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and trace conditioning can be spared following hippocampal lesion. Here, we present an
extension of our prior trial-level models of hippocampal function and stimulus represen-
tation that can explain these findings within a unified framework. Specifically, the current
model includes adaptive recurrent collateral connections that aid in the representation of
Associative learning intra-trial temporal information. With this model, as in our prior models, we argue that the
hippocampus is not specialized for conditioned response timing, but rather is a general-
purpose system that learns to predict the next state of all stimuli given the current state of
variables encoded by activity in recurrent collaterals. As such, the model correctly predicts
that hippocampal involvement in classical conditioning should be critical not only when
there is an intervening trace interval, but also when there is a long delay between CS onset
and US onset. Our model simulates empirical data from many variants of classical
conditioning, including delay and trace paradigms in which the length of the CS, the
inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations,
future directions, and several novel empirical predictions of this temporal processing
model of hippocampal function and learning.
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1. Introduction

Classical conditioning, in which a cue (the conditioned
stimulus or CS) is paired with a reflex-evoking unconditioned
stimulus (US) until the CS comes to produce an anticipatory
response (the conditioned response or CR) has proven a
useful testbed for examining the psychological principles
and neurobiological substrates of learning. Under many
circumstances, delay conditioning, in which the CS and US
overlap and co-terminate, is spared or even mildly facilitated
following hippocampal damage (e.g., Berger et al.,, 1983;
Gabrieli et al., 1995; Ito et al.,, 2005, 2006; Schmaltz and
Theios, 1972); conversely, under many conditions, hippocam-
pal lesion disrupts trace conditioning, in which CS offset
occurs before US onset, producing a temporal gap known as
the trace interval (e.g., Beylin et al., 1999; McGlinchey-Berroth
et al.,, 1997; Solomon et al., 1986; Weisz et al., 1980). This has
led some researchers to assume that the hippocampus plays
a more important role in trace than in delay conditioning
(Beylin et al., 1999; McGlinchey-Berroth et al., 1997; Solomon
et al., 1986)—as we discuss below, this assumption ignores
empirical findings on the role of the hippocampus in delay
conditioning. Along the same lines, some studies of humans
and non-human animals use trace conditioning as a canoni-
cal task to demonstrate evidence of hippocampal dysfunction
in transgenic models, healthy aging, and pharmacological
models (Brown et al., 2010; Disterhoft et al., 1999).

However, there are strong reasons to challenge this delay/
trace dichotomy. First, it has long been known that the
hippocampus shows learning-related changes during acqui-
sition of the delay CR in intact animals and humans. These
changes include the development of responses by some
hippocampal pyramidal neurons that precede the behavioral
eyeblink CR and mirror its form (Berger et al.,, 1976, 1983;
Berger and Thompson, 1978; Green and Arenos, 2007;
Thompson et al.,, 1980). Initially, these responses occur in
the US period, but increases in the CS period occur at about
the time that behavioral CRs appear, and decline with
continued training (for review, see Christian and Thompson,
2003). Similar hippocampal activity occurs in rabbits given
trace conditioning (Weiss et al., 1996) but not in rabbits given
unpaired CS/US trials (Solomon et al., 1986).

Functional imaging studies in humans show a similar
pattern of learning-related activity in the hippocampus dur-
ing delay eyeblink conditioning to those observed in animals
(Blaxton et al., 1996; Cheng et al., 2008; Knight et al., 2004
Stein and Helmstetter, 2004; Logan and Grafton, 1995;
Schreurs and Alkon, 2001). Thus, these data suggest that —
even if the hippocampus is not necessary for acquisition of a
delay CR - it nevertheless normally plays a role. This
challenges the simple view of delay conditioning as hippo-
campal-independent, and begs a more nuanced view of the
difference between brain substrates that are sufficient to
mediate a learned response, versus those that are normally
involved.

Second, under many conditions, delay conditioning is
spared or slightly enhanced following hippocampal lesion.
Specifically, the ability of hippocampal lesioned animals to
acquire a delay eyeblink CR depends on the length of the CS

interval. Specifically, while hippocampal-lesioned rats can
acquire an eyeblink CR when the delay between CS onset and
US onset is short, they are impaired when the delay is
lengthened (Beylin et al., 2001). Thus, short-delay condition-
ing is spared by hippocampal lesion, but long-delay condi-
tioning is not. Further, disruption of the hippocampus, via
electrical stimuli or pharmacological intervention, can retard
acquisition of even a short-delay CR (Kaneko and Thompson,
1997; Sakamoto et al., 2005; Salafia et al., 1979, 1977; Solomon
and Gottfried, 1981; Solomon et al., 1983). Together, these
results document that delay conditioning is not always
spared following hippocampal lesion or disruption.

Third, although trace conditioning is often disrupted by
hippocampal lesion, this is not always the case. For example,
Thompson et al. (1980) speculated that the hippocampus
might be involved in trace conditioning, to bridge the tem-
poral gap between CS and US. Solomon et al. (1986) presented
an early study showing that dorsal hippocampal lesions
disrupted trace eyeblink conditioning in rabbits, by decreas-
ing the number of CRs. However, other studies followed that
reported no trace conditioning impairment in hippocampal-
lesioned animals (James et al., 1987; Port et al., 1986).

Another factor affecting the hippocampal-dependence of
trace conditioning may be differences in the trace interval
used. In studies where the trace interval has been explicitly
varied, a deficit in trace conditioning appears only for long
trace intervals. Thus, for example, hippocampal-lesioned
rabbits are impaired on eyeblink CR acquisition with a long
(500 ms) but not a short (100 ms CS or 300 ms) trace interval
(Moyer et al,, 1990). There may also be interactions between
CS duration, and trace interval: Steinmetz and colleagues
(Walker and Steinmetz, 2008) found that hippocampal-
lesioned rats were impaired relative to controls on acquisi-
tion of an eyeblink CR when the CS duration was 50 ms and
the trace interval was 500 ms, but not when the CS duration
was 500 ms and the trace interval was 50 ms. In addition,
Shors and colleagues (Beylin et al., 2001) showed that -
although hippocampal-lesioned rats were impaired at both
trace and long-delay eyeblink conditioning - once the
lesioned animals had acquired a long-delay CR, they could
then learn and perform the trace CR. Together, these results
document that, at least under some circumstances, subjects
with hippocampal lesion can acquire a trace CR as well as
matched controls.

In summary, while the idea that trace conditioning is
hippocampal-dependent whereas delay conditioning is
hippocampal-independent provides a useful rule of thumb,
it is not sufficient to adequately address the full range of
existing data. An additional complication involves the inter-
stimulus interval (ISI). When the ISI is short, response
systems (such as the brainstem and cerebellum for eyeblink
conditioning) can successfully learn CS-US associations and
produce a well-timed CR. When the ISI is longer, the hippo-
campus helps to bridge the temporal gap between CS and US,
facilitating production of a well-timed CR. Thus, in the case
of eyeblink conditioning, both short-delay and short-trace
paradigms can be acquired without impairment by
hippocampal-lesioned animals; however, both long-delay
and long-trace paradigms are disrupted following hippocam-
pal lesion.
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Consistent with this view, although infant rats (with
immature hippocampus) can acquire short-delay condition-
ing, they are impaired at both long-delay and trace condition-
ing, which emerge in parallel during later development
(Barnet and Hunt, 2005; Ivkovich et al.,, 2000). Thus, these
data all suggest that in addition to the presence of a trace
interval, the duration between CS onset and US arrival
determines whether hippocampal mediation is required, as
is the case in short- and long-delay conditioning.

Interestingly, when Hoehler and Thompson (1980) first
speculated that trace conditioning might be hippocampal
dependent, they did so based on their studies of ISI manip-
ulations in eyeblink conditioning, and on their findings that
the hippocampus appeared to be involved in forming a
temporal map of the learned behavioral response to be made,
allowing for the CR to be accurately timed even when the ISI
is beyond the timing parameters that are “optimal” for the
basic associative substrate. Thus, for example, the “optimal”
parameters for eyeblink conditioning (operationalized in
terms of acquisition speed) may be a few hundred millise-
conds and may reflect temporal processing mechanisms in
other structures such as the cerebellum.

