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a b s t r a c t

The striatal dopamine signal has multiple facets; tonic level, phasic rise and fall, and variation of the phasic
rise/fall depending on the expectation of reward/punishment. We have developed a network model of the
striatal direct pathway using an ionic current level model of the medium spiny neuron that incorporates
currents sensitive to changes in the tonic level of dopamine. The model neurons in the network learn
action selection based on a novel set of mathematical rules that incorporate the phasic change in the
dopamine signal. This network model is capable of learning to perform a sequence learning task that in
humans is thought to be dependent on the basal ganglia. When both tonic and phasic levels of dopamine
are decreased, as would be expected in unmedicated Parkinson’s disease (PD), the model reproduces the
opamine
omputational model
earning
arkinson’s disease

deficits seen in a human PD group off medication. When the tonic level is increased to normal, but with
reduced phasic increases and decreases in response to reward and punishment, respectively, as would
be expected in PD medicated with L-Dopa, the model again reproduces the human data. These findings
support the view that the cognitive dysfunctions seen in Parkinson’s disease are not solely either due to
the decreased tonic level of dopamine or to the decreased responsiveness of the phasic dopamine signal
to reward and punishment, but to a combination of the two factors that varies dependent on disease stage

and medication status.

. Introduction

The basal ganglia (BG) are a set of interconnected, sub-cortical
uclei which form a complex network of loops integrating cortical,
halamic and brainstem information [1]. They have been primarily
ssociated with the control of movement but recent anatomical [49]
nd neuroimaging data [19] have shown that they are also involved
n higher cognitive functions.

Human behavioral studies have shown that subjects with
arkinson’s disease (PD) who are treated with dopamin-
rgic medication are impaired on learning cognitive tasks
41,3,52,53,67–69,70,11–14,22,23]. Furthermore, PD subjects tested
fter a period of medication withdrawal show different cognitive
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

eficits on the same tasks [13,14,22,69]. This raises questions about
he difference between the effects on learning of PD and of the

edication used to treat PD. To understand this we need to con-
ider how the disease process of PD modifies the dopamine learning
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signal, and how the medication leads to different changes in the
signal.

In PD, midbrain dopamine cells are lost, but those arising in the
substantia nigra pars compacta (SNc) are lost to a far greater degree
than those arising in the ventral tegmental area (VTA) [37]. The out-
puts of both nuclei project most significantly to the striatum, the
principal input nucleus of the basal ganglia. Fig. 1 summarizes some
of the key anatomical pathways. The SNc projects principally to the
dorsal striatum, which is a key structure in action selection [50]. The
dorsal striatum can itself be subdivided into two major sub-areas,
one with inputs from motor related cortical areas and engaged in
selecting motor responses and a second with inputs from associ-
ational areas of cortex and engaged in more cognitive aspects of
behavior selection.

The best understood medication in PD is L-Dopa, a precursor
of dopamine. One hypothesis is that the cognitive impairment in
medicated PD is due to an overdose effect of the medication on the
ventral part of the striatum where there has been less damage to
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

the dopaminergic input [22]. Loss of SNc dopaminergic cells leads
to a decrease of the steady-state background level (tonic level) of
dopamine in the dorsal striatum [18]. L-Dopa is known to raise the
tonic dopamine level, which would be desirable in the depleted
dorsal striatum, but may not be in the less affected ventral striatum.

dx.doi.org/10.1016/j.bbr.2008.12.036
http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:martin.guthrie@u-bordeaux2.fr
dx.doi.org/10.1016/j.bbr.2008.12.036
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Fig. 1. Some key anatomical components of the corticostriatal loops involving cog-
nitive and motor areas of the dorsal striatum. Dopaminergic neurons of the SNc
are lost in Parkinson’s disease, with relative sparing of the dopaminergic neurons
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and off medication. We then show the effect of only varying the
f the VTA. In the model, the dorsal basal ganglia is represented by direct pathway
edium spiny neurons. MSN: striatal medium spiny neuron; SNc: substantia nigra

ars compacta; VTA: ventral tegmental area.

However, learning in the medium spiny neurons (MSNs) of the
triatum has been shown to be dependent not on tonic levels of
opamine, but on pulses of dopamine, phasic changes, overlying
he tonic level [85]. These phasic changes in firing of dopaminergic
eurons occur in response to unexpected rewards, cues which have
een learned to reliably predict reward, and the omission of reward
fter a reward-predicting cue [64].

The consequences of the loss of the dopaminergic cells in PD
n the phasic changes, and therefore directly on learning, has
roven difficult to investigate in both animal and human exper-

ments. The use of computational modeling to simulate human
earning data in PD therefore provides an alternative method for
nvestigating the mechanisms that lead to learning impairment
n PD.

There have been recent computational models of the basal gan-
lia that successfully simulate some behavioral tasks in which
ubjects with PD have performance deficits [21–23,34]. These mod-
ls have simulated the corticostriatal loops and use the phasic
opamine signal for learning. The model presented here attempts
o account for changes to both the tonic and phasic aspects of
he dopamine signal. The basic unit in this model is the medium
piny neuron (MSN), the principal neuron of the striatum, which
as been hypothesized to play a key role in action selection [50].
his class of neuron has been shown to have currents dependent
n the tonic dopamine level [35,57,76,78,79] as well as requiring
hasic dopamine signals for long-term potentiation (LTP) [85]. Pre-
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

ious network models of the basal ganglia have not attempted
o model the MSN at a level where the effect of changing both
onic and phasic dopamine can be studied. This model is there-
ore based on a network of MSNs that are simulated at the level of
 PRESS
Research xxx (2009) xxx–xxx

ionic currents in order to effectively study the impact of changing
tonic dopamine levels occurring in PD. The learning rules in the
network incorporate the phasic dopamine changes. Therefore the
model is also able to simulate changes in the phasic dopamine sig-
nal that may occur in PD. This allows us simulate whether changing
only the tonic or phasic dopamine is sufficient to replicate behav-
ioral results in an action selection task, or whether a combination
of tonic and phasic changes is necessary to produce the changed
behavior.

The most common role proposed for the dorsal striatum is
action selection [50]. Many computational models of the stria-
tum have used lateral inhibition to produce a ‘winner takes all’
action selection network [5,28,84,43,44,73,89]. This was based on
the extensive recurrent dendritic field of the medium spiny neuron
that potentially innervates thousands of other MSNs [56]. When
demonstrated experimentally, recurrent inhibition was found to be
very weak compared to feedforward inhibition [81,42], although
the absolute number of recurrent synapses is large [16,32,80] Com-
bined with the very low firing rate of MSNs, it is difficult to see
how lateral inhibition could be a mechanism for a ‘winner takes all’
network in the striatum.

