTION IN LEARNING AND BEHAVIOR

For most of the first half of the 20th century, psychologists believed that as long
as a cue (the conditioned stimulus, or CS) and an outcome (the unconditioned
stimulus, or US) occurred closely together in time and nearby in space, an asso-
ciation would develop between them. However, in the late 1960s several psycho-
logical studies showed that pairing a CS and a US is not sufficient for condition-
ing to occur. Rather, for a CS to become associated with a US, it must provide
valuable new information that helps an animal predict the future. Moreover, even
if a given cue is predictive of a US, it may not become associated with that US if
its usefulness has been preempted (“blocked”) by another co-occurring cue that
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has a longer history of predicting the US. For example, if a rat is first trained that
a light predicts a shock, and later is trained that a compound stimulus of a light
and tone together also predicts the shock, the rat will learn very little about the
tone because the tone does not add any predictive information for the animal. This
phenomenon, first described in animal conditioning by Leon Kamin, is known as
blocking (Kamin, 1969). It demonstrates that classical conditioning occurs only
when a cue is both a useful and a nonredundant predictor of the future.

The blocking effect challenged early theories of classical conditioning because
it suggested that cues do not evoke conditioned responses based solely on their
individual relationships with the US. Rather, blocking and other related experi-
mental studies done in the late 1960s and early 1970s led to a new view of clas-
sical conditioning in which (a) cues that co-occur compete with each other to pre-
dict the US, and (b) a cue must impart reliable and nonredundant information about
the expected occurrence of the US to produce effective conditioning. Apparently
“simple” Pavlovian conditioning is not as simple as psychologists once thought it
was. Even rats and rabbits act like sophisticated statisticians, sensitive to the rel-
ative informational value of cues in their environment.

Resecorla and Wagner’s (1972) Error Correction Model of
Classieal Conditioning

In the early 1970s, two psychologists working at Yale University developed an ele-
gant learning model to explain how animals might learn about the informational
value of cues (Rescorla & Wagner, 1972). Rescorla and Wagner’s key idea was
that the changes in association between a CS and a US are driven by a prediction
error, that is, the difference between whether or not the animal expects the US (i.e.,
the Expected US), and whether or not the US actually occurs (i.e., the Actual US).
Rescorla and Wagner argued that if the occurrence of the US is unexpected, learn-
ing should occur proportional to the degree to which the US is surprising, where
the surprise, that is the prediction error, is calculated as the difference between the
Expected US and the Actual US. Key to their formulation was their assumption
that an animal’s expectation of the US is based on the sum of the strengths of all
the CSs that are present on a trial. This allowed the model to account for many
learning phenomena in which training to one cue can affect what is learned about
other cues that are present in the same trials. In contrast, prior learning theories
had assumed that each CS-US relationship is learned independently and were,
thus, not able to address such cue—cue interactions during learning.

The Rescorla—Wagner model implied that a US that is totally unexpected given
all the cues that are present (high error) should cause lots of learning whereas a
US that is only partially expected (medium error) should result in less learning. The
learning rule in the Rescorla—Wagner model is called an error correction rule
because, over many trials of learning, it reduces—that is, “corrects”—the predic-
tion error.
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More than a quarter century after its publication, the Rescorla—Wagner model
is generally acknowledged as the most powerful and influential formal model of
learning ever produced by psychology. The model gained broad acceptance
because it is simple, elegant, and explains a wide range of previously puzzling
empirical results. It revealed an underlying order among a series of results that
initially seem unrelated or even contradictory. The model also made novel and
surprising predictions about how animals will behave in new experimental pro-
cedures, and experimenters rushed to test these predictions.

By virtue of its simplicity, the Rescorla—Wagner model does not account for
all kinds of learning. Many researchers devoted themselves to showing how one
or another addition to the model allows it to account for a wider range of phe-
nomena—but with too many additions, the model loses some of its simplicity and
appeal. Within its domain, the Rescorla—Wagner model combines explanatory
power with mathematical simplicity. It takes an intuitively reasonable idea—
classical conditioning is driven by a prediction error—and then pares away all but
the most essential details, and uses this as a tool to explore implications of this
idea that were not obvious before. The Rescorla—Wagner model is also a starting
point from which many subsequent models were built, including the category-
learning model of Gluck and Bower (1988) described next.

Gluck and Bower’s (1988) Error Correction Model of
Category Learning

To what extent are the processes of human learning analogous to the more elemen-
tary learning processes studied in animal-conditioning experiments? One conse-
quence of the lack of communication between animal and human researchers in
the 1960s is the fact that few, if any, animal researchers were aware that Gordon
Bower and Tom Trabasso had demonstrated a form of blocking in human learn-
ing several years before the Kamin study (Trabbasso & Bower, 1964). During late
1960s and into the 1970s animal learning remained primarily concerned with ele-
mentary associative learning, whereas human-learning studies began to focus
more on memory abilities, characterized in terms of information processing and
rule-based symbol manipulation, approaches borrowed from the emerging field
of artificial intelligence. Ironically, this historical schism between animal and
human researchers occurred just as animal-learning theory was being invigorated
by the Rescorla—Wagner model in the early 1970s.