As discussed by Christian and Thompson (2003), optimal
temporal parameters for learning in the cerebellum are
50-200 ms between CS and US presentation. Most trace
conditioning studies on animals use a trace interval of
500 ms to induce hippocampal involvement in task learning.
Optimal parameters for fear conditioning tend to be an order
of magnitude longer (usually>1s, see for example, Bevins
and Ayres, 1995), and may reflect temporal processing
mechanisms in the amygdala. But in fear conditioning, just
as in eyeblink conditioning, hippocampal lesions affect trace
conditioning as a function of the trace interval, so that
hippocampal lesions impair expression of contextual fear
conditioning with long but not short trace intervals
(Chowdhury et al., 2005; Pang et al., 2010). In other words,
we argue that the hippocampus plays a similar role in both
eyeblink and fear conditioning, but temporal differences in
optimal ISI length for eyeblink and fear conditioning acquisi-
tions are, respectively related to processing in the cerebellum
and amygdala.

Extending this principle beyond classical conditioning,
other brain systems mediate other behavioral responses,
and each may have an operating window of temporal delays
that can be spanned; in each case, these brain systems alone
may be capable of mediating learning with sufficiently short
delays, but as the delay is lengthened, hippocampal media-
tion becomes critical. This basic idea is consistent with a large
number of theories of hippocampal-region function (e.g.,
Hoehler and Thompson, 1980; Rawlins, 1985; Wallenstein
et al,, 1998) and finds broad support from a range of prepara-
tions. For example, in delayed non-matching-to-place in an
eight-arm radial maze, rats with hippocampal lesion can
learn under short delays, but are impaired when the delay
period is extended (Lee and Kesner, 2003). Similarly, in
delayed non-match to sample (DNMS), primates with lesions
limited to the hippocampus (sparing nearby medial temporal
areas) can learn the non-matching task as well as controls,
but show increasing impairments as the delay between
sample and response is lengthened (Zola-Morgan and Squire,

1986). In each case, the important factor determining hippo-
campal dependence is not presence or absence of a stimulus-
free gap, but rather the length of the interval across which
information must be maintained before responding.

Again, similar findings have also been reported in human
studies. For example, humans with bilateral hippocampal
damage are impaired relative to healthy controls on temporal
and spatial estimation at long, but not short, delays (Kesner
and Hopkins, 2001). Patients with medial temporal lobe and
hippocampal lesions also perform much better on relational
memory tasks when the interval between learning and
memory test is short than long. Specifically, Squire and
colleagues (Jeneson et al.,, 2010) found that patients with
medial temporal lobe damage do not show impairment in
performing relational learning tasks when the delay between
learning and test is short (1s). Similarly, Ryan and Cohen
(2004) have tested amnesic patients on a relational memory
task using both short and long delay periods. They have
found that patients are impaired only for the long-interval
condition.

Thus, a conceptualization of eyeblink conditioning in
which the length of the ISI, in addition to the presence of a
trace interval, determines hippocampal dependence would
appear to help integrate our understanding of the eyeblink
conditioning literature with that of other preparations.

In this paper, we present an extension of our prior trial-
level computational models of hippocampal function and
stimulus representation. Our models assumed that the hip-
pocampal region interacted with other brain systems, such as
cortex and cerebellum, during associative learning, specifi-
cally by forming new stimulus representations that provided
information about stimulus-stimulus and contextual regula-
rities (Gluck and Myers, 1993, 2001 Myers and Gluck, 1994;
Moustafa et al., 2009). These models were correctly able to
account for the effects of hippocampal lesion and disruption
on various trial-level phenomena such as acquisition, dis-
crimination, latent inhibition, and contextual shift effects.
A later extension which modeled the effects of cholinergic
manipulations by altering the hippocampal region learning
rate was correctly able to address the effects of cholinergic
agonists and antagonists on classical conditioning (Myers
et al.,, 1996, 1998; Moustafa et al., 2010). However, these earlier
models simulated trial-level information only, meaning that
they could simulate whether a CR is given on a particular
trial, but could not address within-trial events, such as the
relative timing of CS and US onset. As such, these earlier
trial-level models could not address the differences between
delay and trace conditioning, nor the effects of manipulating
the length of the ISI or trace interval. The need to address
these aspects of the empirical data partially motivates the
current work.

Our new model simulates performance in various delay
and trace eyeblink conditioning data within a unified frame-
work. Specifically, the current model includes adaptive recur-
rent collateral connections that aid in the representation of
intra-trial temporal information. With this model, as in our
prior models, we argue that the hippocampus is a general-
purpose system that learns to predict the next state of all
stimuli given the current state of variables encoded by
activity in recurrent collaterals. As such, the model correctly
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predicts that hippocampal involvement in associative learn-
ing, including classical conditioning, should be most critical
not only when there is an intervening trace interval, but also
when there is a long delay between CS onset and US onset,
as in short-delay vs. long-delay conditioning.

1.1. Modeling

Fig. 1 shows a schematic diagram of the current model, which
builds off our prior models of hippocampal-region processes
in classical conditioning. Like our earlier models (Gluck and
Myers, 1993, 2001; Moustafa et al., 2009), the present model
conceives of the hippocampal region (Fig. 1, green) as a
predictive autoencoder, which learns to predict the next state
of the world given current inputs. In the process, the
hippocampal-region network forms new stimulus represen-
tations in its internal layer that compress (or make more
similar) the representations of co-occurring inputs while
differentiating (making less similar) the representations of
inputs that make different predictions about future events
such as US arrival. In other words, the essential function of
the hippocampus in our model is monitoring environmental
regularities and using prior experience and current inputs to
predict what (out of all possible events) is likely to happen
next. Classical conditioning is a good example of prediction
processes because the most salient event — the US arrival -
can be predicted with high accuracy by learning the CS and
the ISI. In our model, the hippocampal network learns not
only whether a particular CS will be followed by a US, but
when this will occur.

Also as in our prior models, the hippocampal-region net-
work communicates with a second motor network (Fig. 1,
blue), which is assumed to represent some of aspects cortical
and cerebellar substrates of motor learning. The motor out-
put network is modeled as a single adaptive node that learns
to map from weighted inputs specifying the presence of CSs,
as well as contextual or background stimuli and an efferent
copy of the CR. The activities of the hippocampal-region
network hidden layer units are also provided as inputs to
the motor output network, allowing the motor output net-
work to incorporate the adaptive representations formed in
the hippocampal-region network into its own ongoing learn-
ing. The output from the motor response network represents
the behavioral CR. The difference between this output (CR)
and the US constitutes an error signal that can be used to
train the connection weights in the motor response network,
using an error correction rule such as the least-mean squares
or LMS rule (Widrow and Hoff, 1960); full details of the
learning rule and other model details are provided in
Section 4.

The major differences between this model and the prior
models are (1) the consideration of each trial not as a discrete
event, but as a series of timepoints, (2) the addition of
recurrent pathways within the hippocampal-region and
motor output networks. We discuss each of these points
below; full simulation details are provided in Section 4.

First, to simulate within-trial events, each trial is divided
into a number of timesteps, which represent small time
intervals within a conditioning trial (e.g., 50 ms). Typically,
contextual inputs are present during the entire trial, and are

Hippocampal-
Region Network

/Prediction of next\

Motor output
Network

Output

00

Current state at time t

CS and '
contextual inputs (CS and contextual inputs,
at time t as well as US and prior CR)

Fig. 1 - The hippocampal model which includes recurrent
connections within the motor and hippocampal networks,
as well as processing of within-trial events. In the motor
network, CS inputs project through modifiable weights to
the output node, which in turn project to motor areas that
drive the behavioral response (eyeblink CR). The prediction
error module receives excitatory US projections and
inhibitory CR projections, and provides the response error
(US-CR) as a “teaching signal” to the motor network. The
hippocampal-region network receives inputs detailing the
current state of all inputs at time t, including presence or
absence of CSs, contextual cues, US, and CR. The
hippocampal-reigon network learns to produce outputs that
predict the state of all inputs at the next timestep t-+1; in the
process it forms new stimulus representations in its
internal node layer that are sensitive to stimulus co-
occurrence and association with the US. In the intact model,
these new representations also provided as input to the
motor network, which can then map from them to new
behavioral responses. Arrows represent weighted
connections; filled circles=inhibitory connections. (For
interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

present alone during the first several timesteps of a trial; then
one or more CSs may be presented for a specified number of
timesteps; the US, when present, appears for a single time-
step. The US may overlap with the CS (as in delay condition-
ing) or may occur after CS cessation (as in trace conditioning).
A further series of context-alone presentations ends the trial
(simulating the intertrial interval or ITI). Fig. 2 provides
schematic illustrations of some example paradigms that we
simulate in our model.