Without the use of lateral inhibition, one candidate mecha-
nism for action selection in the striatum is control of the rate of
change from the hyperpolarized down state to the up state of the
MSN. In response to current injection, MSNs exhibit a rapid rise
from the down state with a shoulder to a subthreshold plateau
potential and then a gradual depolarization of the plateau poten-
tial. This provides a mechanism where small changes in strength
of synaptic input could produce relatively large changes in the
time that the firing threshold is crossed. The simulations presented
investigate whether this mechanism is sufficient to learn to select
amongst competing actions without the use of any lateral inhibition
between neurons in the network and without competition between
parallel corticostriatal loops in downstream nuclei of the basal
ganglia.

The simulated network of model MSNs represents direct path-
way striatal neurons involved in action selection. As only the direct
pathway is represented, only dopamine modulation at the D1
receptor is considered [26]. The simulated task is a human cog-
nitive sequence learning task where the subject learns to navigate
through a set of rooms by choosing the one correctly colored door
out of three in each room [69]. The firing of each MSN in the net-
work represents choosing an action, in this case choosing a door by
color. The network of MSNs learns the correct door in each room
using a simulated dopamine signal.

The level of modeling has been chosen to be appropriate to
investigate changes in both tonic and phasic dopamine levels. Tonic
dopamine levels modulate currents that control the excitability of
MSNs. We therefore model the neurons at the level of the ionic cur-
rents that are modulated by dopamine. Phasic dopamine changes
are necessary for LTP in MSNs. We therefore develop a set of learning
rules based on spike timing dependent plasticity (STDP) that incor-
porate phasic dopamine changes to produce realistic modification
of the size of corticostriatal synapses.

We first re-analyze some of the data from the original sequence
learning task for comparison with certain findings of the model.
We then show that the model is capable of learning to perform
the task with the same level of accuracy as human control sub-
jects. Next, we show how changing tonic and phasic dopamine,
in a manner consistent with known physiological changes leads
to error levels consistent with those seen in patient groups on
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

tonic or phasic dopamine on model performance. Finally we dis-
cuss reasons why the model does not fit the data in all areas and
predictions the model makes for the performance of tasks by PD
patients.

dx.doi.org/10.1016/j.bbr.2008.12.036
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Table 1
MSN parameters used throughout these simulations.

Parameter Value

Membrane capacitance (�F/cm2) 1
Temperature (◦C) 37
Excitatory reversal potential (mV) 0
Firing threshold (mV) −45
Input amplitude (�S/cm2) 0.5
Input rise time (ms) 7
Input decay time constant (ms) 8
Leakage conductance (mS/cm2) 0.008
Leakage reversal potential (mV) −75
Potassium reversal potential (mV) −85
IKir maximum conductance (mS/cm2) 1.2
IKir Vh (mV) −110
IKir Vc (mV) −11
IKsi maximum conductance (mS/cm2) 0.5
IKsi maximum variable conductance (mS/cm2) 0.1
IKsi variable conductance activation time (ms) 1000
IKsi variable conductance inactivation time (ms) 1000
IKsi Vh (mV) −13.5
IKsi Vc (mV) 11.8
Calcium concentration outside (mmol/cm3) 0.002
Calcium concentration inside (mmol/cm3) 0.00001

Fire if Vm > Vf and t − tp <
V

(1 + e ) (7)
ARTICLEG Model
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. Methods

.1. MSN model description

The model of the MSN used in this study is derived from work of Wilson and
olleagues showing that the hyperpolarized down state of an MSN and the transition
rom the down state to the up state are mainly under the control of a small set of
otassium currents [88]. The hyperpolarized down state is principally determined
y an inwardly rectifying potassium current, IKir [39,40,54,48]. At hyperpolarized
embrane potentials IKir provides a current that resists depolarization and therefore

tabilizes the down state, accounting for approximately 50% of resting conductance
82]. IKir activates rapidly and does not inactivate [33].

There have been three main outward rectifying potassium currents demon-
trated in MSNs [54]: two transient A-type currents and a non-inactivating current
74,75,55].

One of the A-type currents is fast inactivating and only available above spike
hreshold [77]. This current is therefore excluded from this model as it does not con-
ribute to the transitional behavior of the neuron. The second A-type current is the
lowly inactivating potassium current, IKsi. This current is available at subthreshold
embrane potentials and inactivates over a time course of hundreds of milliseconds

o seconds [25,74,77]. This slow inactivation reduces the effect of IKsi gradually while
he cell is in the up state, leading to a gradual ramp increase in the plateau membrane
otential in the up state. As shown by Mahon et al. [45], physiological inactivation
f IKsi also leads to a reduced time to firing of the first spike if a second down to up
ransition occurs shortly after a first. The non-inactivating potassium current, IKrp, is
lso available at subthreshold membrane potentials. These two outwardly rectifying
urrents contribute to the plateau membrane potential of the up state by opposing
he depolarizing influence of excitatory synaptic input and inward ionic currents.

It has also been shown that slowly inactivating L-type calcium currents, IL-Ca, are
mportant in the maintenance of the plateau potential in many neurons [65,10,59].
his high threshold calcium current, which supplies an inward, depolarizing drive
urrent, has been shown to be present in MSNs [4,71] and is therefore included in
his model.

The computational design of the model is an extension of that of Gruber et al.
29] with the neuron represented as a single, isopotential point using only those
urrents necessary to the behavior under examination. This provides the computa-
ional tractability to examine the behavior of a network of model neurons without
he requirement for high-powered computational facilities. The main change from
he model of Gruber et al. [29] is the introduction of inactivation for IKsi.

Two of the currents used in this model are modulated by tonic dopamine levels.
oth IKir [76,57] and IL-Ca are enhanced by D1 agonists [78,79,35]. Later simula-
ions show how changing the tonic dopamine level changes the up and down state

embrane potentials in the model due to the effects of these two currents.

.2. MSN model equations

Modified Hodgkin–Huxley techniques are used to simulate an isopotential
odel of an MSN. The change in membrane potential is modeled as a differential

quation relating the rate of change to the ionic currents (1). The moment-to-
oment membrane potential is calculated by numerical integration using a fifth

rder Runge–Kutta algorithm with a maximum step size of 1 ms [60].