Interest in relating human cognition to elementary associative learning was
revived in the late 1980s by the expanding impact of computational “neural net-
work” (or “connectionist””) models of human learning. These models showed that
many human abilities—including speech recognition, motor control, and category
learning—emerge from configurations of elementary associations similar to those
studied in conditioning paradigms (Rumelhart, McClelland, & the PDP Research
Group, 1986).
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One example of a connectionist model in cognition from that era is a simple
neural network that Gordon Bower and I developed to model how people learn
complex probabilistic categories (Gluck & Bower, 1988a). The study of category
learning has been a central paradigm within cognitive psychology for more than
50 years. Category learning has aspects of both elementary associative learning
as well as higher order cognition. On one hand, category learning can be viewed
as a “cognitive skill” that shares many behavioral properties, and possibly some
neural substrates, with motor-skill learning and conditioning. On the other hand,
categorization underlies many higher order cognitive abilities. When a connois-
seur distinguishes a cabernet from a merlot, or a doctor diagnoses a disease based
on a pattern of symptoms, they are performing categorization. It is this dual
nature—part elementary skill, part higher cognition—that makes category learn-
ing a valuable paradigm for studying fundamental aspects of human learning, at
both the behavioral and neural levels of analysis.

The Gluck and Bower (1988) model of category learning was based on apply-
ing the Rescorla—Wagner model of animal conditioning to human learning. In our
study, college students were asked to learn how to diagnose patients, according to
which of two fictitious diseases they had, Midosis or Burlosis. The students
reviewed medical records of fictitious patients, each of whom was suffering from
one or more of the following symptoms: bloody nose, stomach cramps, puffy
eyes, or discolored gums. During the study, subjects reviewed several hundred
such medical charts, tried to diagnose each patient, and were then told the correct
diagnosis. Initially, of course, the students had to guess; but with practice, they
were able to diagnose the fictitious patients rather accurately. What helped them
guess was that the different symptoms were differentially diagnostic of the two
diseases. Thus, bloody noses were very common in Burlosis patients (but rare in
Midosis) whereas discolored gums were common in Midosis patients (but rare in
Burlosis). The other two symptoms, stomach cramps and puffy eyes, were only
moderately diagnostic of either disease.

This kind of learning can be modeled using the network in Figure 18—1A. The
four symptoms are represented by four input nodes at the bottom of the network
and the two diseases correspond to the two output nodes at the top of the network.
The weights between the symptoms and the diseases are updated according to the
learning rule from the Rescorla—Wagner model, much as if the symptoms were
CSs and the diseases were alternate USs.

Learning and performance in the model works as follows: If on a particular
trial, the symptoms “Bloody Nose” and “Stomach Cramp” are presented, then
this is modeled by turning “on” the corresponding input nodes (stippling in Fig.
18—1). These act like two CSs present on a conditioning trial. In contrast to the
classical conditioning paradigms described earlier, where there is one US (e.g.,
a shock), here there are two possible outcomes, the diseases Burlosis and
Midosis. For each outcome category, there is a teaching node that provides error-
correcting feedback with the correct (actual) category for each input training pat-
tern. In Figure 18-1, the correct category is Burlosis. Thus, activating two features
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Expected_ Actual Ex.pectele Actual
Burlosis Burlosis Midosis Midosis

Bloody Stomach Puffy Discolored
Nose Cramp Eyes Gum

Figure 18-1A. Medical diagnosis network applying Rescorla—Wagner model to
human category learning (after Gluck & Bower, 1988a). The Model. The weights
from bloody nose to Burlosis and from discolored gums to Midosis are thick indi-
cating highly diagnostic relationships. The other cues are of only moderate diag-
nosticity. The input nodes for bloody nose and stomach cramp are shown activated
by the dark fill. For each outcome category there is a teaching node that provides
error-correcting feedback with the correct (actual) category for each input training
pattern. In this case, the correct category is Burlosis.

(two input nodes) causes activity to travel up four weights, two to Burlosis and
two to Midosis as shown in Figure 18-1.

By analogy with the Rescorla—Wagner model, the output node activations are
equivalent to the network’s expectation of one disease versus another, and the
correct answer (the disease name given by the experimenter) was then used to
modify the weights to reduce the error between the expected disease and the
actual disease category outcome, according to Rescorla—Wagner’s error correc-
tion learning rule. The network model shown in Figure 18—1A incorporates
nothing more than the learning principle of the 1972 Rescorla—Wagner condi-
tioning model. Nevertheless, this “animal-conditioning” model of human cogni-
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tion accounts for many aspects of how people in our experiments classified dif-
ferent patients.

With four possible symptoms, there are 16 possible patient charts that can be
constructed depending on whether each of the four symptoms is present or absent.
We actually used only 14 of these, eliminating the charts with no symptoms (all
absent) or all four symptoms (all present). After subjects had completed a long
series of training trials, we asked if the model could predict the proportion of times
that each of the 14 patterns was classified as Burlosis versus Midosis by their sub-
jects. To generate this prediction, we looked at two output nodes, Expected-
Burlosis and Expected-Midosis, for each of the 14 patterns. If, for a particular
symptom pattern, such as “Bloody Nose & Stomach Cramp,” the output values
were Expected-Burlosis = 80 and Expected-Midosis = 20, then, we argued, the
subjects should likely classify this pattern as Burlosis 80% of the time and as
Midosis 20% of the time. In this way, we calculated a predicted proportion of
“Burlosis” responses for each of these 14 patterns based on their model and com-
pared this to the actual proportion of subjects who responded “Burlosis” to these
patterns during the final 50 trials of the experiments (Gluck & Bower, 1988a).