A second difference between the prior and current models
is that Fig. 1 includes recurrent connections within the
hippocampal and motor output models. Specifically, the
hippocampal region network includes recurrent connections
within the internal layer, while the motor output network
contains a feedback CR pathway, carrying information
regarding the current state of the CR. Provision of feedback
within the hippocampal network allowed the activation of
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Fig. 2 - Schematic illustration of stimulus events during a single trial of conditioning. (A) Delay conditioning (ISI=4): On each
trial several context-alone presentations are given (not shown), followed by CS onset (left dashed line); the CS remains
present for five timesteps. The US appears for a single timestep (US onset marked by right dashed line) and co-terminates
with the CS. Additional context-alone presentations complete the trial (not shown). (B) Trace conditioning (ISI=4) is similar,
except that the CS is present for only two timesteps, producing a two-timestep trace interval (TI=2) before US arrival.

(C) Long-delay conditioning (ISI=_8) is similar to short-delay conditioning except that the CS is present for 8 timesteps before
the US appears; CS and US co-terminate. (D) Short-trace conditioning in which the US appears on the next timestep after CS
offset. Abbreviation, ISI, interstimulus interval; TI, trace interval.
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Fig. 3 - Simulation results of delay and trace conditioning depicted in Fig. 2A and B. (A) For a given short ISI (here, ISI=4), the
intact model acquires a delay CR more quickly than a trace CR. (B) Under the same parameters, the lesioned model can learn
a delay CR but is severely impaired at acquiring the trace CR. In this figure, and in subsequent figures depicting learning
curves, the mean model output is defined as the output of the motor network at timestep t—1, where t is the time of US
arrival on that trial; results shown are averaged over 5 simulation runs; bars represent standard error of the mean. (Results -
not shown - are similar if CRs are scored as the peak output during the time interval between CS onset and US onset.) In all
subsequent figures, HL refers to hippocampal-lesioned model.

internal layer nodes at any time step to be a function of as in our prior models, the effects of cholinergic agonists and

external (CS and contextual) input and also of the adaptive antagonists are simulated by raising (agonist) or lowering
representation of input from a previous timestep. Because (antagonist) learning rates in the hippocampal-region net-
the weights on these recurrent connections are adaptive, it is work (Myers et al., 1996, 1998; Moustafa et al., 2010).

possible for a sequence of activation patterns to be stored in
the network that “buffers” input information over several
timesteps. Importantly, this buffering function is not pre-

wired into the network, but emerges dynamically as a result 2. Results

of training and learning. Anatomical studies support the

existence of such recurrent loops in the hippocampal region, The recurrent model of Fig. 1 successfully simulates the basic
particularly hippocampal subfield CA3 (Amaral et al., 1990; findings usually interpreted as evidence that trace condition-
Amaral and Witter, 1989) as well as the dentate gyrus (Amaral ing is hippocampal-dependent but delay conditioning is

et al., 2007). Prior models of the hippocampus have also hippocampal-independent . Fig. 3A shows that, for a short
included recurrent connections to simulate conditioning ISI (ISI=4), delay conditioning (Fig. 2A) is acquired by the

tasks (see for example, Rodriguez and Levy, 2001). intact system more quickly than trace conditioning; this is

In this model as in our prior models, hippocampal lesion is consistent with empirical data (Beylin et al., 2001). As men-
simulated by disabling learning in the hippocampal-region tioned above, the role of the hippocampus in our model is
network, in which case the motor output network can still predicting next state of stimuli. Accordingly, the more unpre-
learn new responses by modifying weights from the CS and dictable the CS (i.e, if CS is not always present at some
contextual inputs, but no new adaptive stimulus representa- timesteps including the trace interval as in trace condition-
tions are formed in the hippocampal region (Gluck and ing), the more difficult the prediction problem becomes, and

Myers, 1993; Myers and Gluck, 1994). In addition, and also the longer it takes to learn to predict the right US at the right
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time. This explains why trace conditioning generally takes
longer to acquire than delay conditioning.

Interestingly, mathematical models and empirical data also
show the existence of an “Aha!” moment during learning by
human subjects, defined as an abrupt increase in perfor-
mance (Bower, 1961; Trabasso and Bower, 1968). Rats and
rabbits also show evidence of an “aha” effect, manifest as
abrupt increases in conditioned eyeblink responses during
both delay and trace conditioning (Gallistel et al., 2004). We
argue that the abrupt jump in performance in our model
occurs because early in training the internal layer of the
hippocampal module learns to represent the CS during
all timesteps of the ISI. Once this process is complete,
there is a fairly quick process of mapping from these
representations to behavioral output, resulting in an abrupt
increase in performance.

Fig. 3B shows that, given ISI=4, delay conditioning in the
lesioned model is comparable to that in the intact model, but
that trace conditioning is severely impaired; again, this is
consistent with empirical data (Berger et al.,, 1983; Beylin
et al., 1999; Gabrieli et al., 1995; Ito et al., 2005, 2006;
McGlinchey-Berroth et al., 1997; Schmaltz and Theios, 1972;
Solomon et al., 1986; Weisz et al., 1980). Without the hippo-
campal region network, the model output network alone
cannot perform trace conditioning since it cannot form
internal-layer node representations as described above to
span CS-free intervals in trace conditioning. We obtained
similar results when the hippocampal network was left in
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place but hippocampal plasticity was blocked, which is in
agreement with empirical data from Sakamoto et al. who
found that the administration of NMDA blockers to hippo-
campus in mice abolished trace but not delay conditioning.

However, the simple learning curves of Fig. 3 mask several
additional points: first, both delay and trace conditioning in
the intact model are affected by ISI; second, the pattern of
impaired and spared learning in the lesioned model reflects
not only the presence or absence of a trace interval, but also
the ISI. In each case, the effects of ISI manipulation in the
model parallel those observed empirically. Below, we present
simulation results, along with discussion of the relevant
empirical data, for (1) delay conditioning at a variety of
inter-stimulus intervals (ISIs) and (2) trace conditioning with
short and without trace intervals.

2.1.  Delay conditioning

We first present simulation results for delay conditioning
with short and long IS, in the intact and lesioned models.

2.1.1. Delay conditioning: Short ISI

In delay conditioning with a short ISI (ISI=4), both the intact
and lesioned models can learn a CR within a few hundred
trials, as shown in Fig. 3. Fig. 4A shows the same data, with
intact and hippocampal lesioned model data presented
together for comparison, and also shows the absence of

Short-delay conditioning

ISI=4- Hippocampal hidden layer trace

C C C C 3
Within-trial Events

Fig. 4 - Short-delay (ISI=4) conditioning in the model. (A) Both intact and lesioned model can learn the eyeblink (EB) CR
(CR, solid lines) while maintaining low background responding measured at the timestep before CS onset (pre-CS, dashed
lines). (B) Activity of the hippocampal-region output node learning to predict the next state of the US in the intact model.
(C) Individual responses of two representative hippocampal network hidden units during the last conditioning trial, one
(light blue) which responds at CS onset and continues to respond throughout the CS period, and one (dark blue) which
responds during the CS period, close to the time of expected US arrival. The x-axis indicates within-trial events:.=context
only (no CS or US present on that timestep); c=CS present; u=US present; *=both CS and US present; HL, hippocampal
lesion; Hipp; hippocampus. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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model output during the pre-CS period of each trial (one
timestep before CS onset). This is consistent with the large
body of evidence documenting that hippocampal lesion does
not impair acquisition of a delay eyeblink CR in rabbits
(Schmaltz and Theios, 1972), rats (Christiansen and Schmajuk,
1992), or humans (Gabrieli, et al., 1995).