C
dVm

dt
= DTonic(IKir + IL-Ca) + IKsi + IKrp + IL + IS (1)

here C is the membrane capacitance, Vm is the membrane potential, Is is the current
ue to the synaptic input, IL is the leakage current, IKir is the inwardly rectifying
otassium current, IL-Ca is the L-type calcium current, IKsi is the slowly inactivating
-type potassium current, IKrp is the non-inactivating potassium current and DTonic

s the neuromodulatory factor, representing the tonic dopamine level, which acts as
multiplier on IKir and IL-Ca. Since there is no data on the relative modulation of IKir

nd IL-Ca by dopamine, we use the same multiplication factor for both.
Each current, except for IL-Ca, is modeled as the product of a conductance and a

inear driving force:

i = g(Vm − Ei) (2)

here Ii is the ionic current, gi is the conductance, Vm is the membrane potential and
i is the reversal potential for that ion. For the potassium currents the conductance
s voltage dependent, and is fitted to a Boltzmann function of the form:

i = ḡ

1 + e(−(Vm−Vh)/Vc ) (3)

here gi is the maximum conductance for that current, Vh is the half-activation
arameter, the voltage at which 50% of the current is available, and Vc controls the
lope of the activation curve. Values of Vh and Vc for the inwardly rectifying potas-
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

ium current [54,48], the non-inactivating potassium current [55] and the slowly
nactivating potassium current [25] have been obtained from electrophysiological
ecordings (Table 1).

Inactivation of IKsi is represented by a 0.1% decrease in gKsi at each time step when
he membrane potential is above −60 mV, and, for reactivation, a 0.1% increase when
m is below −60 mV.
Calcium maximum permeability (nm/s) 4.2
Calcium Vh (mV) −34
Calcium Vc (mV) 6.1

IL-Ca is not well modeled by a linear driving force as the low level of intracellular
calcium leads to a large concentration gradient across the membrane. This leads to a
non-linearity in the voltage/current relationship of the open channel. Following Hille
[36], this current has therefore, been modeled using the Goldman–Hodgkin–Katz
equation:

� = z2F2Vm

RT
.

(
[Ca]i − [Ca]o.

(
−zFVm/RT

1 − e−zFVm/RT

))
(4)

where z = 2, F = 9.648 × l04 C mol−1, R = 8.315 V C K−1 mol−1 and T = 273.16 + 37 K. [Ca]o

is the extracellular calcium concentration and [Ca]i is the intracellular calcium con-
centration. From this the current is obtained by

IL-Ca = �PL-Ca (5)

where PL-Ca is the membrane permeability to calcium. Bargas et al. [4] showed that
the membrane permeability can be represented as a Boltzmann function of the form
seen in (6):

PL-Ca = P̄L-Ca(1 + e(−(Vm−Vh)/Vc))−1 (6)

where P̄L-Ca is the maximum permeability to calcium. The values used by Gruber et
al. [29] for Vh and Vc for this current differ from those found experimentally. They
explain that they have modified the values to account for the higher concentrations
of divalent charge carrier used in the extracellular solution in the electrophysiolog-
ical experiments and we have followed this.

Excitation is modeled as discrete conductance changes. Each synaptic event has a
peak of 0.4 nS, a rise time of 7 ms and an exponential decay with half-life of 8 ms. Pre-
vious simulations have suggested that a single excitatory input to a distal dendritic
spine produces a peak EPSP amplitude at the soma of approximately 20 mV [87].
The starting figure used here for the peak conductance change of 0.4 nS produces an
EPSP of 15 mV which allows for growth of the synapse during learning.

The corticostriatal excitation is modeled as separate inputs, each firing at ran-
dom frequency with a mean of 25 Hz and a standard deviation of 2 Hz (S.D. of firing
of 10 Hz was used in some simulations, but had no demonstrable effect on out-
come). The time of the first spike when the excitation period starts is staggered by
a random number between zero and the period of firing of the individual neuron
(mean = 40 ms) to allow for variable delays in activation of corticostriatal neurons
as the environmental context is changed. After the first spike, there is a random
amount added or subtracted to the time of each input spike, with a mean of 0 ms
and a maximum of 5 ms. This variability is introduced to simulate the noise seen in
the up state in MSNs.

There are no sodium currents in this model, so firing is simulated by use of a
probabilistic function when the membrane potential is above a firing threshold.

20 (−(Vm−Vh)/Vc )
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

m

where Vf is the firing threshold and tp is the time at which the previous action
potential occurred. This means that the MSN will fire immediately the firing thresh-
old is crossed as the rise from the down state to the up state occurs and then with a
minimum refractory period of 20 ms thereafter.

Parameter values used in the model are shown in Table 1.

dx.doi.org/10.1016/j.bbr.2008.12.036
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.3. Learning rules

Learning is represented as a change in synaptic weight of each corticostriatal
nput. This effectively represents a change in the maximum conductance of the
ynapse. There are three conditions under which learning occurs.

The weight is decreased each time the neuron fires.
The weight is increased when reward is obtained.
The weight is decreased when an aversive event occurs.

This is equivalent to LTD occurring each time a neuron fires [9], or an aversive
vent occurs, and long-term potentiation (LTP) occurring when reward is obtained
85]. The learning in both cases is based on STDP rules [6,47,7], with a modification
uch that strong synapses undergo relatively less potentiation than weak synapses
83]. The LTD each time an MSN fires is calculated by

⇐ W − Cd · W(e−ıtInput/TSTDP ) (8)

here W is the current synaptic weight, Cd is the average amount of depression
rom one pairing, ıtInput is how long before firing an excitatory input occurred at this
ynapse and TSTDP is the decay time constant for the synaptic input. From this rule,
he weight change is proportional to the current weight. Therefore the smaller the
ynaptic weight the less LTD will occur from one input spike-output spike pairing.

The LTP update Eq. (9) proposes a three-factor rule for positive striatal learning
fter reward is obtained [86]. The increase in synaptic weight is related to the timing
f synaptic input to the synapse, timing of neuronal MSN firing and the phasic change
n dopamine levels. All three factors are required for LTP in the model neuron and
he amount of LTP is determined by the temporal proximity of the three factors:

⇐ W + �D(e−ıtfire/TDDP )(e−ıtInput/TSTDP ) (9)

here �D is the proportional dopamine change, ıtfire is the time since the MS neu-
on fired, TSTDP is the decay time constant for the synaptic input trace and TDDP is the
ecay time constant for the neuron firing. TSTDP is the trace for synaptic input in both
he LTP and LTD rules. This represents a process such as influx of calcium into the
endritic spine occurring after the depolarization of the dendritic spine compart-
ent caused by an excitatory input [8]. In theory this constant should be the same

n both LTP and LTD. The weight change is independent of the current weight. There-
ore a synapse with a small weight will receive the same amount of potentiation as
stronger synapse which had a coincident input. But this amount of potentiation
ill be a greater proportion of the original synaptic weight for the smaller synapse.
s shown by Van Rossum et al. [83] this tends to lead to an even distribution of
ynaptic weights rather than a clustering of synaptic weights at the maximum and
inimum possible values. This potentiation could continue with each reinforcing

vent as there is no upper bound on the synaptic strength introduced by Eq. (9). As
here is a limit to how much a synapse can grow, a constant upper bound on synaptic
eight of 2 is introduced, producing a maximum EPSP amplitude of 0.8 nS.