The results of this analysis are shown in Figure 18—1B, where each of the 14
patterns is represented by a dot. The location of each dot corresponds (on the hor-
izontal axis) to the model’s predicted proportion (ranging from O to 1), whereas
its location on the vertical axis corresponds to the actual experimental data. Thus,
the “Bloody Nose & Stomach Cramp” patient from Figure 18—1 who has a pre-
dicted proportion of 80% Burlosis categorization would be located as a dot at 0.8
on the horizontal axis. If, indeed, the subjects in this experiment did label this pat-
tern as Burlosis on 80% of the trials, then the dot for “Bloody Nose & Stomach
Cramp” would be found at the point (0.8,0.8) in this graph. Thus, the better the
fit of the model the more likely that each of the 14 patterns (dots) would lie on
the straight line from (0,0) through (1,1). As you can see from Figure 18—1A, the
fit is excellent.

In addition to these fits, the model was applied to many other types of data from
these and other experiments. It was able to account for the relative differences in
difficulty among many different tasks (i.e., why some tasks are harder than others
and take longer to solve) and it predicted some surprising generalization behaviors
when people, following category learning, were later asked to predict the marginal
probabilities of different categories given the presence of individual features
(Gluck & Bower, 1988a, 1988b). For learning more complex discrimination rules
in which sensitivity to the relationships between stimulus features was necessary,
we borrowed again from Rescorla and Wagner, adopting their convention of includ-
ing configural nodes that represented the unique configuration of various pairs of
features (e.g., bloody nose and stomach cramps both being present); again, this
approach showed a remarkable ability to explain a wide range of human category-
learning behaviors (Gluck & Bower, 1988b; Gluck, Bower, & Hee, 1989).
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Figure 18-1B. Fits of the Rescorla—Wagner network model for pattern classifica-
tion of 14 items (from Gluck & Bower, 1988a). Each pattern is represented by a dot
whose location is determined by the model predictions (x-axis) and the actual pat-
tern classification proportions (y-axis). The fact that the 14 dots lie very close to the
diagonal line indicates a very close fit of model to data.

THE NEURAL SUBSTRATES OF ERROR CORRECTION
LEARNING IN CLASSICAL CONDITIONING

The behavioral studies described in the previous section demonstrate that error
correction learning is common to both animal conditioning and human category
learning. But how is error correction computed in the brain? In this section, I
briefly review what is known about the neural substrates of error correction in ani-
mal studies of classical conditioning, including the work of Richard Thompson
and myself on the cerebellum and aversive conditioning of motor reflexes, as well
as the work of Wolfram Shultz and colleagues on the basal ganglia and midbrain
dopamine neurons and their role in appetitive conditioning. This leads into dis-
cussing the role of the hippocampus in modulating both forms of learning. The
following section then builds on this discussion to address what is known so far
about the neural substrates of error correction in human learning.

THE CEREBELLUM AND ERROR CORRECTION IN
AVERSIVE CONDITIONING OF MOTOR REFLEXES

In the early 1980s, Richard Thompson and his coworkers discovered that small
lesions in the cerebellum of rabbits permanently and completely prevented the
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acquisition of new classically conditioned eyeblink responses and abolished
retention of previously learned responses (Thompson, 1986). As shown in Figure
18-2, the cerebellum has two main layers. The top surface of the cerebellum is
the cerebellar cortex (which includes the Purkinje cells). Below the cerebellar
cortex lies the interpositus nucleus, one of the cerebellar deep nuclei.

To follow the pathways in and out of the cerebellum, we begin with the CSs
that project first to an area in the brain stem called the pontine nuclei. The pon-
tine nuclei include different subregions for each kind of sensory stimulation.
Thus, a tone CS would project to one area of the pontine nuclei and a light CS to
another. This CS information then travels up to the deep nuclei of the cerebellum
along mossy fibers, which branch in two directions. First, they make contact in
the deep nuclei with the interpositus nucleus. Second, they project up to the cere-
bellar cortex (via a few other cells not shown) and then connect to the Purkinje
cells in the cerebellar cortex. The second sensory input pathway is the US path-
way. An air puff to the eye, the US, activates the inferior olive, a structure that
activates the interpositus in the deep nucleus of the cerebellum. In addition, a sec-
ond pathway from the inferior olive projects up to the cerebellar cortex via climb-

Cerebellum:
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Figure 18-2. Cerebellar circuits showing the CS pathway, the US pathway, and
the CR pathway, projecting up from the sensory cues into the cerebellar cortex and
deep nuclei. Excitatory synapses are shown as arrows and inhibitory synapses
terminate with a filled circle.
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ing fibers. Complementing these two input pathways is a single-output pathway
for the CR (conditioned response), which originates with the Purkinje cells. The
Purkinje cells project down from the cerebellar cortex into the deep nuclei where
they form an inhibitory synapse with the interpositus. The interpositus is the only
output from the cerebellum; activity in the interpositus projects to the motor cor-
tex which, in turn, projects to the muscles in the eye to generate the eyeblink CR.

There are two sites in the cerebellum where CS and US information con-
verge and, thus, where information about the CS—US association might be stored:
(a) the Purkinje cells in the cerebellar cortex and (b) the interpositus nucleus.
These two sites of convergence are intimately interconnected through an output
pathway; the Purkinje cells project down to the interpositus nucleus with strong
inhibitory synapses, as shown in Figure 18-2.

