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African Americans have double the prevalence of Alzheimer’s disease (AD), as compared
to European Americans. However, the underlying causes of this health disparity are
due to a multitude of environmental, lifestyle, and genetic factors that are not yet
fully understood. Here, we review the effects of the two largest genetic risk factors
for AD in African Americans: Apolipoprotein E (APOE) and ABCA7. We will describe
the direct effects of genetic variation on neural correlates of cognitive function and
report the indirect modulating effects of genetic variation on modifiable AD risk factors,
such as aerobic fitness. As a means of integrating previous findings, we present a
novel schematic diagram to illustrate the many factors that contribute to AD risk and
impaired cognitive function in older African Americans. Finally, we discuss areas that
require further inquiry, and stress the importance of racially diverse and representative
study populations.

Keywords: African American (AA), APOE ε4, ABCA7, aerobic fitness, cognitive function, cognitive decline,
Alzheimer’s disease

INTRODUCTION

African Americans are at an elevated risk of cognitive decline and memory loss, with double
the prevalence of Alzheimer’s disease (AD) as compared to European Americans (Logue et al.,
2011; Barnes and Bennett, 2014; Alzheimer’s Association, 2019). The underlying causes of this
health disparity are not sufficiently understood. Apolipoprotein E (APOE) and ABCA7, two genes
involved in lipid metabolism, are the strongest heritable contributors to AD in African Americans
(Reitz et al., 2013). However, the influence of genetic risk on environmental and behavioral
risk factors, and their combined effects on AD biomarkers in African Americans, is yet to be
determined. Furthermore, little is known about the neural substrates of cognition in older African
Americans and how they relate to genetic risk factors for AD.

Here, we review recent work outlining two distinct ways genetic risk impacts AD biomarkers
in African Americans. First, we examine the direct effects of genetic variation on neural
correlates of cognitive function, such as activation and functional connectivity from functional
magnetic resonance imaging (fMRI) studies. Second, we discuss the indirect effects of genetics
on brain structure and function, via interaction with modifiable risk factors for AD, specifically
aerobic fitness.

African Americans are at an increased risk of cardiovascular disease (Obisesan et al., 2012),
which has been established as an important predictor for AD (Izquierdo-Porrera and Waldstein,
2002). Management or improvement of cardiovascular risk factors through increased aerobic
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fitness and exercise can reduce the risk for cognitive decline
and dementia (Baumgart et al., 2015). Consistent with this, low
levels of physical activity is one of the most prevalent risk factors
for AD (Norton et al., 2014; Cass, 2017). In particular, African
Americans have lower rates of physical activity as compared
to European Americans (Gothe and Kendall, 2016; Benjamin
et al., 2019). As such, aerobic fitness and exercise may be
more viable modifiable factors to attenuate the risk for AD
in African Americans.

It is important to delineate the difference between AD as
determined by neuroimaging, biofluid biomarkers, or autopsy,
as compared to the clinical diagnosis of Alzheimer’s and related
dementias. However, to remain aligned with the terminology of
the original cited works, throughout this review we refer to both
instances as AD.

DIRECT EFFECTS OF GENETICS

APOE
The APOE ε4 allele is one of the strongest genetic risk factors
for AD (Potter and Wisniewski, 2012). APOE functions to
regulate lipid metabolism in the brain by mediating the uptake
of lipoproteins; in particular, it modulates the clearance of
amyloid-β (Aβ; Di Paolo and Kim, 2011). Both dysfunctional
cholesterol processing and Aβ aggregation have been implicated
in AD pathogenesis (Schultz et al., 2017). In European
Americans, the APOE ε4 allele has been associated with 2–3
times the risk of AD in heterozygotes and 12 times the risk
in homozygotes (Michaelson, 2014). African Americans have
a higher frequency of the APOE ε4 allele (Logue et al., 2011;
Barnes and Bennett, 2014), and ε4 homozygosity is highly
associated with AD in African-ancestry groups (Hendrie et al.,
2014). However, the results are inconsistent for heterozygotic
carriers (Farrer et al., 1997), with some studies suggesting that
APOE ε4 may have less predictive impact on AD outcomes
in African-ancestry populations, including African Americans
(Rajabli et al., 2018). Despite the mixed nature of these findings,
APOE ε4 has been associated with increased risk of late onset AD
(LOAD) in African Americans (OR = 2.31; 95% increased risk;
Reitz et al., 2013).