Eq. (9) defines the change in synaptic weight when an action has been selected
hat leads to reward. A similar rule is used to model disappointment or punishment.
his occurs when an action is selected that either does not lead to an expected reward
r leads to an outcome that is implicitly punishing. In such a situation the dopamine
evel is decreased phasically and the trough level is used to calculate amount of LTD.
he update rule is a cross between the three-factor LTP rule and the STDP LTD rule.
he weight decrease is proportional to the current weight as for the LTD rule. As for
he LTP rule, this is three-factor learning using the proportional drop in dopamine
evel, a synaptic trace showing how long before the neuron fired that particular
ynapse had an excitatory input and a back propagation trace showing how long
efore the dopamine pulse the neuron fired.

⇐ W − �D · W(e−ıtfire/TDDP )(e−ıtInput/TSTDP ) (10)

gain, TSTDP would seem to be implementing the same synaptic trace mechanism
s in the earlier LTP and LTD rules, so should in theory be assigned the same value.
vidence for dopaminergic neuron firing decreasing in aversive situations is contro-
ersial [38], and it has been shown that acetylcholine levels are integral in controlling
opamine release in response to dopamine cell firing [15]. However, decreases in
opamine cell firing have been shown to lower extracellular dopamine levels in
he striatum [72]. The time constant of clearance has been measured at 74 ms [27],
hich is comparable to the time course of the rise in dopamine after burst firing

hat is supposedly an adequate signal for LTP. A recent model [2] of dopamine volu-
etric transmission suggests that the phasic dopamine signal does reach receptors
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

ery quickly. Taken together, this suggests that phasic decreases in dopamine neuron
ring could provide an adequate signal for corticostriatal LTD.

The LTD rule (Eq. (8)) is applied every time an MSN fires, even when reward
r punishment will occur. As the proportional depression from one pairing (Cd) is
et to be very small (0.01), the comparative effect of LTD due to neuronal firing
hen reward or disappointment/punishment occurs is very small. It is included
ere because it is an important factor in stabilizing synaptic weights in simulations
here one of either reward or disappointment/punishment do not occur at each

ction selection point.
 PRESS
Research xxx (2009) xxx–xxx

2.3.1. Devaluation of reward/punishment signal
As has been shown by Satoh et al. [62], firing of dopamine neurons in choice

tasks is related to the uncertainty of the choice leading to reward. If there are three
choices and the correct choice is made on the first attempt (when there was only
a one in three chance of being correct), the dopamine neurons will fire at a higher
rate than when the correct choice is made on the third attempt (when the fact that
reward is due is known with certainty in overtrained monkeys). Similarly, if the
wrong choice is made on the first attempt, the dip in firing of dopamine neurons
is less than when the wrong choice is made on the third attempt. We refer to this
as RepeatDevaluation in the model (Eq. (12)). For the repeat devaluation, either the
number of previous times correct is zero or the number of previous times wrong
is zero. Thus the equation simulates the positive and negative magnitudes of the
dopamine signal found when the monkey chooses correctly and incorrectly. It can
also be seen from recordings published by Schultz’s group that as the response of the
dopamine neurons chains back from the time of reward to the earliest predictor of
reward, the magnitude of the dopamine cell response decreases [63]. We refer to this
as TemporalDevaluation in the model (Eq. (13)). Temporal devaluation could also be
considered as the number of decision points that any given decision is away from
the reward/punishment when the influence of the reward/punishment on updating
the synaptic weights that led to that decision is made.

DP = PercentageDevaluation
100

(11)

RepeatDevaluation = 1 − (TimesCorrect × DP) × (1 − DP)TimesWrong (12)

TemporalDevaluation = (1 − DP)StepsFromReward (13)

�D = (�Dmax − DTonic) × TemporalDevaluation × RepeatDevaluation (14)

where DP is the proportional devaluation, �Dmax is the maximum pulsatile
dopamine level and DTonic is the background dopamine level. The standard level for
the percentage devaluation used in these simulations is 30%. �Dmax is greater than
DTonic for rewarding events and less than DTonic for disappointing/punishing events,
so producing a positive and negative �D, respectively. The size of �D is therefore
adjusted in the model to take account of this devaluation of the reward and pun-
ishment signal as certainty increases and as the current room is further from the
reward.

While this concept of reward devaluation can be seen from electrophysiological
studies [62,63], it has not to our knowledge previously been applied in this manner
to a computational model.

In modeling the PD disease process, the only factors that are changed are �Dmax,
DTonic and DP. All parameters in other learning equations and membrane potential
equations remain the same.

2.4. Task model

To test the model’s ability to learn sequences of action we simulated a chaining
task where a subject is required to learn a sequence of choices of door colors to
navigate through a set of rooms, eventually reaching the outside (Fig. 2 and, for a full
description, see [69]). This task was chosen because data was available for healthy
controls and Parkinsonian subjects both on and off of L-Dopa with both similarities
and differences in performance between the groups.

In Phase 1 the subject sees a room on the computer screen with three doors, each
of a different color. The subject selects a door that either leads to the outside (which
is considered rewarding) or is locked (which is considered punishing). If the subject
makes an incorrect choice, the trial is repeated until the correct door is chosen and
the outside is reached. Once the correct door is chosen, a new trial initiates: the
display order of the three doors is shuffled and the subject has to choose again.
When the correct door had been chosen five times in a row, the subject is taken to
Phase 2. In this phase each trial begins in the second room in the chain and the subject
is presented with a choice between a new set of doors of three different colors, all
different from those seen in the first room. From the second room the incorrect doors
are locked in the same manner as in the first room, and are perceived as punishing in
the same manner. The correct door, selection of which is again considered rewarding,
leads to the first room where the subject has to remember which door color was
learned to be correct in the first phase. When the subject has selected a sequence of
two doors correctly five times in a row, the chain is again lengthened by one room.
This is repeated up to a four room chain length (Phase 4).

