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Research

Functional specialization within the striatum along both
the dorsal/ventral and anterior/posterior axes during
associative learning via reward and punishment

Aaron T. Mattfeld,1,2 Mark A. Gluck,3 and Craig E.L. Stark1,2,4

1Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA; 2Center for Neurobiology

of Learning and Memory, Irvine, California 92697, USA; 3Center for Molecular and Behavioral Neuroscience, Rutgers

University-Newark, Newark, New Jersey 07102, USA

The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during

an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of

reward-related learning. It remains unclear, however, under what task conditions, and to what extent, the striatum is modu-

lated by punishment during an instrumental learning task. Using high-resolution functional magnetic resonance imaging

(fMRI) during a reward- and punishment-based probabilistic associative learning task, we observed activity in the ventral

putamen for stimuli learned via reward regardless of whether participants were correct or incorrect (i.e., outcome). In

contrast, activity in the dorsal caudate was modulated by trials that received feedback—either correct reward or incorrect

punishment trials. We also identified an anterior/posterior dissociation reflecting reward and punishment prediction error

estimates. Additionally, differences in patterns of activity that correlated with the amount of training were identified along

the anterior/posterior axis of the striatum. We suggest that unique subregions of the striatum—separated along both a

dorsal/ventral and anterior/posterior axis— differentially participate in the learning of associations through reward and

punishment.

[Supplemental material is available for this article.]

Flexible instrumental behavior is governed by a dynamic inter-
play between the tendency to increase the likelihood of making
a response following a rewarding outcome and the likelihood of
decreasing a response following an aversive outcome (Thorndike
1933; Konorski 1967). Evidence suggests that the striatum, along
with its dopaminergic projections, is critical for learning from
reward (Schultz 2007). Accumulating data also suggest that simi-
lar regions are involved in aversive learning and memory
(Bromberg-Martin et al. 2010). While human neuroimaging stud-
ies have long supported the claim that activity in the striatum is
correlated with reward-related learning and memory (O’Doherty
2004), the specific role for the striatum in aversive learning and
memory remains undetermined. The goal of the present study
was to use high-resolution functional magnetic resonance imag-
ing (fMRI) to investigate subregional striatal learning-related
activity during an associative learning paradigm that separates
reward from punishment learning.

Previous human neuroimaging studies have investigated the
neural substrates of reward and punishment using a variety of
tasks. For example, studies have used gambling tasks (Delgado
et al. 2000, 2003; Elliott et al. 2000; Breiter et al. 2001; Yacubian
et al. 2006; Liu et al. 2007; Tom et al. 2007), Pavlovian condition-
ing (Büchel et al. 1998; Jensen et al. 2003, 2007; Seymour et al.
2004, 2005, 2007), “oddball” tasks (Tricomi et al. 2004), reversal
learning (Klein et al. 2007; Wheeler and Fellows 2008; Kahnt
et al. 2009; Robinson et al. 2010), and instrumental conditioning
(Kim et al. 2006; Pessiglione et al. 2006) to investigate both
reward- and punishment-related neural activity. While evidence

supports the notion that the striatum plays a central role in learn-
ing from reward, no general consensus has been reached on its
role in aversive learning and memory.

An important limitation of many of the prior studies is that
we cannot be certain that activity correlated with aversive events
(as is typically measured) generalizes to aversive learning. For
example, studies that used gambling paradigms or tasks in which
the outcomes were predetermined (not contingent on the partic-
ipants’ responses) have consistently observed striatal activity cor-
related with aversive events (Delgado et al. 2000, 2003; Elliott
et al. 2000; Breiter et al. 2001; Tricomi et al. 2004; Yacubian
et al. 2006; Liu et al. 2007; Tom et al. 2007). However, since there
are no associations or contingencies to learn in these tasks, the
activity cannot be tied to learning per se. In contrast, studies of
learning that utilized Pavlovian conditioning paradigms have
identified ventral striatum activity during aversive learning
(Jensen et al. 2003, 2007; Seymour et al. 2004, 2005, 2007).
However, similar modulation of striatal activity by aversive feed-
back has not been observed during instrumental paradigms
(Kim et al. 2006; Pessiglione et al. 2006). Human neuroimaging
studies using reversal-learning paradigms during a probabilistic
selection task in which both rewarded and punished stimuli are
presented simultaneously on each trial in a forced-choice design
are difficult to interpret within a learning framework. In these
tasks, participants are able to adopt either the strategy of choosing
rewarded stimuli, or of avoiding punished stimuli (or potentially
both strategies) to successfully perform the task (Klein et al. 2007;
Wheeler and Fellows 2008; Kahnt et al. 2009; Robinson et al.
2010). Further, activity in the striatum during reversal learning
paradigms may reflect switch costs related to reversal events rather
than learning-related activity specific to aversive learning. Thus,
human neuroimaging studies have provided a mixed picture
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regarding the role of the striatum in aversive learning and
memory.