Note that there is also an additional pathway within the cerebellum that we have
not yet discussed. This inhibitory feedback pathway projects from the interpositus
nucleus to the inferior olive. Thus, in a well-trained animal that makes a CR and
activates the interpositus nucleus, this activity will, in turn, inhibit the inferior olive
carrying US information (Sears & Steinmetz, 1991). Thus, activity in the inferior
olive will reflect the Actual-US less (due to inhibition) the Expected-US, where the
Expected-US is measured by the interpositus activity, which drives the CR. Actual-
US—Expected-US. Note that this is the same difference (Actual-US—Expected-
US) that the Rescorla—Wagner model uses to calculate the error on a trial, and
which is then used to determine how much learning should accrue to the CS asso-
ciation weights. In several papers, Richard Thompson and I developed computa-
tional models that showed how these circuits could implement the essential error
correction principle of the Rescorla—Wagner model, along with various other
aspects of timing and response behaviors (Donegan, Gluck, & Thompson, 1989;
Gluck, Allen, Myers, & Thompson, 2001; Thompson & Gluck, 1991).

Our interpretation for how the cerebellum computes the Rescorla—Wagner
model’s error correction procedure implies that Kamin’s blocking effect (the clear-
est experimental evidence for error correction learning) should depend on that
inhibitory pathway from the interpositus to the inferior olive. This prediction was
experimentally confirmed in a later study by Thompson and colleagues, who
disabled this inhibitory pathway and, in doing so, showed that they could block
blocking (Kim, Krupa, & Thompson, 1998). More generally, our computational
modeling, along with various other experimental studies, argues that the cerebellum
acts as a predictive system that learns through error correction principles to make
anticipatory adjustments in timing-sensitive behaviors.

The Basal Ganglia and Error Correction in Appetitive Conditioning

The previous section showed that the inferior olive in the cerebellum codes for
the prediction error during eyeblink conditioning, much as described by the
Rescorla—Wagner model. The inferior olive activity is high when the air puff US
is unexpected, drops down to baseline when the US is predicted, and shows below-
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baseline firing rates when an expected US does not occur (i.e., when the error term
is negative). These cerebellar circuits, however, are not responsible for all forms
of classical conditioning, but only for conditioning of discrete well-timed motor
reflexes like the eyeblink response. What about other forms of classical condition-
ing, especially those where the US is a positive reward, such as food or drink?

A series of electrophysiological recording studies in monkeys led researchers
to suggest that dopamine neurons in the midbrain play a critical role in reward-
related learning (for a review, see Schultz, 1998; Schultz, Dayan, & Montague,
1997). Specifically, these dopamine neurons respond with strong bursts of activ-
ity to unexpected rewards (but not to expected rewards), and show a decrease in
firing when an expected reward fails to occur. Thus, these dopamine neurons
appear to behave in appetitive conditioning (where the US is a positive reward-
ing stimulus) very much like the inferior olive cells do during motor-reflex con-
ditioning to an aversive US: They code for the prediction error. More generally,
work by Schultz and others has confirmed that dopamine neurons in the mid-
brain (both in substantia nigra compacta and in the ventral tegmental area) play
a role in implementing the error-correcting principles of the Rescorla—Wagner
model in certain appetitive forms of classical conditioning, in ways broadly anal-
ogous to the role of the cerebellum in aversive conditioning of motor-reflex
responses.

What Does the Hippoeampus Do in Classieal Conditioning?

If the cerebellum is essential for aversive conditioning of well-timed motor
reflexes and midbrain dopamine neurons are key for conditioning of appetitive
reward prediction tasks, what, if any, role does the hippocampus play in these
forms of classical conditioning? For half a century, it has been appreciated that
the hippocampal region plays a critical role in acquisition of new memories, par-
ticularly rapidly acquired memories for autobiographical events, sometimes col-
lectively called episodic memory (e.g., Squire, 1987). More recently, data from
human and animal studies have documented that the hippocampal region is also
involved in many kinds of incrementally acquired learning, including simple
associative learning such as conditioning and category learning. What does the
hippocampus contribute to classical conditioning, above and beyond the func-
tions subserved by the cerebellum and basal ganglia?

After moving to Rutgers—Newark in 1991, I began a new program of hip-
pocampal modeling with my (then) postdoctoral fellow, Catherine Myers. Together,
we developed a neural network model of cortico-hippocampal processing to
account for data from studies of classical conditioning in animals with lesions to
their hippocampal region (Gluck & Myers, 1993, 2001; Myers & Gluck, 1994).
The model conceptualizes the brain as a series of interacting modules, each imple-
menting the information-processing function subserved by a particular brain region,
but without regard for whether that function is implemented in a biologically
plausible way.
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As described earlier, the cerebellum is the substrate for storage and expression
of learned CS-US associations in motor-reflex conditioning (Thompson, 1986).
We adapted our earlier Thompson—Gluck cerebellar model of Figure 18-2 into a
simpler connectionist network model shown in the left of Figure 18-3 (Gluck,
Myers, & Thompson, 1994). This network learns to map from inputs specifying
the presence of CSs and contextual cues, to a pattern of activation in an internal
layer of nodes via a layer of weighted connections. This internal activation pat-
tern constitutes a remapping or rerepresentation of the input, which is then
mapped to output driving the behavioral CR via a second layer of weighted con-
nections. On each trial, the system “error” is the difference between the actual
response (CR) and the desired response (US). An error correction learning rule
(analogous to the Rescorla—Wagner model) was used to modify the weights
between the internal-layer and output-layer nodes, proportional to this error.
However, no such error measure is defined for the internal-layer nodes, and so
this error correction rule cannot be used to modify the lower layer of weights. As
a result, no learning takes place in the lower layer and thus, the “internal repre-
sentation” of stimuli at the intermediate layer of nodes is fixed if the hippocampal
region model is missing (i.e., lesioned). Nevertheless, for many simple problems,