After correct learning of the four room chain, the acquisition phases are complete
and the subject commences an unsignaled probe phase. In the probe phase one door
color in each room is the color that has always been correct in that room; one of the
previously incorrect door colors is replaced with a color that was correct in another
room in the acquisition phase; the third door is the same incorrect color as it had
been in the acquisition phases. The subject must then navigate through the chain six
times, starting from room 4 and choosing the same correct doors in the same order
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

as in the acquisition phases. In this probe phase the subject shows that they have
learned to select the correct door in the correct room. This is equated with having
learned the correct sequence rather than, for instance, having learned “Choose red
whenever you see it”.

In this task, it is not possible to learn to select by position as the doors are shuffled
on each trial. Therefore the subject has to learn to select based on door color (which

dx.doi.org/10.1016/j.bbr.2008.12.036
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Fig. 2. Sample screen events for two phases as seen by a human subject. In acquisition Phase 1 (right), the subject sees three colored doors and chooses one by clicking with
the mouse. In this case, the subject chooses pink and gets the reward. If the subject had chosen one of the other two colors, the door would have been locked, the order
of colors would have been shuffled and the subject would have to choose again. After choosing the correct door five times consecutively, the subject is started in Phase 2
(left). Here the subject sees three different colored doors. If he chooses the wrong door, it is again locked. If, as above, he chooses the correct door, he sees the first room in
the distance and is then moved to that room, where he must remember the previously learned correct door to gain the reward. After five consecutive successful two room
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avigations, the chain is lengthened to three and finally four rooms. If the subject le
oor colors is replaced with a door color that is correct in another room. In the illus
ubject then has to navigate through the rooms six further times, choosing the colo
he references to color in this figure legend, the reader is referred to the web versio

hey do during a practice session before the testing is started). We assume that each
olor shown excites a different ensemble of cortical neurons and that there will be
ome differences, but some overlap, in the ensemble of activated neurons depending
n which room the color is shown in (Fig. 3). Since there are 3 doors in each room and
rooms, there are 12 possible cortical ensembles and we use a network of 12 model
SNs to select amongst cortical ensembles. In the rat barrel cortex (an area that has

nput to striatum) the timing of the first spike in a single neuron contains virtually
ll of the information necessary to identify the whisker moved [17]. We assume
hat, in a similar fashion, the timing of the first spike in a striatal MSN contains
ufficient information to determine which action, and therefore which door color,
ill be chosen. The mapping from MSN to color is set at the start of the simulations

nd remains constant.
Each MSN receives an equal number of inputs from each cortical ensemble,

ot just from the ensemble that is proposing the action that the MSN selects for.
eduction in numbers of neurons from cortex to striatum to the output nuclei of
he basal ganglia is assumed to mean that each MSN only then connects back to
ne of the ensembles innervating it. Each MSN is therefore a link in a corticos-
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

riatal loop and selection of that MSN represents removing inhibition from one
ortical ensemble. Removing this inhibition selects for the action of choosing one
olor. We assume that the actual motor movement necessary to click on the chosen
olor is selected separately, possibly in a parallel, but more dorsal, corticostriatal
oop.

ig. 3. Model neural network. Firing of one of the 12 MSNs represents selecting a particul
ndication of which room they are in. Certain model corticostriatal neurons (CSNs) fire due
ach MSN also has inputs from CSNs that are activated by colors not present in the curre
resent. There are similar connections for CSNs representing the position of the room in t
ctivated CSNs start to fire with a random delay after entering a room at a frequency of 25
SN firing introduces noise into the membrane potential of the MSN in the up state. (For
o the web version of the article.)
he four room navigation a probe phase is started. In each room one of the incorrect
n above, for example, the yellow in the first room could be replaced with blue. The
e same order as in the acquisition phases to gain the reward. (For interpretation of
e article.)

The excitatory inputs to the MSNs represent the various features of the envi-
ronment; the current room, the colors of the doors in the room and a configuration
of both room and door color (Fig. 3, illustrating the activation for one room). Each
corticostriatal neuron (CSN) synapses with only one, randomly chosen MSN [90] and
fires when the environmental feature that it represents is present. Approximately
120 excitatory inputs with a peak excitatory conductance of 0.4 nS are sufficient to
take the model MSN from the down state to the up state. To have sufficient active
inputs to each MSN in each environmental state therefore requires modeling approx-
imately 11,500 CSNs. We appreciate that not every MSN would have the required
number of active inputs, but we are assuming that at least one MSN will in any given
environmental situation, and this is the MSN that we are modeling. This random
connection protocol makes the minimal assumptions of connectivity between sen-
sory representations in the cortex and the MSNs and does not bias model MSNs for
selecting any particular color.

At the start of the simulation all excitatory inputs have a synaptic weight of 1
(simulations with a S.D. of starting weight of 0.2 had no effect on outcome). For each
trial within a room, all inputs associated with features in that room start to fire. As
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

soon as one of the MSNs fires, the door associated with that MSN is chosen. If it is
the correct door in that room, that is construed as obtaining reward. In that case the
weights of all inputs to the neuron that fired are increased using the LTP learning rule
in Eq. (9). The phasic increase in dopamine levels is delayed by 200 ms to account
for the activation time of the dopamine neurons after reward [51].

ar color. When a subject sees a room there are three different colored doors and an
to the three colors seen. Each CSN is randomly connected to only 1 of the 12 MSNs.

nt room, so all MSNs have active color inputs no matter what colors are currently
he sequence and a configurational representation of both color and room position.
(S.D. 2) Hz, with a jitter of S.D. 5 ms between each firing event. The randomness in

interpretation of the references to color in this figure legend, the reader is referred

dx.doi.org/10.1016/j.bbr.2008.12.036
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Fig. 4. Dopamine profiles used in the simulations. (A). In healthy controls (HCs), the background level is 1. The phasic rise for reward is to 1.6 and the phasic dip for
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phases.
The acquisition data were analyzed by repeated-measures

ANOVA on the four learning stages with group as the factor. The
probe data were analyzed by ANOVA.

Table 2
Tonic and phasic levels of dopamine used to simulate healthy control, PD on and PD
off data. In Eq. (13), the tonic dopamine level is DTonic and the phasic reward and
disappointment dopamine levels are �Dmax.