APOE ε4 has also been linked to episodic memory-related
dysfunction in the medial temporal lobe (MTL; Bookheimer
et al., 2000; Filippini et al., 2009; Dennis et al., 2010; Michaelson,
2014), one of the earliest brain regions impacted by the
progression of AD. APOE ε4 genotype and amyloid-induced
synaptic pathology have been related to accelerated rates of
AD pathology within the MTL (Potter and Wisniewski, 2012),
particularly in hippocampal sub-regions in both rodent and
human models (Palmer and Good, 2011).

Pattern separation—the ability to independently represent
and store similar experiences by reducing mnemonic
interference (Leal and Yassa, 2018)—relies on MTL function.
As such, one way to characterize decline into mild cognitive
impairment (MCI) and AD is by a shift away from pattern
separation towards pattern completion, which is mediated by
dysfunctional hippocampal hyperactivity (Yassa et al., 2011b).
Impaired mnemonic discrimination is associated with atypical

hyperactivation in the dentate gyrus (DG) and CA3 hippocampal
subfields (Dickerson et al., 2005; Yassa et al., 2011a,b; Reagh
et al., 2017) in healthy older adults (Toner et al., 2009; Stark et al.,
2013) and those with MCI (Yassa et al., 2010; Bakker et al., 2012,
2015; Tran et al., 2017).

Research examining the impact of APOE ε4 genotype onMTL
function, via performance on a mnemonic discrimination task,
has yielded mixed results in different racial populations with
varying degrees of cognitive impairment. A study inMCI patients
reported no differences in hippocampal hyperactivation or
mnemonic discrimination based on APOE ε4 status (Tran et al.,
2017). Conversely, AD patients that were homozygotic carriers of
the APOE ε4 allele performed worse on challenging mnemonic
discriminations (Wesnes et al., 2014). When examining spatial
mnemonic discrimination across cognitively impaired and
unimpaired older adults, impaired ε4 carriers performed worse
than unimpaired carries and either group of non-carriers
(Sheppard et al., 2016).

These previous studies were primarily conducted in
European American cohorts and/or did not report the specific
racial breakdown of their subject pools. In a population
of cognitively healthy older African Americans, there were
APOE ε4-related impairments in mnemonic discrimination,
coincident with hyperactivity in the left DG/CA3 and the CA1.
Although the overall effect of APOE ε4 on AD outcomes in
African Americans remains unclear (Farrer et al., 1997; Tang
et al., 2001; Hendrie et al., 2014; Rajabli et al., 2018), this result
may suggest that APOE ε4-related hippocampal dysfunction
can manifest in healthy older African Americans and may be an
indicator of future disease status.

While APOE ε4 is associated with a moderately increased
risk for progression from MCI to AD-type dementia (Elias-
Sonnenschein et al., 2011), it may not alter the disease
progression during the preclinical period (Bondi et al., 1999;
Bunce et al., 2004). However, the effect of APOE ε4 in the
preclinical phase may be contingent on other factors such
as the level of amyloid aggregation (Mormino et al., 2014)
and homozygotic vs. heterozygotic status (Caselli et al., 1999).
Clinically normal carriers of APOE ε4 with high levels of
amyloid aggregation experienced the highest levels of cognitive
decline as compared to ε4 non-carriers and those with lower
Aβ aggregation (Mormino et al., 2014). Cognitively healthy
APOE ε4 homozygotic carriers also experienced memory decline
earlier than heterozygotic carriers (Caselli et al., 1999).

ABCA7
Outside of APOE, ABCA7 is the strongest genetic risk factor for
AD in African Americans (Reitz et al., 2013). As a member of the
super-family of adenosine triphosphate (ATP)-binding cassette
(ABC) transporters, ABCA7 is another gene that regulates the
homeostasis of phospholipids and cholesterol in the central
nervous system and peripheral tissues. ABCA7 gene expression
has been linked to AD via the dysregulation of lipid metabolism
(Zhao et al., 2015; Aikawa et al., 2018).