However, the recurrent model allows analysis not only of
learning across trials, as in Fig. 4A, but also consideration of
within-trial events, including the shape of the CR. Empirical
data have also documented learning-related changes in
hippocampal neuronal activity during delay eyeblink condi-
tioning. Specifically, as discussed above, hippocampal neu-
rons of the hippocampus show activity during conditioning
trials that is similar in form to the learned response. This
“hippocampal model” of the behavioral response tends to
peak slightly earlier than the behavioral CR (e.g., Berger and
Thompson, 1978). Fig. 4B shows activity pattern of the output
node in the hippocampal-region network that is trained to
predict the next state of the US. A similar pattern to that
shown in Fig. 4B develops in the hippocampal-region output
node that learns to predict the CR (not shown); other
hippocampal-region output nodes respond to CS onset, while
still others respond to neither the CS nor the US. This is
consistent with empirical data showing that, although some
hippocampal CA1 pyramidal neurons show the “hippocampal
model” of the CR, other neurons respond to the CS or do not
show CS-evoked changes in activity (e.g., Berger and
Thompson, 1978).

To better explain how the hippocampus participates in
learning delay conditioning, Fig. 4C shows the activity of
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two hippocampal hidden nodes which increase their activity
during the ISI, but at different time steps after CS onset.
Other hippocampal hidden units (not shown) have other
response profiles, some for example stay on or off during
the entire experiment, and these do not contribute to model
performance (for similar results, see Rodriguez and Levy,
2001). This variation in responses among hippocampal net-
work hidden nodes is similar to the neural activity of the
hippocampus, where different neurons respond at different
points within a trial; together, the set of hippocampal net-
work hidden units is sufficient to represent events and time-
steps spanning the trial duration.

2.1.2. Delay conditioning: Long ISI

Fig. 5A shows learning curves for the intact and lesioned
model in a long-delay paradigm, in which CS duration is 9
timesteps (ISI=8). Under these parameters, the hippocampal
lesion model does not reach the same level of responding as
the intact model. Empirical data likewise suggest that,
although hippocampal-lesioned animals can learn short-
delay eyeblink CRs, they are impaired at long-delay condi-
tioning (Beylin et al., 2001; Port et al., 1985). Here also, the
hippocampal network’s prediction of the US is very similar to,
but precedes, the behavioral response (Fig. 5B). As mentioned
above, the role of the hippocampus in US prediction also
explains behavioral differences in short and long-delay con-
ditioning. In our model, the more unpredictable the CS (i.e.,
the more distal in time the CS is from the US as in long-delay
conditioning), the more difficult the prediction problem

Long-delay conditioning

ISI=8 - Hippocampal hidden layer trace

c ¢ ¢ ¢ ¢ ¢ ¢ ¢ =%
Within-trial Events

Fig. 5 - Long-delay (ISI=8) conditioning in the model. (A) As in Fig. 4, both the intact and HL model can learn long-delay
condition but at a lower rate. (B) Hippocampal prediction of the US in the intact model that produced the responses in (A).
(C) Individual responses of three representative hippocampal network hidden units during the last conditioning trial,
showing that different units respond to CS onset (purple), later in the CS period (blue), or to predicted US arrival (green).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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becomes, and the longer it takes to learn to predict the right
US at the right time, as in long-delay conditioning.

We also found that the hippocampal-lesioned model is
more likely to produce CRs at the wrong time during the ISI
interval. To better understand the hippocampus’s role in
long-delay conditioning, Fig. 5C shows the activity of several
representative hippocampal hidden nodes. As in the simula-
tion of delay conditioning (Fig. 4C), some hippocampal units
increase their activity after CS onset (e.g., Fig. 5C, purple line),
while others show activity later during the ISI. The
hippocampal-lesioned model does not form such traces,
and thus shows impairment performing long-delay condi-
tioning tasks.

Fig. 6 shows mean trials to a criterion of 10 consecutive
trials with CR>0.8 for the intact model, under a range of ISI
from 1 to 12 timesteps. The finding that learning in the intact
model is faster for short ISI than long ISI is consistent with
empirical data (Hoehler and Thompson, 1980; Millenson
et al., 1977; cf. Salafia et al., 1975). Our simulation results
are in agreement with empirical studies. For example, Beylin
et al. (2001) contrast two ISIs (short vs. long-delay condition-
ing), and other studies have also shown that even longer ISIs
are more difficult to learn (Servatius et al., 2001; Solomon and
Groccia-Ellison, 1996).

2.2. Trace conditioning in intact and lesioned brains

In this section, we first present simulation results of trace
conditioning with short trace interval, and then in a modified
trace conditioning paradigm where CS and US do not overlap,
but US appears on the timestep immediately following CS
cessation).

2.2.1. Trace conditioning

Fig. 7A presents the trace conditioning data from Fig. 3, with
intact and lesioned models plotted together for ease of
comparison. Fig. 7A shows that the intact model begins to
give a trace response after about 500-600 trials, and a strong
response with little responding in the pre-CS period after
about 1000 trials. Note that by the end of 1000 trials, the
hippocampal-lesioned model has not begun to give any
trace responses (Fig. 7B). This is consistent with the severe
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Fig. 6 - Effect of varying ISI. (A) Trials to criterion on delay
conditioning in the intact model varies as a function of ISI.
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impairment in trace conditioning observed in rabbits with
hippocampal lesion (Moyer et al., 1990; Solomon et al., 1986;
Weisz et al.,, 1980) and in amnesic humans with bilateral
hippocampal damage (McGlinchey-Berroth et al., 1997).

Note that the development of a well-trained trace
responses takes about as many trials as it takes the intact
model to reach criterion in the long-delay (ISI=8) condition-
ing task. Similarly, Beylin et al. (2001) found that, while trace
was more “difficult” (in terms of trials to criterion) than delay
conditioning when ISI was equated, long-ISI delay condition-
ing could be about as “difficult” as short-ISI trace condition-
ing for intact rabbits.

Fig. 7C shows the hippocampal prediction of the US; after
1000 training trials, the hippocampal network has developed
a well-timed prediction of the US. As in earlier figures, the
hippocampal activity slightly precedes the arrival of the US,
because the hippocampal network is trained to predict
upcoming events. But earlier in training, around trial 500,
the hippocampal network is already giving a well-timed
response—arguably before the behavioral CR has emerged.
This is consistent with empirical data showing that a small
percentage of hippocampal pyramidal cells show a “model”
of the behavioral CR in trace conditioning (Weiss et al., 1996),
and that this hippocampal neuronal activity precedes devel-
opment of a behavioral trace CR (McEchron and Disterhoft,
1997; Weible et al., 2006).

Fig. 7D shows representative hippocampal hidden units’
activity during the ISI and trace interval. As in the simulation
of long-delay conditioning (Fig. 5C), some hippocampal units
increase their activity at different timesteps during the ISI
and trace interval. This is agreement with earlier computa-
tional and empirical results that different hippocampal cells
code for CS representation during the trace interval (for
similar results, see Rodriguez and Levy, 2001). Importantly,
below, we show how hippocampal hidden units’ activity
develop over learning until they become stable after the
“AHA” moment (see Appendix).

2.2.2. Trace conditioning: Short interval

In a much easier version of the trace conditioning task, CS
duration remains at 2 timesteps but the trace interval is
shortened so that the US appears immediately after CS
cessation (TI=0), although (unlike delay conditioning) the
CS and US do not overlap. The intact model learns this task
very quickly—reaching criterion within about 100 trials
(Fig. 8A). As mentioned above, the role of the hippocampus
in US prediction also explains behavioral differences in long-
and short-trace conditioning. In our model, the CS is closer in
time to the US presentation in the short-trace conditioning,
and thus US prediction is easier in this case, and it takes
fewer trials to predict the right US at the right time.