Tonic Phasic reward Phasic
isappointment is 0.7. (B) To simulate PD off the background level is reduced to 0.8 t
roportion to HC, producing a lower absolute level of 1.3. Similarly, the phasic dip

evel is restored to the HC level by L-Dopa. The phasic rise to reward is proportion
isappointment is also reduced, simulating a decreased dopamine clearance.

That trial then moves on to the next room (or outside, if it is the final room). If
he door chosen is incorrect there is a phasic dip in dopamine and the weights of all
nputs to the neuron that fired are decreased according to the aversive learning rule
n Eq. (10). The trial is then repeated in the same room.

.5. Dopamine profiles

Results from three subject groups are modeled; healthy controls (HC), PD
atients tested on normal dopaminergic medication (PD on) and tested after
vernight withdrawal of medication (PD off). To simulate the three subject groups,
nly the tonic and phasic dopamine levels are changed. All other parameters are kept
he same. In HC, the tonic dopamine level is set at 1 as a default (Fig. 4A). The tonic
opamine level is decreased to 0.8 for the PD off simulations. This is a far smaller
ecrease than that seen in humans in PD. However, long-term structural changes are

ikely to act to minimize the effect of the loss of dopaminergic neurons in humans.
odeling such changes is beyond the scope of this study, so we have chosen a figure

or the reduced tonic dopamine level that reduces excitability of the model MSN, but
oes not make it impossible for the neuron to fire under realistic levels of excitation.
or the PD on state, the dopamine level is increased back to 1 to reflect the effect of
-Dopa medication.

Studies using intracranial self-stimulation (ICSS) in rats have shown that a single
airing of post-synaptic potential with ICSS reward can lead to increases in PSP
mplitude of up to 97% [61]. Using Eq. (9), with firing 200 ms before reward, input to
synapse 10 ms before firing and a phasic rise in dopamine of 1.6, gives a potentiation
f 47% which would seem to be reasonable as opening a door would probably not be
onsidered to be as rewarding as ICSS. The level of phasic dopamine is therefore set
o 1.6 in the normal condition. In the PD off condition, the phasic rise is decreased to
.3. This is proportionately similar to the normal condition, but starts from a lower
onic level. For the PD on condition, the phasic rise in dopamine is decreased to 1.4
o reflect the decrease in the number of neurons contributing to the phasic rise.

To model disappointment, the phasic level of dopamine is decreased to 0.7 in the
ormal condition. In the PD off condition, this was decreased to 0.6, again reflecting
he lower tonic level. In the PD on condition, the phasic dip was decreased to 0.8
o simulate evidence that PD patients on dopaminergic medication do not learn so
ell from disappointment [22,23] (Table 2).

. Results

.1. Additional analysis of data from Shohamy et al. [69]
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

In Phase 1 it is possible to make 0, 1 or 2 mistakes before chancing
pon the correct door. This gives an average of 1 error for this phase

f the subject selects only by color and then remembers the correct
oor. Both healthy controls and PD on groups made about 1 error in
he first phase and were therefore immediately selecting by color
ct the reduction in dopaminergic neurons. The phasic rise for reward is of a similar
isappointment is of a similar proportion, to 0.6. (C) In PD on, the tonic dopamine
reduced to 1.4, simulating reduced capacity in the disease state. The phasic dip to

not position. This is reasonable as they had had a practice phase in
which to learn that the significant factor was door color.

The main findings from Shohamy et al. [69] were presented
in terms of the failure rates for each of the three subject groups
(Fig. 5A). All control subjects were able to complete all phases of
the task. Of the 12 PD on subjects, 1 failed the second phase of the
acquisition (8.5%). 4 of the 11 subjects in the PD off group (36.4%)
were unable to learn the full sequence of rooms, 2 failing in Phase 2
and 2 in Phase 3. The data is re-represented here as the percentage
failing each phase to be directly comparable to the results generated
in the modeling studies.

Additionally error rates in each phase of the task were also mea-
sured. Due to the small sample size (especially in later phases for
the PD off group), these results were not considered significant and
therefore were not reported in the original paper. However, due to
some correspondences with the model data, some additional anal-
ysis of the error rates for the human subjects will be given here
before moving on to examine the model performance (Fig. 5B).

In the human data any error counts for a single phase that were
more than 2 standard deviations from the mean have been dis-
carded. This resulted in discarding the probe error score for one
healthy control and the removal of the Phase 2 score for one PD off
subject who then successfully completed the acquisition and probe
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

dopamine level dopamine level disappointment
dopamine level

HC 1 1.6 0.7
PD on 1 1.4 0.8
PD off 0.8 1.3 0.6

dx.doi.org/10.1016/j.bbr.2008.12.036
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Fig. 5. (A) Cumulative failure rates for human subjects. No control subjects failed the task. One of the 12 PD on subject failed the task on Phase 2 (8.5%). 2 of the 11 PD off
subjects failed the task on Phase 2 and a further 2 failed on Phase 3. No subjects who had completed the acquisition phases failed the probe phase. (B) Phase by phase error
r s do n
p d PD o
d ror rat
t e succ

l
a
t
p
(
s
m

3
n

b
p
I
h
s
m
s
e
h
d
a
[

l
t
t
t
W
i
f

ates for HC subjects, PD on and PD off subjects. Error rates in the acquisition phase
hase. (C) Binned error rates for the probe phase. The number of control subjects an
istribution of PD on subjects, with a higher number falling into the highest probe er
ask for control subjects and PD off subjects who successfully completed the task. Th

There were no significant group differences across the four
earning stages (repeated-measures ANOVA, F(2,26) = 1.10, p = .347)
nd no within-subject effect of stage (F(3,78) = 1.90, p = .136). On
he probe data, the groups did not differ (ANOVA, F(2,26) = 1.05,
= .365). Further breaking down the probe errors of the PD on group

Fig. 5B) showed a bimodal distribution of errors, with 6 of the 11
ubjects making less than 5 errors and 4 of the 11 subjects making
ore than 10 errors (Fig. 5C).

.2. Effect of tonic dopamine level on excitability of model
eurons

Two of the currents used in the model neuron are modulated
y the tonic level of dopamine, DTonic. The inwardly rectifying
otassium current, IKir, controls the voltage of the down state.

ncreasing this current decreases the membrane potential in the
yperpolarized down state (Fig. 6A). When the neuron is in the up
tate, increasing the calcium current, ICa-L, increases the plateau
embrane potential (Fig. 6B). In the classical model of Parkin-

on’s disease, MSNs of the direct pathway are expected to be less
xcitable under conditions of reduced tonic dopamine. While MSNs
ave been shown to be more excitable under conditions of reduced
opamine in some experiments [20], when direct pathway MSNs
re specifically identified, they have been shown to be less excitable
46].