The purpose of the present study was to utilize an associative
learning task—previously used to demonstrate robust learning-
related differences for reward and punishment learning in Parkin-
son’s Disease (PD) patients either on or off of their medication
(Bódi et al. 2009)—to identify the functional neural correlates
of reward and punishment learning in a healthy population. We
used high-resolution blood oxygen level-dependent (BOLD)
fMRI to identify learning related changes in neural activity during
a probabilistic associative learning task that separated the learning
of stimuli via reward from stimuli learned via punishment
(Fig. 1A; also see the Materials and Methods section for a detailed
description of the task). During the probabilistic associative learn-
ing task, participants were required to learn to associate specific
stimuli with one of two responses (i.e., categories) through trial-
and-error. A subset of the stimuli was learned via reward; if partic-
ipants were correct they received a reward, and if they were incor-
rect they were provided no feedback. The remaining stimuli were
learned via punishment; if they were correct they received no
feedback, and if they were incorrect they received punishment.
Together, these task manipulations enabled us to isolate activity
to both reward-related and punishment-related learning during
an associative learning task.

To evaluate both reward- and punishment-based learning-
related activity, we performed both trial-wise and model-based
analyses. In the trial-wise analyses, we tested for regions that
were modulated by learning condition (reward vs. punishment),
outcome (correct vs. incorrect), and amount of training (first
half of the experiment vs. second half). In the model-based anal-
ysis, we used a Q-learning algorithm (Watkins 1989) to derive a
trial-specific prediction error (PE) signal for both reward and
punishment conditions based on participants’ performance. We

correlated the trial-specific PE signal with the fMRI data and tested
for regions that were modulated by reward-based PE and punish-
ment-based PE. To increase our power, we constrained our anal-
yses to the striatum and medial temporal lobe (MTL) based on
prior evidence implicating these regions in reward and aversive
learning and memory (Elliott et al. 2000; Delgado 2007; Delgado
et al. 2008). Our results support the notion that the striatum plays
a multifaceted role, with distinct subregions—separated along
both a dorsal/ventral and anterior/posterior axis—participating
in the learning of associations through reward and punishment.

Results

Behavioral performance

Optimal responding

We ran a repeated measures analysis of variance (ANOVA) with
learning condition (reward and punishment) and trial blocks as
within-subject factors to evaluate changes in performance during
the probabilistic associative learning task. Participants showed
robust learning for both reward- and punishment-based trials
over the course of the experiment (main effect of block, F(3,60) ¼

25.83, P , 0.0001). Post hoc trend analyses identified a reliable
linear trend in the participants’ performance across blocks (linear
contrast, F(1,60) ¼ 498, P , 0.0001). We did not observe a differ-
ence in performance for the different learning conditions (main
effect of learning condition, F(1,20) ¼ 0.013, P ¼ 0.91), nor an
interaction between condition and block (interaction between
block and learning condition, F(3,60) ¼ 0.331, P ¼ 0.80) (Fig. 1B).
From these data, we can conclude that behavioral performance
improved over the course of the experiment with no identifiable
difference in performance between learning conditions (reward
vs. punishment). Therefore, we believe that the feedback was suf-
ficiently motivating and informative.

Reaction time

To analyze the reaction time (RT) data, we similarly used a re-
peated measures ANOVA with learning condition and blocks as
within-subject factors. The results suggested that the time taken
to make a decision for both reward- and punishment-based condi-
tions decreased across blocks (main effect of block, F(3,60) ¼ 54.78,
P , 0.0001). A reliable post hoc linear trend analysis supported
this conclusion (linear contrast, F(1,60) ¼ 1658, P , 0.0001). Over-
all, punishment-based trials took more time than reward-based
trials (main effect of learning condition, F(1,20) ¼ 49.63, P ,

0.0001). There was no reliable interaction between condition
and block for the RT data (interaction between block and learning
condition, F(3,60) ¼ 2.24, P ¼ 0.09) (Fig. 1C). These data suggest
that, while participants were slower on average to respond to
punishment-based trials compared to reward-based trials, they
decreased their RT for both learning conditions over the course
of the experiment.