The hippocampal lesion model is still impaired, although
some hippocampal lesion simulations can acquire a weak
trace CR with extended training. Along similar lines, Walker
and Steinmetz (2008) and Moyer et al. (1990) found that,
although hippocampal lesion animals were impaired at trace
conditioning, their performance was improved if the TI was
reduced—although the hippocampal lesion animals were still
impaired relative to control animals. From these data, Walker
and Steinmetz (2008) concluded that, while the hippocampus
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Fig. 7 - Trace conditioning paradigm with ISI=4 and TI=2. (A, B) Across-trials responding in the intact and HL model given
100 training trials (left) and in the HL model given 10,000 training trials, right). (C) Activity of the hippocampal-region output
node learning to predict the next state of the US in the intact model. (D) Individual responses of three representative
hippocampal network hidden units during the last conditioning trial. As in long-delay conditioning, some nodes respond
to CS onset (blue), others later in the CS period (purple), and some peak at the time of expected US arrival (brown).
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Fig. 8 — The “simplest” version of trace conditioning in the model, in which US onset occurs just after CS cessation (TI=0);
see Fig. 6D for task description. (A) The intact model learns this task quickly; the HL model is impaired, but learns to produce

some CRs after extended training.

is important for trace conditioning, the relative lengths of CS
and trace interval are also important.

2.3.  Pharmacological manipulations

Finally, we have simulated the effects of cholinergic agents
on delay and trace conditioning. First, we have also found
that reducing hippocampal plasticity in the model (by
decreasing learning rate values) slightly impairs delay con-
ditioning but severely impairs trace conditioning (Fig. 9A),
similar to the results of cholinergic antagonists on eyeblink
conditioning discussed above.

In addition, we simulated the effects of low- and high-dose
of cholinergic agonists on delay and trace conditioning by

increasing hippocampal plasticity in the model (through
manipulation of learning rate parameter in the hippocampal
module). In empirical studies, mild doses of cholinergic ago-
nists slightly enhance delay conditioning in aged rabbits
(Woodruff-Pak and Santos, 2000; Woodruff-Pak et al., 2001),
and significantly enhance performance in trace eyeblink con-
ditioning (Simon et al, 2004); the model shows the same
effects (Fig. 9B). Our simulation results also suggest that
enhancing learning abilities in healthy animals using choliner-
gic agonists may improve more difficult tasks, such as trace
conditioning (Simon et al.,, 2004). Finally, administration of a
large dose of cholinergic agonists mildly impairs delay con-
ditioning, but severely impairs trace conditioning in the model
(Fig. 9C). This is a new prediction of the model, and it is
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Fig. 9 - Simulation results show that (A) cholinergic antagonists mildly affect delay conditioning but severely impair trace
conditioning. In contrast, (B) mild doses of cholinergic agonists slightly enhance delay conditioning and significantly
enhance performance in trace eyeblink conditioning, while (C) large doses of cholinergic agonists mildly impair delay

conditioning, but severely impair trace conditioning.

plausible since other experimental studies have shown that
the administration of large doses of cholinergic agonists to
animals interferes with the performance of hippocampal-
based tasks (Dumery et al., 1988; Ennaceur and Meliani, 1992).

3. Discussion

Here, we have presented a computational model of the
hippocampal region and its role in stimulus representation,
that includes the ability to simulate within-trial events, and
thus to address not only trial-level data regarding whether a
behavioral response is emitted, but within-trial data regard-
ing the timing of that response. Applied to classical eyeblink
conditioning, the model is correctly able to account for the
findings that, in intact animals, learning is slower as the ISI
increases (also see Servatius et al., 2001), that for a given ISI
delay CRs are acquired faster than trace CRs, and that some
(but not all) neurons in the hippocampus show activity
patterns that predict and precede the form of the behavioral
CR. Our model is also in agreement with studies showing that
the hippocampus participates in appetitive (Flesher et al,,
2011, Seager et al., 1999) and fear (Esclassan et al., 2009) trace
conditioning.

The model also addresses data from hippocampal-lesioned
animals including impairments of trace and delay condition-
ing that vary as a function of ISI; thus, both trace and long-
delay conditioning are impaired in the lesioned model, but
both delay and trace conditioning are spared if the ISI is
sufficiently short. Finally, our current computational model
shows how the hippocampus role in stimulus prediction
explains the effects of hippocampal lesion, and cholinergic
agonists and antagonists on delay and trace conditioning.
To our knowledge, this is the first model to simulate these

various delay and trace conditioning results, from both intact
and lesioned animals, using one single framework.

In sum, our model not only simulates behavioral differ-
ences between delay and trace conditioning, but also
addresses a large body of empirical data on the effects of
manipulating ISI on conditioning. Along the same lines, our
model shows that the same computational theory of hippo-
campal function - that is, prediction of future state of the
environment — explains performance in various conditioning
studies. Third, unlike prior models of delay and trace con-
ditioning, our model also shows how hippocampal lesion
(and thus inability to correctly predict US timing) interferes
with some conditioning tasks (e.g., trace conditioning), but
not others (e.g, delay conditioning). Our model also in
agreement with data showing that long-delay conditioning
is acquired more slowly than short-delay conditioning using
a fear conditioning paradigm (Barnet and Hunt, 2005).

3.1.  Computational role of the hippocampus in US
prediction learning and pattern separation

The hippocampus in our model has two related functions:
one is predicting upcoming events (in the output layer) but
the other is developing new stimulus representations in the
hidden layer that allow this prediction. These functions are
interrelated. In other words, if the model is presented with
two sets of stimuli that predict the same outcome, through
learning, they will have largely similar representations in the
hidden layer of the hippocampus. On the other hand, if the
model is presented with two sets of stimuli that predict
different outcomes, they will have different representation
in the hidden layer of the hippocampus. This latter process is
also known as pattern separation or differentiation. Since the
model is presented with relevant stimuli (including CSs, and
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USs) and irrelevant stimuli (including contextual information
such as smell/shape of the cage or testing room, which are
not related to current study being that our focus is on the
difference between delay and trace conditioning), the model
learns to form separate representations of context and other
stimuli. Not only that, but the model also learns to form
representation of the CS in the hidden layer of the hippo-
campus during the trace interval of trace conditioning tasks.
Weight modification (i.e., learning) occurs in connections in
the hippocampus that help form separate representation of
CS and context. Learning takes place in all weights in
the hippocampal module, as we explain in Section 4.2.
This mechanism explains how the hippocampus participates
in US prediction, pattern separation, and learning to repre-
sent stimuli that are not perceptually present as in trace
conditioning.

Importantly, the role of the hippocampus in US prediction
learning also explains behavioral differences between long-
and short-trace conditioning. In our model, the CS is closer in
time to the US presentation in the short-trace conditioning,
and thus US prediction is easier in this case, and it takes
fewer trials to learn to predict the US at the right time than in
long-trace conditioning. The same analysis also applies to
short- and long-delay conditioning. To summarize, the main
function of the hippocampus in our model is US prediction,
which then explain its role in learning to represent input
information in the hippocampus, which in turn explains the
hippocampal role in conditioning tasks.

3.2 Comparison to other hippocampal models
of conditioning

The conception of the hippocampal region as a general-
purpose prediction device, learning to map from current
inputs to expectation of future events, and helping to span
temporal gaps between stimulus and desired response, has
gained a great deal of currency in the last decade, as
empirical data have emerged suggesting that hippocampal
“place cells” encode not only spatial location but also “loca-
tion” in temporal sequences (e.g., Dragoi and Buzsaki, 2006;
Johnson and Redish, 2007; Lehn et al., 2009; Pastalkova et al.,
2008). This is not the first computational model to instantiate
such a function; other computational models have also
focused on putative hippocampal-region roles in temporal
sequence learning or short-term buffering of information, at
various levels of biological and empirical detail (Hasselmo
et al.,, 2000; Hazy et al., 2007, 2006; Howe and Levy, 2007; Levy,
1996; Wiebe et al., 1997), and it is entirely possible that some
or all of these earlier models could also address the delay,
trace, and ISI results which have been simulated here. To
date, only a subset of such existing models of hippocampal
function has been explicitly applied to address classical
conditioning. Of this small set, most existing models have
assumed some degree of “hard-wired” connections that allow
the hippocampal region to perform temporal processing.