ABCA7 single nucleotide polymorphism (SNP)
rs115550680 is associated with the development of LOAD
in African Americans with an effect size (OR = 1.79; 70%–80%
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increase in risk) that is comparable to that of APOE ε4
(Reitz et al., 2013). ABCA7 rs115550680 is hypothesized to
contribute to AD in African Americans through amyloid
precursor protein (APP) processing and the suppression of Aβ

clearance (Cukier et al., 2016).
In cognitively healthy elderly subjects and MCI patients,

cortical Aβ load is associated with disrupted functional
connectivity within theMTL and impairedmemory performance
(Song et al., 2015). As such, Aβ plaques may play a key role in
facilitating tauopathy in theMTL, and therefore lead to disrupted
functional connectivity in the MTL circuitry. Hardy and Selkoe
(2002) suggest that one of the functions of ABCA7 in ADmay be
Aβ facilitated tauopathy: as Aβ deposition accumulates in cortical
regions within the default mode network (DMN), it may lead to
concurrent accumulation of tau tangles in theMTL via reciprocal
connections through the entorhinal cortex (EC) (Pooler et al.,
2015). Hence, the cortico-MTL circuit may be the neural network
underlying ABCA7 rs115550680-related AD pathology.

A recently published study examining the impact of
ABCA7 rs115550680 genotype on the cortico-MTL network
function in a group of cognitively healthy older African
Americans found ABCA7-related dissociation in EC resting
state functional connectivity (Sinha et al., 2019). Specifically,
the risk variant was associated with increased functional
connectivity between the EC and other MTL regions, including
hippocampal subfields, coincident with decreased connectivity
between the EC and medial prefrontal cortex (mPFC; Sinha
et al., 2019). These findings suggest that for individuals
with the risk ABCA7 rs115550680 genotype, impaired cortical
connectivity leads to a more functionally isolated EC at rest,
which translates into aberrant EC-MTL hyper-synchronization
(Sinha et al., 2019).

While direct claims cannot be made about the exact
mechanism underlying the aforementioned alterations in
cortico-MTL network function, when considering the relevance
of Aβ in ABCA7-related AD pathogenesis, these results may
reflect the combined reinforcement between amyloid and tau
pathology in the EC (Sinha et al., 2019). Thus, anomalous
MTL functional connectivity may be an additional neural
correlate of future cognitive decline in African Americans. This
ABCA7 variant is monomorphic in European Americans (Reitz
et al., 2013; Machiela and Chanock, 2015), and consequently,
it does not confer any increased risk for AD in this group.
However, recent studies of functional connectivity in MCI
and AD patients have reported a similar disconnection of the
MTL from other nodes of the DMN, particularly mPFC, but
increased connectivity locally within the MTL, between EC and
other subregions of the MTL (Das et al., 2013; Pasquini et al.,
2015). As such, MTL network dysfunction may be a ubiquitously
applicable AD biomarker for preclinical AD detection.

INDIRECT EFFECTS OF GENETICS

The Interaction With Aerobic Fitness
Modifiable lifestyle factors, such as diet, exercise, and aerobic
fitness, contribute to AD risk. In particular, aerobic fitness is
one cardiovascular disease management method that has been

associated with decreased levels of cognitive decline and reduced
risk of AD in several previous studies (Colcombe and Kramer,
2003; Kramer et al., 2005, 2006). Aerobic activity has been
found to aid in brain lipid homeostasis and in the reduction
of Aβ deposit accumulation (Maesako et al., 2012; He et al.,
2017; Houdebine et al., 2017). Recent work has also argued
that increased levels of aerobic fitness can attenuate the adverse
influence of AD-related polygenic vulnerability derived from
genes implicated in lipid homeostasis, including APOE and
ABCA7 (Schultz et al., 2017).