Learning rate

A potential confounding factor that could account for the differ-
ences in observed fMRI data could arise from a difference in learn-
ing rates between learning conditions (i.e., stimuli learned via
punishment may be slower overall, thereby requiring more trials
to reach equivalent performance). To evaluate whether there
was a difference in the rate of learning between reward- and pun-
ishment-based conditions, we used a state-space logistic regres-
sion algorithm (Smith et al. 2004) to calculate a learning curve
for each stimulus (Law et al. 2005; Mattfeld and Stark 2010).
We derived an area under the curve (AUC) measure from the

Figure 1. (A) Example of reward-based (top) and punishment-based
(bottom) trials in the probabilistic associative learning task. (B) Performance
was equivalent for reward-based (dark gray square) and punishment-based
(light gray triangle) conditions. (C) Participants were slower overall to
respond to punishment-based trials; however, the time to respond to
both stimulus types decreased with training. Error bars+SEM.

fMRI study of reward- and punishment-based learning
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stimulus-specific learning curves for reward- and punishment-based
stimuli, respectively. No reliable difference between reward- and
punishment-based trials AUC was identified (t(20)¼ 0.82, P ¼ 0.65).

Imaging results

Reward- vs. punishment-based fMRI activity

First, we identified regions that showed differential learning-
related activity for reward- vs. punishment-based learning condi-
tions. We performed a 2 × 2 repeated measures ANOVA with
learning condition (reward and punishment) and outcome (cor-
rect and incorrect) as the within-subject factors. The main effect
of learning condition revealed activity in the bilateral ventral
striatum (predominately within the ventral putamen and extend-
ing into the nucleus accumbens) (Table 1). We used a functionally
defined region of interest (ROI) analysis, averaging across all vox-
els that survived our height and spatial extent threshold correc-
tion for multiple comparisons, to show that the main effect was
driven by greater activity for reward- vs. punishment-based trials
regardless of outcome or feedback (Fig. 2A). These data are consis-
tent with previous fMRI studies demonstrating greater activity for
reward vs. punishment trials in the striatum (Tricomi et al. 2004).

Outcome (correct vs. incorrect) related fMRI activity

Next, we wanted to identify learning-related activity that corre-
lated with the outcome of an event regardless of reward or punish-
ment condition. Several studies have suggested that the striatum
is an integral brain region for processing outcome (Elliott et al.
1997; Delgado et al. 2003; Tricomi and Fiez 2008). When con-
straining our analysis to the striatum/medial temporal lobe
mask, no regions showed a modulation in the form of a main
effect of outcome (correct vs. incorrect trials).

Regions showing an interaction of stimulus type and outcome

To identify regions that showed a reliable modulation by feed-
back, regardless of reward or punishment condition, we selected
voxels that were reliably correlated with the interaction between
learning condition and outcome. It should be noted that the inter-
action between outcome and condition reflects feedback-related

activity due to the design of the current study—feedback trials
only occurred during incorrect punishment trials and correct
reward trials. Feedback trials are integral events for the learning
of the appropriate associations during the experiment. Within
the striatum we observed activity in the right caudate that was cor-
related with the interaction term (Table 1). Following a functional
ROI analysis, the right caudate showed a greater level of BOLD
fMRI activity for trials that received feedback compared to trials
that did not receive feedback. Subsequent post hoc pairwise com-
parisons (Tukey’s honestly significant difference [HSD] test) showed
a reliable effect in the key contrast; activity in this region was
greater for incorrect punishment-based trials vs. correct reward-
based trials (Q ¼ 3.8, P , 0.05) (Fig. 2B). These results demon-
strate that the dorsal caudate is correlated with feedback regardless
of reward or punishment condition. Post hoc pairwise compari-
sons suggest that there is a modest yet reliable difference between
incorrect punishment-based trials when compared to correct
reward-based trials.