Fig. 6C shows the minimum frequency of cortical inputs that
eads to firing at different levels of tonic dopamine, with 120 exci-
atory inputs all firing at the same mean frequency. The standard
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

onic dopamine level of 1 would require each corticostriatal input
o be firing at approximately 24 Hz to cause the model MSN to fire.

hen the background dopamine level is decreased to 0.8, as occurs
n the simulations of PD off medication, the necessary excitatory
requency increases to 32 Hz.
ot differ significantly, but the PD on group show a higher rate of errors in the probe
ff subjects falling into each bin decreases with number of errors. There is a bimodal
e bin than into the middle bin. (D) Comparison of error rates across the phases of the
essful PD off subjects show a tend towards a lower rate of probe errors than controls.

3.2.1. Errors per phase
Each model simulation consisted of 100 runs with the same

parameters. For each run the connection of the excitatory inputs
to the model MSNs, the colors of the doors in each room and
the correct doors were randomly reassigned. Data is presented as
errors ± S.E.M.

In all three cases the model reproduced the error rates in the
probe phase but model error rates were generally slightly lower in
the acquisition phases (Fig. 7).

Two of the factors that lead to variations in task performance in
the model are reward dopamine level and the reward devaluation
factor. To examine the effect of these factors in the model each was
varied independently and error rates and failures measured.

3.2.2. Variation of phasic reward dopamine level
A phasic dopamine level of 1.6 with a tonic level of 1.0 was

defined as “normal” in modeling the performance of the healthy
control subjects. Fig. 8 shows the results when the phasic reward
dopamine level was varied from 1.1 to 2.0 with the tonic dopamine
level remaining at 1.0. This changes the level of �Dmax in Eq. (14).

As the phasic dopamine level was decreased the number of
probe errors increased (Fig. 8B). Also, as the phasic dopamine level
was decreased below 1.3, the error rate in the acquisition phases
started to rise (Fig. 8A). The rates first started to rise in the last acqui-
sition phase, Phase 4 and progressed to earlier phases with lower
phasic dopamine levels. Further, as the phasic dopamine level was
reduced below 1.4, the number of runs failing increased (Fig. 8C). As
with the error rates, this first became apparent in the later phases
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

of acquisition. There were no failures in the probe phase.

3.2.3. Variation of percentage devaluation
Increasing the percentage devaluation factor over a range of

20–40% (Eq. (14)) resulted in an increase in probe errors with little

dx.doi.org/10.1016/j.bbr.2008.12.036
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Fig. 6. Effect of tonic dopamine on model MSN. (A) Increasing the tonic dopamine level further hyperpolarizes the membrane potential in the down state. (B) Increasing
the tonic dopamine level increases the plateau membrane potential in the up state. The plateau membrane potential was measured 200 ms after the start of excitation. (C)
Decreasing the tonic dopamine level increases the minimum excitation frequency necessary to elicit an action potential when the neuron is in the down state.

Fig. 7. Comparison of human data and model error rates across the phases of the task for (A) HC, (B) Parkinson’s disease off medication and (C) Parkinson’s disease on L-Dopa
medication. Error bars represent the standard error.

dx.doi.org/10.1016/j.bbr.2008.12.036
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ig. 8. The effect of maximum phasic dopamine reward level on model task perfor
here is no change in the number of acquisition phase errors. As the level is decrea
hases. (B) Probe error rate is inversely related to phasic dopamine level. (C) Decre
ates in the late acquisition phases, but not in the probe phase. Phasic dopamine lev

hange in errors in the acquisition phases until the reward devalu-
tion rate was greater than 35% (Fig. 9A). The increase of the probe
rrors as a function of reward devaluation is shown in Fig. 9B.

.3. Failure rates

There was a zero failure rate for both the model and the human
ubjects in the control condition. The model had a failure rate of
2% in the PD on simulation, which was higher than the one failure
n 12 PD on subjects (8.5%).

However, all failures in the model occurred in Phase 4, whereas
he one failure in the human PD on group occurred in Phase 2.
he model settings that replicated the error rates for the PD off
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

roup produced no failures, whereas the human PD off subjects
ad a failure rate of 4 out of 11 (36.4%) (Fig. 5A). To examine the
ffect of tonic dopamine level on failure rate in the model, the tonic
opamine level was decreased in steps from 0.75 to 0.7. As the level
as decreased below 0.74 there was a rapid increase in the failure

ig. 9. The effect of reward devaluation level on error rates in acquisition and probe pha
ead to an increase in the error rates in the acquisition phase, but does lead to an increase
ate in Phase 4. (B) Increasing reward devaluation rates between 22% and 35% resulted in
e. (A) As the phasic dopamine level at time of reward is decreased from 1.8 to 1.4,
low 1.4, errors in the acquisition phases start to increase, starting first in the later
the phasic dopamine level for reward below 1.4 leads to an increase in the failure
ove 1.4 are not shown as no failures occurred.

rate at each step of the acquisition phase to reach a cumulative fail-
ure rate over the 4 acquisition phases of 62% at the lowest tonic
dopamine level, 0.7 (Fig. 10A). This can be compared to the human
data (Fig. 5A) in which the PD off group had a 36.4% cumulative
failure rate over the acquisition phases. There were no failures in
the probe phase in the human data or in the model data at any level
of tonic dopamine examined.

Surprisingly, the average number of probe errors decreased from
3.72 at a tonic dopamine level of 0.75 to 1.7 at a tonic dopamine
level of 0.7 (Fig. 10B). This can be compared with the human data
where PD off subjects who successfully completed the task had
a trend towards a lower probe error rate than healthy controls
(Fig. 5D).
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

4. Discussion

The model presented here represents one part of the action
selection circuitry of the basal ganglia. It does not contain complete

ses for the model. (A) Increasing the reward devaluation from 20% to 35% does not
in probe error rates. A reward devaluation rate of 40% resulted in an increased error
an increase in probe errors.

dx.doi.org/10.1016/j.bbr.2008.12.036
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ig. 10. Variation of model cumulative failures (A) and error rates (B) as tonic dop
ccurred, with no failures in 100 runs. As the tonic dopamine level was decreased to
ver the 4 acquisition phases increased to 62%.

orticostriatal loops for a full model of the actor in decision making.
he reason for the decision to make only a partial model of the actor
as to demonstrate more clearly the possible role of the membrane
roperties of the medium spiny neurons in action selection. In this
odel the steep rise from a relatively hyperpolarized membrane

otential to a plateau membrane potential just below the firing
hreshold, coupled with a slow depolarization when the plateau

embrane potential is reached, provides a mechanism that is suf-
cient to select between actions based on relatively small changes

n the synaptic strengths of the corticostriatal afferent neurons. This
eads to the possibility that the action selection is performed in the
orticostriatal loop at the first possible stage, which would be the
ost efficient solution. This does not mean that the rest of the cor-

icostriatal loop plays no part in action selection. Besides deciding
hich action to select it may be necessary to perform the action

t a specific time, especially in sequences of actions, to adjust the
ntensity of the action and to terminate the action at a specific time.
t is possible that these functions are addressed in other parts of the
ircuitry.