In addition to ABCA7 rs115550680 (reviewed under Direct
Effects of Genetics), which has been identified as a genetic
risk factor for AD in African Americans, another ABCA7 SNP
(rs3764650) has been identified as a susceptibility locus for
AD in European Americans (Hollingworth et al., 2011; Naj
et al., 2011). ABCA7 rs3764650 has a lower effect size in
African Americans (OR = 1.23), increasing AD risk by about
10%–20% (Reitz et al., 2013). However, this SNP has been
found to influence overall ABCA7 expression (the conversion of
DNA instructions into functional products and proteins), and,
dysfunctional ABCA7 expression levels are associated with AD
risk (Vasquez et al., 2013; Aikawa et al., 2018).

While the overall effects of ABCA7 rs3764650 on cognition
seem to be minimal (Vivot et al., 2015; Andrews et al., 2016,
2017), it has been found to alter cognition in subgroups stratified
on factors such as gender and disease progression. In healthy
elderly, an association between rs3764650 and cognitive decline
was found selectively in females (Nettiksimmons et al., 2016),
and, in individuals with a final diagnosis of MCI or AD, this SNP
was associated with increased rates of memory decline (Karch
et al., 2012; Carrasquillo et al., 2015).

A study of healthy older African Americans found that
ABCA7 rs3764650 modulates the association between aerobic
fitness level (as measured by maximal oxygen consumption,
VO2 max) and mnemonic flexibility—the ability to flexibly apply
and recombine information from past learning—as measured
by generalization following rule learning (Berg et al., 2019).
In particular, for carriers of the non-risk genotype, higher
levels of aerobic fitness were significantly associated with fewer
generalization errors. Conversely, carriers of the risk genotype
did not show any relationship between aerobic fitness and
generalization. Successful mnemonic flexibility is known to
depend on the integrity of the MTL (Myers et al., 2002, 2008),
a major site of neuroplasticity that is sensitive to the effects of
exercise and aerobic fitness (Cotman et al., 2007). The results of
Berg et al. (2019) therefore imply that the ABCA7 risk genotype
may attenuate the neuro-protective value of aerobic fitness in
cognitively healthy older African Americans.

Analogous to this study, others have found that in European
Americans, APOE ε4+ individuals did not receive the same
benefits as APOE ε4− individuals from higher levels of aerobic
fitness or following an exercise intervention, with fitness only
reducing the risk for dementia in non-carriers (Podewils et al.,
2005; Lautenschlager et al., 2008). On the contrary, some
self-reported studies of physical activity found that the neuro-
protective effects of fitness were exclusive to APOE ε4 carriers
(Schuit et al., 2001; Rovio et al., 2005; Smith et al., 2011).
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FIGURE 1 | The genetic and lifestyle factors that contribute to Alzheimer’s disease (AD) risk and impaired cognitive function in African Americans. Overall, aerobic
fitness influences brain structure and function, which then affects cognition. Apolipoprotein E (APOE) ε4 directly impacts brain structure and function via dysfunctional
lipid metabolism, leading to aberrant hippocampal hyperactivation and therefore, impaired mnemonic discrimination of episodic memories. APOE ε4 indirectly
influences the effects of aerobic exercise on hippocampal plasticity and volume through the regulation of BDNF. ABCA7 rs115550680 directly impacts the brain
through amyloid-β (Aβ) facilitated tauopathy, which negatively influences medial temporal lobe (MTL) functional connectivity, and consequently, behavioral
generalization. ABCA7 rs3764650 moderates the effects of aerobic fitness through dysfunctional lipid metabolism and ABCA7 expression, which indirectly impairs
behavioral generalization.

Additionally, in African Americans the APOE ε4 genotype
has been found to influence exercise-related upregulation of
BDNF (brain-derived neurotrophic factor), a gene associated
with neuroplasticity and hippocampal volume (Erickson et al.,
2011); non-carriers of the ε4 allele exclusively experienced a
significant increase in BDNF levels after 6 months of exercise,
while carriers did not (Allard et al., 2017).

Research on the interactive effects of aerobic fitness and
genetic risk for AD is still in the early stages, with the various
studies containing methodological and racial differences in
subject populations. Albeit equivocal, these results do provide
evidence of the modulating effect of genetic variation on
modifiable AD risk factors.