Model-based fMRI activity

To determine whether distinct subregions of the striatum were
modulated by reward- and punishment-based PE estimates during
an instrumental learning task, we parametrically regressed the
fMRI activity with PE estimates derived from a Q-Learning algo-
rithm (Watkins 1989). Given the trial structure of our paradigm
and our inability to resolve within-trial events, a temporal differ-
ence algorithm would provide the same estimation of the
trial-by-trial PE as a delta rule; therefore, we used the simpler delta
rule here (Sutton and Barto 1998). We used a repeated measures
ANOVA to identify voxels where BOLD fMRI activity was modu-
lated by either a reward-based event occurring, reward-based PE,
a punishment-based event occurring, or punishment-based PE.
Within the striatal/medial temporal lobe mask, this analysis
revealed robust modulation by both reward- and punishment-
based PE estimates throughout the striatum (Table 1). Bonferroni
corrected post-hoc tests revealed that the anterior head of the
right dorsal caudate as well as ventral regions of the bilateral puta-
men correlated with reward-based PE estimates (all t(27) . 4.8, all
P , 0.0001) and not punishment-based PE estimates (all t(27) ,

1.8, all P . 0.07) (Fig. 3A–C). In contrast, functional ROIs slightly
more posterior near the junction be-
tween the head and body of the bilateral
dorsal caudate largely correlated with
punishment-based PE estimates (all
t(27) . 3.2, all P , 0.0032) (Fig. 3D,E).
However, the functional ROI in the pos-
terior portion of the left caudate was cor-
related with reward-based PE estimates
as well (t(27) . 3.9, P ¼ 0.0005) (Fig. 3D).
The observed anatomical dissociation be-
tween reward and punishment PE neural
activity here extends to an instrumental
task previous findings identified during
a first-order Pavlovian conditioning para-
digm (Seymour et al. 2007).

fMRI activity reflecting amount of training

Previous studies using probabilistic cate-
gory learning paradigms (e.g., Weather
Prediction Task) have observed differen-
ces in learning between PD patients,
MTL amnesics, and controls (Knowlton
et al. 1996). However, following ex-
tended training, PD patients’ perform-
ance improved remarkably and became

Table 1. Regions of activation identified in the trial- and model-based analyses

Analysis Region of activation MNI (x, y, z) Volume

Learning condition: reward vs.
punishment

Nucleus accumbens/ventral
putamen (L)

215, 6, 26 135 mm3

Nucleus accumbens/ventral
putamen (R)

18, 6, 26 223 mm3

Outcome: correct vs. incorrect No regions survived corrections
for multiple comparisons

Interaction between learning
condition and outcome

Dorsal caudate (R) 8, 0, 10 240 mm3

Model-based analyses Dorsal caudate head/body (L)—
punishment and reward PE

28, 7, 12 584 mm3

Dorsal caudate head/body (R)—
punishment PE

11, 7, 13 523 mm3

Dorsal caudate head (R)—
reward PE

12, 17, 3 189 mm3

Ventral putamen (R)—reward PE 18, 8, 1 182 mm3

Ventral putamen (L)—reward PE 217, 8, 25 121 mm3

Training related changes Dorsal caudate head (R)—first
half , second half

16, 13, 12 196 mm3

Dorsal caudate body (R)—first
half . second half

15, 215, 26 159 mm3

Hippocampus (R)—first
half , second half

30, 215, 222 152 mm3

(R) Right; (L) left; (PE) prediction error.
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indistinguishable from controls. Here, we wanted to evaluate
whether the striatum, during an associative learning paradigm
with stochastic feedback, showed differential learning-related
activity over the course of training.

To test for an effect of training, we divided our correct and
incorrect regressors for reward- and punishment-based conditions
into those trials that occurred during the first half of the training
(first two runs) and the trials that comprised the second half of
training (last two runs). We then selected voxels that showed a
main effect of training. Three regions within our striatal/medial
temporal lobe mask showed reliable modulation by training fol-
lowing corrections for multiple comparisons: right posterior
body of the caudate, right anterior head of the caudate, and right
hippocampus (Table 1). Using the regions identified by the main
effect of training as functionally defined ROIs as well as their
parameter estimates for each condition of interest, we performed
a repeated measures ANOVA with learning condition (reward vs.
punishment), outcome (correct vs. incorrect), amount of training
(first half vs. second half), and region (hippocampus, anterior cau-
date, and posterior caudate) as within-subjects factors. This anal-
ysis showed a reliable region-by-training interaction (F(2,40) ¼