A feature of this model is the absence of lateral inhibition
o produce a ‘winner takes all’ network. Unlike prior models
5,28,84,43,44,73,89] this network relies entirely on the membrane
haracteristics of the model MSNs to give adequate differentiation
n firing times. These simulations show that such a mechanism

ould seem to be adequate for learning to select amongst a small
roup of actions and to learn the correct sequence of actions in a
et of environmental contexts.

There have been several models of the complete corticostriatal
oops that have been able to perform action selection using differ-
nt mechanisms within the loops. The model of Gurney et al. [31]
elected actions based on the salience of the corticostriatal input.
he strongest corticostriatal input is always selected. In our model
e do not make the assumption that there is any initial difference

n the strength of corticostriatal inputs. It has been shown that
earning in the cortex is slower than in the basal ganglia [58,66].

e would suggest that in our model action selection is an emer-
ent property of the network of MSNs rather than en enhancement
f a pre-existing difference in cortical ensemble activations. How-
ver, these two mechanisms may play roles in action selection at
ifferent stages of learning.

Some models have also simulated behavioral tasks in Parkin-
on’s disease without using lateral inhibition within the striatum,
ut using competition between pathways for selection. Those of
rank et al. [21–24] demonstrate different effects in Parkinson’s
atients on and off medication and on deep brain stimulation. These
Please cite this article in press as: Guthrie M, et al. A neurocomputat
comparison with cognitive deficits in Parkinson’s disease. Behav Brain

odels are at a higher level and perform selection through inter-
ctions of the direct and indirect pathways. The task used here
s clearly different from the probabilistic selection task used by
rank which makes direct comparison of model performance dif-
cult. However, our model shows that the action selection could
level is changed. At a tonic dopamine level of 0.74, an average of 3.4 probe errors
he average number of probe errors decreased to 1.71 but the cumulative failure rate

be accomplished in the striatum and opens up the possibility of a
different function for the interaction of direct and indirect path-
ways. Gruber et al. have also extended their original model of the
MSN [30], on which our model is based, to make a network model
of working memory. This model does not use competition amongst
striatal units to perform action selection as this was not required
in the memory task under consideration. It does, however, show
the effect of dopamine on cortical working memory robustness,
and this is a factor that would need to be taken into account in a
full corticostriatal loop model. A model from Leblois et al. [44] has
demonstrated action selection as an interaction between direct and
hyperdirect pathways in two parallel corticostriatal loops. In this
model, tonic dopamine depletion causes an imbalance between the
two pathways that leads to oscillations. The induction of oscillations
in corticostriatal loops is clearly beyond the scope of our model,
but, our proposal that action selection is performed at the striatal
level should not change the findings of interactions between the
direct and hyperdirect pathways in a different aspect of Parkinson’s
symptomatology.

The second aspect of this model is the three-factor learning rules
that are used to adjust the corticostriatal synaptic weights based on
feedback learning. Previous models have based learning solely on
the magnitude of the phasic dopamine signal. The learning rules
presented here are a first attempt at a more biophysically detailed
mechanism for learning in the striatum.

In these simulations only two factors were changed to replicate
the human behavioral data of control subjects and PD patients on
and off medication; the tonic and phasic dopamine levels. Results
for the control and PD on groups fit well with the model, both in
error rates and failure rates. For the PD off group, the model pro-
duced comparable error rates to human subjects, but without the
high failure rate. We showed that, in the model, a further small
decrease in the tonic dopamine level produced high failure rates,
but with very low error rates when the task was completed suc-
cessfully. This fit with the human data, where PD off subjects who
successfully completed the task had a tendency to have lower error
rates the control subjects (Fig. 5D). This would suggest that, in
Parkinson’s patients off medication, there is an adequate phasic
dopamine signal for learning, but that, if the tonic dopamine level
is decreased a small amount further, the acquisition phases of the
task become increasingly difficult. As the tonic dopamine level is
decreased in the model, the plateau membrane potential decreases
(Fig. 6B). Below a certain level the plateau is too far from the firing
threshold and, even with the relatively large amounts of corticostri-
atal input noise used in the model, the MSN is very unlikely to fire.
ional model of tonic and phasic dopamine in action selection: A
Res (2009), doi:10.1016/j.bbr.2008.12.036

Tonic dopamine levels found in PD are much lower than those that
cause high failure rates in the model. In humans there are probably
compensatory mechanisms that allow the tonic level of dopamine
to fall much further before the plateau of the MSN membrane poten-
tial is too low for the neuron to fire. It may be that the human data for

dx.doi.org/10.1016/j.bbr.2008.12.036
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he PD off group can be explained by a small inter-group variation
n tonic dopamine levels.

Changing the devaluation factor in the model did not reproduce
atterns of errors or failure seen in either PD group. This would
uggest that discounting of the reward is not a major problem in
D.

Increasing the phasic dopamine levels in the model continued to
ecrease the number of probe errors, suggesting that tasks that are
ore rewarding produce more rapid learning. The lower number

f probe phase errors in PD off patients who were able to com-
lete the task suggests that learning from the phasic dopamine
ignal is not just maintained in PD off, but may even be better
han in controls. However, balanced against this improved sig-
al to noise for learning in PD off, a small further decrease in
onic dopamine leads to high failure rates. Against a background
f normal tonic dopamine, as in PD on, decreases in the phasic
opamine signal decrease learning to give an increase in probe
hase errors.

This suggests that, to explain the different cognitive deficits in
D on and off medication, one has to take into account changes in
oth the tonic and phasic levels of dopamine. In PD off medication
he deficits could be mainly due to the loss of tonic dopamine and in
D on medication, the deficits could be mainly due to a decrease in
he phasic dopamine signal, but that in both cases the other aspect
f the dopamine signal also plays a role.
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