Cerebellar Hippocampal-Region
Network Network

Reconstruction of stimulus inputs,
CR U including predicted US

I New
! Representation

[
Stimulus Inputs
(CS and context)

Figure 18-3. The Gluck and Myers (1993) cortico-hippocampal model. The
hippocampal region forms new representations that compress redundancy while dif-
ferentiating predictive information; these new representations can be adopted by
long-term memory sites such as the cerebellum.
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this system can learn appropriate CS-US association and produce a behavioral
CR similar to empirical learning curves (Gluck et al., 1994). The abstract con-
nectionist model of the cerebellar contributions to classical conditioning, shown
on the left of Figure 18-3, can be directly related to the same information-
processing capabilities of the more physiologically detailed and biologically
realistic model in Figure 18-2: Both alter CS—US associations according to the
error-correcting principle of the Rescorla—Wagner model.

With this simplified cerebellar model of conditioning, we were now able to ask:
What does the hippocampus do? Catherine Myers and I proposed that the hip-
pocampal region contributes to this cerebellar learning by developing new repre-
sentations that encode stimulus—stimulus regularities (Gluck & Myers, 1993). In
particular, if two stimuli reliably co-occur or are otherwise redundant, their repre-
sentations become compressed, or more similar. Conversely, if two stimuli predict
different future events, their representations become differentiated, or less similar.

We implemented this theory in a connectionist network model as shown in the
full network model of Figure 18-3 (Gluck & Myers, 1993, 2001). Hippocampal-
region processing is implemented via a network that learns to map CS inputs,
through an internal node layer, to outputs that reconstruct those inputs and also
predict the US. This network, unlike the cerebellar network, is able to modify both
layers of weighted connections through a learning algorithm such as error back-
propagation (Rumelhart et al., 1986). In the process, internal-layer nodes form a
representation of the input that tends to compress redundant information while dif-
ferentiating information that predicts the US, just as required by our theory.

A random recoding of the hippocampal-region network’s internal-layer activa-
tions becomes the “desired output” for each node in the internal layer of the cere-
bellar network, and each node’s error is the difference between this desired output
and its own actual output. The cerebellar network then uses the error-correcting
rule to adapt its lower-layer weights, just as it uses simple error correction learn-
ing to adapt its upper-layer weights. Over time, representations develop in the
internal-layer nodes of the cerebellar network that are linear recombinations of
the new representations developed by the hippocampal region network. Within this
model framework, broad hippocampal-region damage is simulated by disabling the
hippocampal-region network, leading to a network model in which the cerebellum
alone processes information without modulating input from the hippocampal
region. In this lesioned model, the error-correcting cerebellar network cannot adopt
any new representations, although it can still learn to map from its existing repre-
sentations to new behavioral responses by modifying its upper layer of weights.

Our model of hippocampal-region function correctly accounted for data show-
ing that hippocampal-region damage does not impair simple delay conditioning
but does impair more complex behaviors including contextual sensitivity and sen-
sory preconditioning (Gluck & Myers, 1993, 2001; Myers & Gluck, 1994). It also
made several novel predictions. For example, it predicted that learned irrelevance
(slower CS-US learning following uncorrelated CS-US exposure) should be
disrupted following hippocampal-region damage; we confirmed this in our lab at
Rutgers in studies with rabbit eyeblink conditioning (Allen, Chelius, & Gluck,
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2002) as well as humans (Myers et al., 2000). Similarly, our model expected that
acquired equivalence (transfer of associations between objects previously associ-
ated with similar consequences) should be disrupted following hippocampal-
region damage; this has also been confirmed in animals (Coutureau et al., 2002)
and in studies we did in humans (Myers et al., 2003). In all these tasks, the com-
mon theme, as predicted by the model, is that the hippocampal region is not
required for simple stimulus—response learning, but is required for learning about
contextual or stimulus—stimulus regularities that support subsequent transfer gen-
eralization, phenomena that are not predicted by the error correction learning
principle of the Rescorla—Wagner model.

As noted previously, many behavioral phenomena that cannot be explained by
the Rescorla—Wagner model are not found in animals that have lesions to the hip-
pocampal region. This suggests that the Rescorla—Wagner model may be better
described as a model of the cerebellar contributions to motor-reflex conditioning
in hippocampal-lesioned animals than as a model of conditioning in healthy,
intact animals. Thus, the limitations of the Rescorla—Wagner model might now be
reinterpreted as symptoms that this mathematical model of learning from the
1970s isn’t really dead, just “brain damaged.” That is to say, the model applies to
the brain regions responsible for error correction learning such as the cerebellum,
but does not explain the additional contributions of the hippocampal region.

Within its limited domain, the early Gluck and Myers model was reasonably
successful at providing an account of the role of the hippocampal region in asso-
ciative learning. However, it was implemented without particular regard for the
anatomical or physiological details of the brain substrate. In part, this reflected the
state of the empirical literature at the time: Most data on hippocampal-region func-
tion were based on lesion studies using techniques like ablation that were not suf-
ficiently selective to allow complete destruction of a specific brain structure with-
out conjoint damage to other nearby structures and to fibers of passage. Newer
lesion techniques (such as neurotoxic lesions using ibotenic acid; see also Jarrard,
2002) have since allowed the accumulation of a large body of data contrasting, for
example, the selective effects of entorhinal versus hippocampal damage, and elec-
trophysiological recording studies have provided additional insights and con-
straints. As a result, there is now a sufficient body of empirical data to constrain a
model differentiating these structures; this is the focus of current modeling efforts
at Rutgers, including collaborative work with a former postdoctoral fellow in my
lab, Martijn Meeter, who is now at the Free University in Amsterdam.