For example, some models have assumed that temporal
information is provided to the hippocampus from external
sources. For example, Schmajuk and colleagues proposed a
model of hippocampal-region function based on the atten-
tional models of Pearce and Hall (1980) in which the

hippocampus computes the aggregate prediction of reinforce-
ment - i.e., the expectation of US arrival based on all available
cues (e.g., CSs) — and the difference between this aggregate
prediction and the actual US is then used to compute the
associability of cues contributing to this prediction (also see
Schmajuk and Labar, 2007; Schmajuk and Moore, 1988). These
models assumed that each CS had a memory trace, which was
maximal when the CS was present, and then decayed back to
baseline. This trace could be associated with a subsequent US,
even if the CS and US did not overlap, and thus the model
could perform trace conditioning. Similar assumptions of an
explicit CS trace that occurs outside the hippocampus are
made in other models (Buhusi and Schmajuk, 1996; Schmajuk
and DiCarlo, 1992; Schmajuk and Moore, 1989).

Other models, often known as “tapped delay line” models,
have suggested that the CS trace could arise in the hippo-
campus, with different dentate gyrus cells responding at
different delays to a CS (Grossberg and Merrill, 1996; Ludvig
et al., 2009; Zipser, 1986), generating a spectral representation
of the CS; a CS could be associated with a US at a specific ISI
(with or without a trace interval) by adjusting the weights
from the cell that responded to the CS with the correct delay.
Such models generally require one cell to represent each
possible CS at each possible delay, which leads to a problem
of combinatorial explosion. Further, the biological plausibility
of models invoking tapped delay lines is weakened by the fact
that cellular recordings do not show any obvious CS storage
within the hippocampus (Rodriguez and Levy, 2001) and that,
although hippocampal units display CS-related activity dur-
ing the trace interval in eyeblink conditioning, this activity
shifts across training so that, in a well-trained animal,
neuronal activity tends to model the time-course of the
behavioral CR (e.g.,Solomon et al., 1986).

In contrast to models that assume tapped delay lines or
other explicit representations of a CS trace, the current model
follows in a different tradition of prior models suggesting that
the hippocampus’s ability to maintain stimulus traces across
short delays is not hardwired but adaptive. These models
assume that the high degree of internal recurrency in the
hippocampus, particularly within field CA3, could allow the
hippocampus to store sequences of neural activity by forming
a reverbatory memory (Levy and Sederberg, 1997; Rodriguez
and Levy, 2001; Wallenstein and Hasselmo, 1997a, 1997b;
Wiebe et al.,, 1997; Yamazaki and Tanaka, 2005). Network
models with recurrent connections can adaptively learn to
buffer information across a stimulus-free interval without
requiring a multitude of hardwired delay lines (Levy, 1989).
A few prior recurrent network models have been explicitly
applied to classical conditioning and to trace conditioning in
particular (e.g., Howe and Levy, 2007; Rodriguez and Levy,
2001; Yamazaki and Tanaka, 2005).

For example, Rodriguez and Levy (2001) have considered a
biologically-based model of CA3 in which a CS input excites a
subset of cells, which in turn excite other cells at a short
delay, and so on until a final group of cells representing the
US is excited at the correct temporal distance from CS onset
(see also Levy and Sederberg, 1997). This model has the virtue
that its ability to span a CS-free interval is learned, rather
than hardwired into the network via tapped delay lines. Howe
and Levy (2007) subsequently showed that such a model
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could correctly predict data showing that various subpopula-
tions of hippocampal neurons are activated by the CS, by the
US, or during the trace interval, as well as data showing that
the emergence of neuronal activity that accurately predicts
US onset occurs suddenly after a period of training in rabbits.
However, this model does not consider representational
changes in the hippocampus, nor does it interact with a
motor output module, and so it does not directly generate
CRs, nor can it simulate hippocampal lesion data.

Similar to several of these prior models, the current model
includes a recurrent network as a model of the hippocampal
region, in which different subsets of hippocampal cells
maintain representation of CS information during the ISI in
delay and trace eyeblink conditioning. This is supported by
an empirical study by McEchron and Disterhoft (1997), who
recorded from the CA1 of the hippocampus in rabbits during
trace eyeblink conditioning; results showed that different
hippocampal neurons maintains representation of CS at
different timesteps during the trace interval. As similar to
trace conditioning, other neurophysiological studies have
shown that different hippocampal neurons are activated at
different timesteps during task performance, including spa-
tial navigation (Pastalkova et al., 2008) and sequence learning
(MacDonald et al., 2011).

3.3. Model limitations

In turn, the current model also suffers from some limitations.
First, it is a simple connectionist model, with abstract nodes
that do not simulate the biophysical properties of neurons. As
similar to the Rodriguez and Levy model, Itskov et al. (2011)
show how a recurrent hippocampal network and hippocam-
pal cells can maintain events over time. While the Rodriguez
and Levy model is applied to trace conditioning data, the
Itskov model is applied to spatial navigation tasks. In contrast
to Levy’s and Itskov’s models, the abstraction of our model
allows us to simulate a large number of behavioral data that
were not simulated by Levy’s or other models of the hippo-
campus. Nevertheless, future models should address how
physiologically detailed models of the hippocampus (as in
the model of Rodriguez and Levy, 2001) can simulate perfor-
mance in a large number of behavioral studies, including
conditioning data (as in our model).

Furthermore, our model considers the hippocampal region
as a single functional system, without considering the ana-
tomical and functional differences of different subregions.
However, empirical data strongly suggest that some puta-
tively hippocampal-dependent representational processes
depend more on entorhinal cortex than on the hippocampus
proper (Allen et al., 2002; Coutureau et al., 2002; Jarrard, 1993;
Shohamy et al., 2000). Other experiments have shown that
lesion to CA1, but not to CA3, interferes with performing
paired associates tasks that include temporal delay (Kesner
et al,, 2005). Consistent with this, prior modeling work has
shown that some aspects ascribed by our model to the
hippocampal region as a whole could emerge naturally from
the anatomy and physiology, including redundancy compres-
sion in the entorhinal cortex (Myers et al., 1995) and pattern
separation in the dentate gyrus (Myers and Scharfman, 2009,
2010). The pattern separation function of the hippocampus in

our model is also much in line with the conjunctive encoding
function proposed in O'Reilly’s models (O’'Reilly and Norman,
2002; O’Reilly and Rudy, 2001).

Future empirical work should determine whether trace
conditioning similarly depends primarily on one or more of
the hippocampal subregions. In particular, Czerniawski et al.
(2009) have suggested that ventral, but not dorsal, hippocam-
pal lesions impair trace conditioning, which might mean
either that the ventral hippocampus is more important for
trace conditioning than the dorsal hippocampus, or might
merely reflect the relative importance for trace conditioning
of inputs that preferentially target the ventral hippocampus.
This view is, however, challenged by other physiological
experimental studies, which argue that dorsal CA1 neurons
are more active than ventral CA1l neurons during trace
conditioning (Weible et al., 2006). Future modeling work could
explore these possibilities.

Another limitation of model is not addressing the differ-
ential roles of ventral vs. dorsal hippocampus in conditioning
(nor simulating subregions of the hippocampus including
septum, CA1, CA3, and dentate gyrus). Importantly, there is
no consensus in the literature in the role of dorsal vs. ventral
hippocampus in conditioning, and it is not clear how both
interact during acquisition and performance. For example,
Burman et al. (2006) argue that dorsal (septal) hippocampus is
important for acquisition, while the ventral hippocampus is
important for expression of fear responses (for similar
results, also see Kjelstrup et al, 2002). Interestingly,
Gonzalez-Pardo et al. (2012) found opposite results: dorsal
hippocampus being important for expression of fear
responses, and ventral hippocampus for acquisition! Unlike
the Burman et al. results, Czerniawski et al. (2012) found that
both ventral and dorsal hippocampi are required for the
acquisition of trace conditioning. On the other hand, Wang
et al. (2012) found that dorsal hippocampus is important for
contextual fear conditioning, and that dorsal or ventral
hippocampus is sufficient for subsequent conditioning in a
different context, while Kenney et al. (2012) suggest that
there is a competition between dorsal and ventral hippocam-
pus on control over behavior in contextual conditioning
tasks. Future modeling work, which takes into account
differences in connectivity patterns and cell types in the
dorsal vs. ventral hippocampus, might be able to help
reconcile some of these conflicting results.