DISCUSSION

Here, we reviewed research outlining the influence of genetic
risk on MTL neural and cognitive function. We present
a novel comprehensive outline of how genotypic variation
may contribute to AD and impaired cognitive function
(Figure 1). Overall, aerobic fitness influences neural structure
and function, which then affects cognition. APOE ε4 directly
impacts the brain via dysfunctional lipid metabolism, leading to
aberrant hippocampal hyperactivation, and therefore, impaired
mnemonic discrimination of episodic memories (Sinha et al.,
2018). The indirect effects of APOE ε4 via fitness remain
somewhat ambiguous, with some studies reporting aerobic
fitness-related benefits only in APOE ε4− individuals (Podewils
et al., 2005; Lautenschlager et al., 2008; Allard et al., 2017),
while other studies report those benefits only in APOE ε4+
individuals (Schuit et al., 2001; Rovio et al., 2005; Smith

et al., 2011). However, exercise-induced upregulation of BDNF,
and its influence on hippocampal plasticity, may serve as a
possible mechanism for the indirect influence of APOE ε4
(Allard et al., 2017).

Meanwhile, ABCA7 rs115550680 directly impacts the
brain through Aβ facilitated tauopathy, which negatively
influences MTL functional connectivity, and consequently,
behavioral generalization (Sinha et al., 2019). Although
ABCA7 rs3764650 is not a causative variant for AD in African
Americans, and does not directly impact brain structure
and function, it appears to confer indirect consequences on
cognition and AD risk by moderating the effects of aerobic
fitness through dysfunctional lipid metabolism and ABCA7
expression (Berg et al., 2019).

While the current schematic (Figure 1) of genetic influences
on AD risk in African Americans is a first step, additional studies
are needed to verify the molecular mechanisms underlying the
link between genetic risk and pathogenic pathways; the potential
contribution of brain lipid homeostasis in the MTL should be
a focal point. It is also important to determine if ABCA7 and
APOE have any common pathways mediating the effect on
MTL structure and function. Furthermore, comprehensive
single-cell type transcriptome analyses in human and mouse
brains may be necessary to determine cell-specific contributions
of ABCA7 risk variants to AD pathogenesis. For instance,
ABCA7 rs115550680-related dysregulation of lipid metabolism
may specifically target the neurons accelerating APP processing
and Aβ production, while, ABCA7 rs3764650 may impact
Aβ clearance by the microglia, known to play a pivotal role
in mediating exercise-dependent enhancement of hippocampal
neurogenesis (Vukovic et al., 2012).
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Several studies have shown qualitative and quantitative
differences in AD between African Americans and European
Americans. One such study found racial differences in
cerebrospinal fluid (CSF) and structural MRI biomarkers of
AD in an elderly cohort; despite comparable CSF Aβ42 levels,
white matter hyperintensity (WMH) volume, and hippocampal
volume, the same degree of WMH had a greater influence
on cognition in African Americans as compared to European
Americans (Howell et al., 2017). Since WMH is a marker of
vascular dysfunction, which African Americans experience
at a higher rate than European Americans (Obisesan et al.,
2012), these results may indicate that genes such as APOE
and ABCA7, which regulate lipid metabolism, differentially
affect African Americans. For example, the direct and indirect
effects of ABCA7 have not been validated in other racial groups.
ABCA7 rs115550680 is monomorphic on the non-risk minor
‘‘A’’ allele in European Americans (Reitz et al., 2013; Machiela
and Chanock, 2015). As such, ABCA7 rs115550680 may
confer AD risk selectively in African Americans, and, in
conjunction with the indirect effects of ABCA7 rs3764650, may
contribute to the higher incidence rate of dementia and AD in
this population.

It is imperative that the studies presented here be replicated
across diverse subject populations for a more representative
and comprehensive understanding of AD progression and
outcomes. At the same time, it will be crucial for future studies
to examine race-specific AD biomarkers and consequences.
Finally, researchers should explore the interplay between genetic
variation and other modifiable lifestyle factors, such as diet and
sleep patterns, to understand whether the benefits of potential
interventions are similar for those with and without a genetic risk
for dementia and AD.
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