THE COGNITIVE NEUROSCIENCE OF ERROR
CORRECTION IN PROBABILISTIC CATEGORY LEARNING

To summarize the results discussed so far: The cerebellum and basal ganglia can
be understood as implementing the error correction mechanisms for learning
described by the Rescorla—Wagner model for two forms of classical conditioning
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whereas the hippocampus operates during all forms of conditioning to create
novel stimulus representations that reflect stimulus—stimulus regularities in the
environment. What do these results imply about the neural bases of human learn-
ing? One avenue for seeking linkages between animal conditioning and human
learning is to look at studies of classical conditioning in humans. Indeed, there
exists an extensive literature on classical conditioning of the human eyeblink
response, including those that used functional brain imaging in healthy normal
people and studies of behavior in clinical populations. The conclusion that can be
drawn from this is that the neural substrates for motor-reflex conditioning appear
to be identical in humans and other animals (Daum et al., 1993; Gabrieli et al.,
1995; Logan & Grafton, 1995).

Another avenue for seeking linkages between animal research and human learn-
ing is by using more cognitive tasks that employ analogous error correction prin-
ciples of learning. This is where the earlier work that Gordon and I did in the late
1980s becomes relevant once again. Given our prior results showing that people
learn probabilistic categories using behavioral principles of error correction analo-
gous to those seen in classical conditioning, we can now ask: Are there also anal-
ogous neural mechanisms involved in human category learning that are similar or
identical to those involved in classical conditioning? This leads to two specific
questions: First, in human category learning, what are the neural mechanisms for
error correction based on cognitive feedback? Second, does the hippocampal
region play an analogous role in category learning as it does in classical condi-
tioning creating novel stimulus representations? These two questions have driven
my lab’s more recent research on the cognitive neuroscience of category learning.

Probabilistie Category Learning

Beginning with the Gluck and Bower (1988a) studies reviewed earlier, category-
learning research in my lab has focused primarily on learning probabilistic cate-
gories. These are categories in which there is no clear-cut rule for membership.
Rather, various features are more, or less, probabilistically associated with one
category or another. For example, “red sky at night” is a feature that is partially
correlated with the category of “good weather tomorrow” but this feature is not
a perfect rule for predicting the weather—only a useful heuristic. The weather
might be better predicted, on average, by employing evidence from several such
features, although even then, it might be impossible to predict the upcoming
weather with 100% accuracy.

In the mid-1990s, we developed at Rutgers several novel probabilistic category-
learning tasks based on variations of the earlier studies by Gluck and Bower
(Gluck & Bower, 1988a, 1988b). The most well-known—and widely adopted—
of our new category-learning tasks is often referred to as the “weather predic-
tion” task (Gluck, Shohamy, & Myers, 2002; Knowlton, Squire, & Gluck, 1994;
Poldrack et al., 2001). It uses four cards with geometric patterns as stimulus

e



9009_CH18_Gluck_LEA 5/10/07 1:18 PM Page 296{}@

296 GLUCK

features, as shown in Figure 18—4A. On each trial, a subject sees one or more of
these cards and is asked to predict whether the next day’s weather will be rain or
sunshine, as illustrated in Figure 18—4B.

The actual weather outcome is determined by a probabilistic rule based on the
cards: Each card predicts rain or sunshine with a fixed probability as shown in
Figure 18—4A, based on the same categories used in Gluck and Bower (1988a).
Thus, the card with squares (S1) is strongly predictive of rain whereas the card
with triangles (S4) is strongly predictive of sunshine. The other two cards have
more intermediate statistical relationship with the two outcome categories. The
actual outcome is based on the cumulative probabilities associated with all cards
present on a trial. The probabilistic relationships between cues and outcomes
ensures that it is impossible for subjects to learn the categorization with complete
certainty, although it is possible to achieve significant learning by inducing how
diagnostic each card is for each category.

In an early study of this task, we collaborated with Larry Squire and Barbara
Knowlton using amnesic patients from the San Diego area who presented with a
variety of etiologies including those with Korsakoff’s syndrome, unknown lesions,
as well as more focal medial temporal lobe damage. These amnesic patients learned
the weather prediction task at about the same rate as control subjects, improving
from chance performance (50% correct) to approximately 65% correct over the
first 50 trials (Knowlton et al., 1994). With extended training, however, control
subjects outperformed amnesic patients. In a more recent study, however, we used
a group of patients with more localized hippocampal-region damage all of whom
had a common etiology for their amnesia: hypoxia, the loss of oxygen to the brain
(Hopkins et al., 2004). We found that these amnesics were uniformly impaired
at two forms of probabilistic category learning, both early and late in training, in
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Figure 18—4. (a) Four cards with geometric patterns are each related probabilisti-
cally to two different outcome categories, good weather and bad weather. (b) On
each trial, a subject sees one or more of these cards (shown on the left) and is asked
to predict whether the next day’s weather will be sunshine (top right) or rain
(bottom right).
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contrast to the previous report by Knowlton et al., which had found deficits only
later in training.