Another limitation of our model is the finding that trace
conditioning recruits additional brain areas, such as the
supplementary motor area (Knight et al., 2004) and anterior
cingulate cortex (Han et al., 2003), which are not simulated in
our model. The function of these brain areas in trace
conditioning is perhaps related to the short-term encoding
of conditioned stimuli during the trace interval. It is possible
that the recurrent connection in our model perhaps corre-
sponds to hippocampal interactions with other cortical areas
responsible for maintaining information during trace inter-
vals, though future computational modeling work should
address this point more explicitly.

The medial prefrontal cortex (mPFC) is also important for
trace conditioning. For example, lesion of mPFC impairs
acquisition of long-interval trace but not short-interval trace
or delay eyeblink CRs in the rabbit (McLaughlin et al., 2002),
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and also impairs extinction of previously-learned trace eye-
blink CRs (Weible et al., 2007). It has been suggested that the
mPFC plays a role in contextual-dependent suppression of
learned responses (Milad et al., 2007; Morgan and LeDoux,
1995; Resstel et al., 2008), and medial prefrontal cortex may
be important in suppressing a response to the CS during a
trace interval and/or helping to suppress responses to con-
textual stimuli that are present at the time of US arrival. An
important goal for future research will be considering the
interaction between the hippocampus and mPFC in classical
conditioning. Similarly, the model does not simulate the
functionality of the rubro-trigeminal pathway which has
been demonstrated to inhibit activity in the inferior olive
following stimulation of the magnocellular red nucleus which
presumably plays an important role in eyeblink conditioning
(Weiss et al., 1990).

The current model focuses on the hippocampal region’s
role in associative learning; other hippocampal-dependent
processes, such as declarative (consciously-mediated) mem-
ory, are beyond the scope of the model, but may also play a
role in trace conditioning. Several studies have now shown
that, in human trace eyeblink conditioning, participants who
self-report becoming aware of the stimulus contingencies
early in the conditioning session emit more CRs later in the
session than participants who report becoming aware later in
the session or not at all (Clark et al., 2002; Clark and Squire,
1998). There was no such interaction between awareness and
conditioning under delay contingencies (Manns et al., 2001),
suggesting that awareness in delay conditioning could per-
haps be epiphenomenal. Similarly, in a two-cue discrimina-
tion task, of stimulus contingencies was
associated with emergence of differential eyeblink CRs under
trace but not delay conditioning (Clark and Squire, 1998).
A possible conclusion to be drawn from these data is that
trace but not delay conditioning requires conscious aware-
ness, probably mediated by hippocampal declarative memory
systems (Clark et al., 2002), at least in humans.

While the data correlating awareness and trace conditioning
are robust, there are at least three reasons to be cautious in
assuming a causative link. First, although eyeblink condition-
ing appears to share very similar substrates across species
from rodents to rabbits to primates (including humans), it is
unclear whether conscious awareness is required in non-
human animals, or how such awareness might be assessed.
Second, as noted by LaBar and Disterhoft (1998), patients with
amygdala lesions show disrupted conditioning with spared
declarative knowledge of the stimulus contingencies (Bechara
et al,, 1995), while partial medial temporal lobe damage that
spares declarative memory for stimulus contingencies can be
insufficient to support development of conditioning (Daum
et al.,, 1991). These data suggest that awareness per se is not
sufficient for conditioning to occur. Third, as mentioned above,
although humans and other animals with bilateral hippocam-
pal damage can acquire delay CRs as quickly as controls, this
learning is not necessarily “normal”’—for example, there may
be ill-timed short-latency CRs (e.g, Christiansen and
Schmajuk, 1992; Clark et al., 2002) and impairment at long-
delay conditioning (Beylin et al., 2001).

A final important limitation of the current model is that it
ignores consolidation processes (McGaugh, 2000). Although

awareness

the hippocampus is important for acquisition of trace eye-
blink CRs, it apparently is not the final site of memory
storage, because trace CRs are abolished in rabbits given
bilateral hippocampal lesion one day, but not one month,
after trace conditioning (Kim et al., 1995). Apparently, the
hippocampus either functions as a temporary memory store,
or else supports the gradual formation of trace eyeblink
associations elsewhere, so that eventually the memories are
stored outside the hippocampal region and can survive
hippocampal lesion. This final storage site is a matter of
debate, but may involve association cortex; in the case of
eyeblink conditioning, the cerebellum is also a possibility.
The current model could be expanded to explore these
possibilities as further empirical data emerge to constrain
the model. It is also worth noting that memories can be
consolidated, and even strengthened, during sleep (Walker
and Stickgold, 2006). In this context, it is interesting to note
that sleep deprivation may have a particularly detrimental
effect on learning that involves temporal information (such
as recency judgments) and motor sequence learning, and
that sleep deprivation is associated with decreases in hippo-
campal nerve growth factor (Walker and Stickgold, 2006).
Since any plasticity or consolidation that occurs during sleep
happens (by definition) in the absence of external sensory
stimuli (and thus, during a stimulus-free trace interval), the
relationship between trace conditioning and hippocampal
activity during sleep may prove profitable for further explora-
tions using both empirical techniques and computational
models.

3.4. Future directions

One important question is, how does the role of the hippo-
campus in prediction explains its role in long-term memory?
In our earlier work, we have addressed the relationship
between the hippocampus role in both episodic long-term
memory and classical conditioning (see for example, Gluck
et al,, 2003; Meeter et al., 2005). We conceptualize long-term
memory as binding of information in one single unit. For
example, one’s memory of visiting a certain place with some
friends at certain time is the binding of the where, who, and
when together. The relationship between the hippocampus
role in US prediction and long-term memory is rather
indirect. First, we have previously shown that the role of
the hippocampus in US prediction can support associative
binding of information, as in contextual conditioning, in
which subjects learn to associate contextual and cue infor-
mation (see for example, Gluck and Myers, 1993; Myers and
Gluck, 1994) and associative learning in humans (Moustafa
et al., 2010): while learning to predict the US, the hippocam-
pal module’s internal layer learns associative properties of
input stimuli. Accordingly, long-term memory (which is fast
binding of information, see for example, Meeter et al., 2005) is
a special case of associative learning. Similar modeling
studies have also addressed relationships between episodic
memory and associative learning (see for example, the
computational model of Li et al., 2005).

Experimental studies have shown that the hippocampus is
involved in the reactivation of recently acquired memories,
particularly during slow-wave sleep. This reactivation
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consequently leads to the stabilization of memories (Marshall
and Born, 2007). It was also shown that hippocampus-
mediated declarative-memory improves after a night’s sleep
(Ellenbogen et al., 2006). Moreover, additional experimental
findings suggest that the hippocampus sends vast amounts
of information to the cortex only during slow-wave sleep
(Montgomery et al., 2008) and that following sleep depriva-
tion, activity in the medial temporal lobes is decreased and
its memory capacity reduced (Drummond et al., 2000; Gais
et al, 2007; Takashima et al., 2006). Such findings were
theorized as supporting the role of the hippocampus as a
fast episodic learning system which, during short-wave sleep,
gradually transfers its content to the more robust memory
storage located in the cortex (McClelland et al., 1995). In sum,
it was found that sleep affects memory consolidation by
modulating various learning mechanisms and that these
learning mechanisms are preferentially affected by different
stages of sleep. Following earlier modeling studies on sleep
(Hinton et al., 1995; Norman et al., 2005), we also argue that
sleep enhances offline learning with input stimuli occurs.
According to our modeling framework, offline learning during
sleep should enhance binding of information in the hippo-
campus, and thus improved episodic memory. Although
explicit simulation of sleep is beyond the scope of the current
paper, future modeling work could address data showing how
sleep deprivation impairs conditioning tasks (Hagewoud
et al,, 2011).