25.96, P , 0.0001). The right posterior caudate ROI showed
greater activity during the first half of training compared to the
second half of training (Fig. 4A), while the right anterior caudate
and hippocampus showed remarkably similar results—greater
activity for trials occurring during the second half of training vs.
the first half (Fig. 4B). Importantly, the amount of training × out-
come (F(1,20) ¼ 1.79, P ¼ 0.19), region × outcome (F(2,40) ¼

0.3169, P ¼ 0.73), and amount of training × region × outcome
(F(2,40) ¼ 1.47, P ¼ 0.24) interactions did not reach significance,
suggesting that activity related to outcome (correct and incorrect
trials) did not change reliably over the course of training in these
particular regions. Therefore, activity reflecting the region-by-
amount of training interaction is not simply the product of a
change in performance with experience.

Additionally, to ensure that the observed results were, in fact,
due to training-related changes and not due to changes in
response to PE or RT—which are also dynamically changing
throughout the experiment—we ran two control analyses. In

the control analyses, we included PE
and RT regressors in our GLM testing
for training-related changes in activity
to possibly account for any training-
related variance. In both analyses the
region-by-training interaction remained
robust (all F(2,40) . 25, all P , 0.0001),
suggesting that the observed results are
not confounded by differential respond-
ing to PE estimates or changes in activity
that are tracking changes in RT.

Discussion

BOLD fMRI activity across distinct subre-
gions of the striatum was dynamically
modulated during a probabilistic reward-
and punishment-based associative learn-
ing task. Specifically, the striatum ap-
peared to be functionally divisible along
its dorsal/ventral axis with the ventral
striatum (regions of the ventral putamen
and nucleus accumbens) modulated by
learning condition (reward vs. punish-
ment) and reward PE, while the dorsal
caudate appeared to be responsive to
feedback during both correct reward

and incorrect punishment trials. Further, the striatum demon-
strated functional specialization along its anterior/posterior
axis, with anterior regions modulated by reward PE estimates
and late phases of learning, while more posterior regions corre-
lated with punishment PE (at the junction between the head
and body of the caudate) and early phases of learning (in the
body of the caudate). We suggest that the observed functional spe-
cialization along the dorsal/ventral axis likely reflects differentia-
tion within the striatum between regions encoding the valence of
events (ventral striatum) vs. regions that play an important role in
the learning of associations through trial-and-error by monitoring
motivationally salient events (feedback). Moreover, the regional
differences in the response as a function of the amount of training
suggest the possibility of key interactions between declarative vs.
nondeclarative forms of learning and memory.

Activity in the ventral striatum was robustly modulated by
learning condition. Bilateral functionally defined ROIs in the ven-
tral putamen showed greater activity for reward compared to
punishment-based conditions. These results are consistent with
prior human imaging studies showing greater activity for reward-
ing vs. aversive events (Delgado et al. 2000, 2003; Tricomi et al.
2004). Our results extend these prior findings to an associative
learning paradigm. Prior studies that identified differential
responding to reward and punishment in the striatum observed
this difference primarily during the outcome phase of each trial.
Due to constraints in task design, we cannot rule out that
outcome-related activity is likely playing an important role here.
However, outcome related processing alone does not account
for the observed results. For example, reward events that were
incorrect and received no feedback showed a greater amount of
activity when compared to incorrect punishment events that
received feedback. The fact that reward events showed reliably
greater activity independent of outcome or feedback supports
the notion that the ventral striatum is a key region representing
the valence—or the degree of attraction or aversion—of events
during learning.

In the dorsal striatum, we observed activity that was modu-
lated by feedback compared to trials that received no feedback.
There was slightly greater activity for punishment stimuli that