Together these results suggest that the weather prediction task, using the cate-
gory structures from Knowlton et al. (1994) and Gluck and Bower (1988a),
requires considerable hippocampal mediation. The Gluck and Myers (1993)
model would argue that this reflects the many stimulus—stimulus relationships
that can be used by an intact hippocampal region to support learning in this cate-
gory structure, even if the task, being linearly separable, could, in principle, be
learned without recourse to configural cues. This does not, however, imply that
all forms of category learning, probabilistic or otherwise, will depend on an intact
hippocampal region. Rather, simpler forms of category learning without signifi-
cant stimulus—stimulus correlations are expected by our model to be largely inde-
pendent of the hippocampal region. Consistent with this prediction, we have more
recently shown that hypoxic amnesic patients are able to acquire a simpler cate-
gory learning tasks at about the same rate as healthy controls (Shohamy, Myers,
Geghman, Sage, & Gluck, 2006).

Funetional Brain Imaging of Probabilistie Category Learning

Our prior computational models of hippocampal-region function (Gluck & Myers,
1993, 2001) suggest that hippocampal region develops new stimulus representa-
tions that are eventually acquired by other brain regions. In the last few years,
support for the applicability of our model of hippocampal-region function to
human learning has come from studies using functional brain imaging. Our model
predicts that the hippocampal region should be very active early in category learn-
ing tasks when participants are learning about stimulus—stimulus regularities and
evolving new stimulus representations, but that the hippocampal region should be
less active later in training when other brain regions (e.g., cerebellum or basal
ganglia) are using these representations to perform the behavioral response. In
collaboration with Russ Poldrack at UCLA, we conducted a functional neuro-
imaging (fMRI) study of normal humans learning the weather prediction task. As
expected by our model, we found that activity in the hippocampal region was high
early in training and then tapered off; in contrast, basal ganglia activity was low
at first and increased during training (Poldrack et al., 2001).

In Poldrack et al. (2001), we also examined whether activity in the basal gan-
glia and MTL was modulated by task demands. In particular, we compared two
versions of the weather prediction task: the standard feedback-based version of
the task, and an observational learning version in which subjects simply viewed
stimulus—outcome pairs on each trial, and were later tested on these associations.
Although learning on these two versions was equivalent in terms of percent opti-
mal responding during a final testing phase, basal ganglia activation and MTL
deactivation were significantly stronger during the feedback-based version of the
task compared to the observational version of the task. This is consistent with the
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view that the basal ganglia (but not the MTL) are key for learning based on error-
correcting feedback, but not during observational learning in which no response
and no feedback is involved.

More recently, in collaboration with Daniel Weinberger and colleagues at
NIMH, we have shown that probabilistic category learning engages neural cir-
cuitry that includes both the prefrontal cortex and the caudate nucleus of the basal
ganglia, two regions that show prominent changes with normal aging (Fera et al.,
2005). When trained on the weather prediction task, young and older adults
displayed equivalent learning curves, used similar strategies, and activated
analogous brain regions as seen using fMRI. However, the extent of caudate and
prefrontal activation was less, and parietal activation was greater, in older partic-
ipants. This suggests that some brain regions, such as the parietal cortices, may
provide compensatory mechanisms for healthy older adults in the context of defi-
cient prefrontal cortex and caudate nuclei responses. Further research will be
required to better understand these age-related changes, but the initial study
points to the promise of using probabilistic category learning tasks as a means to
understand changes in neural function over the life span.

The Basal Ganglia and Category Learning in Parkinson’s Disease

If the basal ganglia are key for error correction learning that is based on feed-
back, we should expect people with damage to the basal ganglia to show impair-
ments on probabilistic category learning. One such population is patients with
Parkinson’s disease (PD) who have a profound loss of dopamine containing neu-
rons in the substantia nigra pars compacta (SNc), leading to dopamine depletion
in the basal ganglia. These are among the dopamine cells that Wolfram Schultz
and colleagues have identified with error correction computations in reward pre-
diction conditioning, as described earlier.

The loss of dopamine in PD leads most prominently to a loss of motor con-
trol. However, recent studies have shown that the loss of dopamine that occurs
in PD also leads to a variety of cognitive deficits, especially tasks that involve
incremental learning of associations between cues and outcomes based on error-
correcting feedback (Knowlton, Mangels, & Squire, 1996; Myers, Shohamy et al.,
2003a, 2003b; Shohamy, Myers, Grossman, et al., 2004; Shohamy, Myers, Onlaor,
& Gluck, 2004). These findings suggest that midbrain dopamine may be par-
ticularly important for learning that involves the incremental acquisition of
stimulus—outcome associations via error-correcting feedback. This is consistent
with converging evidence from the functional imaging studies described earlier
(Poldrack et al., 2001).

To explore this issue further, Daphna Shohamy, who was then a graduate student
in my laboratory, initiated a series of studies of category learning in Parkinson’s
patients. In the first study, we looked at how Parkinson’s patients learn the weather
prediction task over 3 days of extensive training. As shown in Figure 18-5, the
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Figure 18-5. Parkinson’s patients are slower to learn the weather prediction task
over three days of training. Data from Shohamy, Myers, Onlaor, and Gluck (2004).

patients were significantly impaired relative to matched controls over the course
of learning (Shohamy, Myers, Onlaor, & Gluck, 2004). Additional analyses showed
differences in the learning strategies used by these two groups. Healthy controls
all began to solve the task by using single features and then shifted over the
course of 3 days of training to using more complex rules that integrated informa-
tion from multiple cues. In contrast, the Parkinson’s patients continued through-
out the study to use the less accurate simpler single-cue rules.