In addition, we are currently designing a computational
model of the interactions of the hippocampal region, mPFC,
and the amygdala in fear conditioning, in which the
hippocampal-region network plays a similar function to its
role in eyeblink conditioning (as shown here). In other words,
we argue that the hippocampal-region is essential for learn-
ing stimulus prediction, a process essential to learning
various forms of conditioning paradigms.

In sum, our model provides a unified account on the role of
the hippocampus in delay and trace conditioning suggesting
that the hippocampal region is a general-purpose prediction
device, with the ability to help other brain substrates span
temporal gaps between stimulus arrival and desired time of
behavioral response; this role is critical when the temporal
gap is longer than can be bridged by the brain substrates
mediating the behavioral response, whether or not there is an
accompanying trace interval.

4. Experimental procedures

The recurrent hippocampal model was implemented in
objective-G+ using the Xcode 3.0 applications development
suite for Macintosh OS 10.5.

4.1. External inputs and timing consideration

Each trial is divided into a number of timesteps; for most of
the simulations presented here, there are 30 timesteps per
trial. At each timestep t, external inputs consist of a 18-
element vector [x;(t)...x1s(t)] detailing the presence (1.0) or
absence (0.0) of 18 possible cues. For the experiments
reported here, the first three elements of the vector are

considered as CSs (CS;, CS,, CS;) and the remaining 15
elements are considered as contextual elements. As in prior
models (Moustafa et al., 2009; Myers and Gluck, 1994), CSs are
usually presented phasically, with discrete onset and cessa-
tion during each trial, while contextual cues are presented
tonically throughout the trial and across trials, but otherwise
there is no special treatment given to CSs vs. contextual cues
in the model.

For the first several timesteps of each trial, only contextual
cues are present. One or more CSs may then be presented for
a fixed number of timesteps, and the US may be presented for
a single timestep to co-terminate with the CS (simulating
delay conditioning) or a few timesteps after CS cessation (to
simulate trace conditioning). The remaining timesteps in the
trial are additional context-alone presentations. As in empiri-
cal studies, the time of CS onset is varied pseudorandomly
across trials so that CS onset cannot be predicted simply by
passage of time from last CS presentation. Fig. 2 shows
schematic examples within-trial events during a single trial
of short-delay, trace, and long-delay paradigms.

At the start of a simulation run, the model is given 100 trials
(each consisting of 30 timesteps) of exposure to the context(s)
alone. All results shown are averaged across 5 simulation runs,
except figures depicting within-trial data, which each show data
from one individual, representative, simulation run.

4.2.  Hippocampal-region network

As in prior models (Gluck and Myers, 1993; Moustafa et al,,
2009), the hippocampal region is implemented as an predic-
tive autoencoder network. At each timestep t, the network
receives 20 inputs detailing the state of the world, including
the 18 CS and context inputs [x1(t)...x15(t)] (via entorhinal
cortex), an efferent copy of the CR from the previous timestep
(x19(t)=CR(t—1)), and the US at the present timestep
X0(t) = US(1).

The hidden layer includes 10 nodes j, each fully connected
to the inputs, and computing activation as:

YO =F | > xiwyt) + > _y; t-Dywy;0) +0; @
i j

for all input layer nodes i and hidden layer nodes j'. 0; is node
j’s bias, which is treated as a weight from an input that is
always active.

The hidden layer units also project to the motor cortex
(possibly via waystations in cortex, thalamus, or brainstem),
providing the hippocampal-mediated adaptive representa-
tions as a secondary set of inputs that can be used to drive
CRs. This projection is not assumed to be instantaneous;
rather the hippocampal hidden layer activations at time t—1
are provided as input to the motor network at time t.

Finally, the output layer includes 20 nodes k that are fully
connected to the hidden layer nodes j and compute activation as:

Ve®=f [Z ¥;(Owjk(t) + 0k:| 2
j
The resulting array y, (t) is a prediction of the next state of

the external inputs x;(t+1). The difference between the pre-
dicted and actual inputs is used as an error signal to drive
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plasticity in the hippocampal network, with each hippocam-
pal output-layer node k updating its weights as:

w]‘k(t +1)= w]‘k(t) + Aw)-k(t)

AUij(t) =f x Og(t) x Yi(t) + o X ij'k(tfl)

3k() = (e O-y(®) x ' (y(®)) &)
for all hidden-layer nodes j, where f(x)=x(1-x), « is a
momentum term set to 0.9 and f is a learning rate parameter
set to 0.5 if US(t)=1, and to 0.05 otherwise. Each hidden-layer
node j then updates its weights as:

wi(t 4+ 1) = wy(t) + Awy(t)

Awl-)-(t) =fx 6}(t) x Xi(t) + o x Awl-)-(t—l)

ot = (Z Be(t) x wye(t)) x f '()’,-(t)> )
k
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for all input-layer nodes i. All weights in the cortical and
hippocampal networks (including biases) are initialized from
the uniform distribution U(-0.3,+0.3) at the start of each
simulation run.

4.3. Motor output network

The motor output network is responsible for the generation
of motor responses during conditioning. It is implemented as
a single adaptive node, receiving inputs representing CSs,
contextual stimuli, an efferent copy of the previous CR, and
the activations of the hippocampal-region network hidden
layer nodes from the previous timestep. The output of this
node at time t, which is assumed to drive the behavioral CR,

200 800

200 400 600 800 1000
trial #

Fig. 10 - Activity of hippocampal hidden units at time step before US presentation during trace conditioning, showing
prediction of US during learning. The first plot shows activity of the output of the Motor network. The other 10 figures show
activity of the hippocampal hidden units during trace conditioning. The “AHA” moment here is roughly at trial 500 (first plot,
top left). Some hidden unit also show increase of activity around the “AHA” moment (see in particular, hidden units #
2,3,4,6,8,9); they activities become stable after the AHA moment, and are not altered by overtraining the network.

Abbreviation: hh =hippocampal hidden unit.
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is computed as:

CRO=F| D XiOwa(t) + Y y;(t=Dwje(t) + CREt-Dwer(t)
i j
©))

for all inputs i and all hippocampal hidden layer nodes j. Note
that, because both the hippocampal inputs y; and the efferent
copy of the CR are from the previous timestep (t—1), the input
layer is not getting any information as input about whether a
US has arrived on the current timestep t. The w are modifi-
able weights on each of the inputs, and f(x)=1/(1+e%)

Weights in the motor response network are updated pro-
portional to output error §(t)=US(t)—CR(t):

wi(t + 1) = w;(t) + f x a(t) x CS;(t)

wj(t + 1) = wj(t) + B x a(t) x y;(t)
Wer(t + 1) = wer(t) + B x o(t) x CR() ©®

for each input i and hippocampal hidden node j. g is a
learning rate parameter; if US(t)=1, f=0.05; else $=0.005.
All weights w are initialized to O at the start of a
simulation run.

In the model, hippocampal-region damage is simulated by
deleting the hippocampal-region network. In this case, the
motor output network still receives (and can modify weights
from) inputs representing CS and context, as well as the
efferent copy of the CR. Lastly, as in prior work (Myers et al.,
1996, 1998; Moustafa et al., 2010), we simulate the effects of
cholinergic antagonists by decreasing the learning rate para-
meter in the hippocampal-region network, and cholinergic
agonists by increasing hippocampal-region learning rate.
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Appendix. The development of stable
activation in the hippocampus during trace
conditioning

In this section, we explain how the activation of hidden layer
nodes o of the hippocampal module develops during trace
conditioning. Fig. 10 shows several plots showing the activity
of the 10 hidden nodes of the hippocampus along with the
motor output node during trace conditioning. Each of these
plots shows the activity of each node at time step t-1 only,
where t is defined as the time step where US presentation
occurs. The plots show that there are clear correlations
between the activities of nodes in the hidden layer and the
motor output node. Importantly, in some of the hippocampal
hidden nodes, activity stabilizes after the “AHA” moment.
Overtraining the model did not alter the activation of hidden
units, suggesting they become stable after the AHA moment.
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