More recently, Shohamy, Myers, and I have followed up on this study with fur-
ther analyses of probabilistic category learning, using a variant on the weather
prediction task in which the stimuli are digital photographs of Mr. Potato Head
figures that have one or more facial features (e.g., moustache, hat, glasses, and
bowtie) that can each be present or absent (Fig. 18—6). Rather than predicting the
weather, the subjects are asked to predict which flavor of ice cream (vanilla or
chocolate) Mr. Potato Head prefers. Each facial feature is probabilistically asso-
ciated with each outcome, just as in the weather prediction experiment.

In several recent studies , we have used this as a cover story for probabilistic
category learning, using category structures analogous to those in the weather
prediction task and the earlier Gluck and Bower studies. We found that subjects
find the Mr. Potato Head task more engaging and appealing. It also allows for a
wider range of possible features and task demands, because of the large number
of facial features available.
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Figure 18-6. Examples of stimuli used in Shohamy, Myers, Grossman, et al.
(2004) including Mr. Potato Head figures with different features (hat and moustache)
and different category membership feedback (vanilla and chocolate ice cream).

Using this Mr. Potato Head task, we began a series of studies to examine how
manipulations of training procedures would affect learning performance in
Parkinson’s patients (Shohamy, Myers, Grossman, et al., 2004). In one study, we
trained participants using standard “feedback” training. On each trial, subjects
saw the stimulus, responded with a guess as to the outcome, and then received
feedback as to whether that response was correct (Fig. 18-7A). In a second,
“observational” version, subjects saw the same stimuli, but are shown the correct
outcome (Fig. 18-7B). To assess learning in the “observational” group, subjects
were then given test trials in which they see the stimulus and must respond with
the outcome information—but no feedback is provided. Thus, we can compare
learning under observation or feedback by comparing the last block of the feed-
back training (last 50 trials) with the 50 test trials following observation training.

Based on the proposed role of the dopamine signals in reward feedback pro-
cessing by the basal ganglia and the aforementioned imaging data with Poldrack,
we predicted that PD patients would be impaired at the feedback-based version
(during both training and transfer testing) but would perform as well as controls
on the observational version on the transfer test phase.

As shown in Figure 18-8, performance was impaired in the PD patients who
had been trained in the feedback condition, but not in those trained in the obser-
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Figure 18-7. (a) Standard feedback training in which subjects first see the stimu-
lus alone, make a categorization response (vanilla or chocolate), and then get feed-
back. (b) Observational training in which subjects are exposed to the stimuli with
their correct category and are not required to make a categorization response, nor
get any feedback.

vational condition. Thus, as predicted by our hypothesis, the PD patients are
impaired at learning that involves incremental feedback, but are not impaired
at learning cue—outcome associations if those are presented in a nonfeedback
manner.

These results provide behavioral evidence that the basal ganglia are necessary
for feedback-based learning in a cognitive task. The results provide a direct con-
firmation of a prediction inspired by our previous neuroimaging results with
healthy humans (Poldrack et al., 2001), which had demonstrated differences in
engagement of basal ganglia and midbrain dopaminergic regions between feed-
back-based and observational learning.

More recent studies in our laboratory, using novel forced-choice and concur-
rent discrimination tasks developed by Catherine Myers, have also demonstrated
a double dissociation between MTL and basal ganglia contributions to learning
within single associative-learning tasks (Myers, Shohamy, et al., 2003; Shohamy
et al., 2006). We found that PD patients were slow to acquire a discrimination
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Figure 18-8. Percent correct for Parkinson’s (PD) and controls on the observa-
tional task (right) and the test phase of the feedback-based task (left). Parkinson’s
patients are impaired at probabilistic category learning in feedback training but
show no deficit when trained using observational training. Data from Shohamy,
Myers, Onlaor, & Gluck (2004).

task, but were unimpaired when subsequently challenged to transfer what they
had learned to a novel set of stimuli. The opposite pattern was found among indi-
viduals with hippocampal-region damage—spared initial learning, but impaired
transfer. This suggests that PD patients do not have a general memory or cogni-
tive deficit; rather, their deficit appears specific to the acquisition of cognitive
skills through error-correcting feedback over many trials.

GENERAL DISCUSSION

In the late 1980s, Gordon Bower and I showed that there were common error
correction principles for associative learning in both classical conditioning and
probabilistic category learning, which allowed us to map the Rescorla—Wagner
model of classical conditioning up to a larger-scale connectionist network model
of human learning (Gluck & Bower, 1988a). In the intervening years, there has
been significant progress in understanding the neural substrates of classical con-
ditioning, implicating the cerebellum for error correction learning in aversive
conditioning of motor reflexes, the basal ganglia for error correction learning for
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appetitive conditioning of reward-predicting stimuli, and the hippocampal region
for supporting both forms of learning through modulation of the representations
of stimuli that enter into these forms of learning. Integrating across both tradi-
tions, Catherine Myers, Daphna Shohamy, and I at Rutgers University-Newark
(along with numerous collaborators at various other institutions) have shown in
recent years that there are also common neural mechanisms for classical condi-
tioning and human category learning, drawing on multiple methodologies in cog-
nitive neuroscience, including neuropsychological studies of clinical populations
and functional brain imaging. This provides a foundation for ongoing and future
studies that seek further understanding of the cognitive neuroscience of human
learning and memory, along with clinically relevant insights into neurological
and psychiatric disorders that affect the basal ganglia (e.g., Parkinson’s disease,
Huntington’s disease, and dystonia) and the hippocampal region (e.g., amnesia
and Alzheimer’s disease). The two strands of research begun at Stanford 20 years
ago as independent avenues of inquiry into, first, human learning behavior and,
second, the neural substrates of learning are now deeply intertwined into a single
line of cognitive neuroscience research.
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