Figure 2. (A) Activity bilaterally in the ventral striatum was modulated by the main effect of learning
condition, showing greater activity for reward- compared to punishment-based events. (B) A region in
the right dorsal caudate was modulated by the interaction between learning condition and outcome.
This region was correlated with feedback showing greater activity for punishment-based feedback (red)
compared to reward-based feedback (green). The yellow outline represents the anatomically delineated
region of interest used for small volume corrections. (Red Ø) punishment trial correctly responded to—
no feedback; (red sad face) punishment trial incorrectly responded to—feedback; (green happy face)
reward trial correctly responded to—feedback; (green Ø) reward trial incorrectly responded to—no
feedback. Error bars+SEM.
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were incorrect when compared to reward stimuli that were re-
sponded to correctly. The pattern and location of activity corre-
spond very nicely to an ROI identified by Jensen et al. (2007)
showing overall greater activity for aversive and appetitive when
compared to neutral conditioned stimuli. Interestingly, in their
ROI they also observed slightly greater activity to aversive
compared to appetitive stimuli. The observed neural modulation
in the dorsal caudate makes this region an ideal candidate for
learning to associate actions with motivationally salient events
(e.g., feedback). In turn, these neural signals are likely used to
strengthen or weaken the appropriate associations between
actions and their respective outcomes (Barto 1995).

While the dorsal striatum has consistently been identified as
a region integral to reward learning (O’Doherty 2004), its observa-
tion in aversive learning tasks has been less consistent (Büchel
et al. 1998; Becerra et al. 2001; Breiter et al. 2001; Seymour et al.
2005, 2007; Yacubian et al. 2006). The discrepancy between our
study showing reliable modulation in the dorsal striatum by pun-
ishment and previous studies showing no activity for aversive
events may be a result of the differences in task design. Many of
the previous tasks used Pavlovian conditioning or gambling para-
digms that lack a clear contingency between a participant’s action
and the outcome. Tricomi et al. (2004) showed that dorsal caudate
activity is reliably modulated by the contingency between a par-
ticipant’s response and whether or not they won or lost money.
Our paradigm relies on this contingency to facilitate learning to
select the optimal reward-based stimuli and avoid the nonoptimal
punishment-based stimuli.

Our model-based results are consistent with previous fMRI
studies investigating appetitive and aversive PE signals (Seymour
et al. 2007). Seymour and colleagues used a Pavlovian condition-
ing paradigm to associate conditioned stimuli with reward, loss,
or both outcomes. Extending their findings to an instrumental
learning task, we identified dissociable regions within the stria-
tum that represented reward and punishment PE along not only
the anterior/posterior axis of the striatum but also the dorsal/ven-
tral axis. Specifically, reward-based PE, and not punishment-based
PE, modulated the anterior head of the dorsal caudate as well as

the bilateral ventral putamen. In con-
trast, bilateral regions of the dorsal cau-
date, slightly more posterior near the
junction between the head and body of
the caudate, showed modulation to pun-
ishment-based PE estimates, with the left
ROI showing a correlation to both. A
notable difference between our results
and prior studies is that many of the
functional ROIs we identified were
largely located in the dorsal caudate.
We believe, again, that this is likely the
result of task differences. Seymour and
colleagues specifically designed their
task to omit the opportunity for choice
(Seymour et al. 2007). Given the impor-
tance of action-outcome contingencies
in activating the dorsal caudate, this dis-
crepancy is not surprising.

The anatomically distinct represen-
tations of reward and aversive PE along
both the anterior/posterior and dorsal/
ventral axes of the striatum may be
the result of different sources of corti-
cal input related to the processing of
reward- and punishment-based events.
Investigations of the neural correlates of
the BOLD signal suggest that it more

likely reflects afferent input as well as intrinsic processing within
a brain region (Logothetis et al. 2001). Moreover, the striatum
receives largely segregated cortical input (Alexander et al. 1986).
Human neuroimaging studies have identified distinct regions
across the orbitofrontal cortex (OFC) that are correlated with
the processing of both reward- and punishment-related informa-
tion, with the lateral OFC correlated with punishing outcomes
and the medial OFC with rewarding outcomes (O’Doherty et al.
2001). The anterior insula has also been consistently implicated
in the representation of punishment and aversive prediction
errors (Greenspan and Winfield 1992; Casey et al. 1994; Kim
et al. 2006; Pessiglione et al. 2006). We note that the OFC and
anterior insula predominately project to the ventral striatum
(Chikama et al. 1997; Haber 2003), which potentially accounts
for the subtle anatomical separation observed in the Seymour
et al. (2007) study. In contrast, our results were predominately
located in the dorsal striatum, which receives projections from
more lateral regions in the OFC, prefrontal cortex, and posterior
regions of the insula (Chikama et al. 1997; Haber 2003).
Evidence from prior neuroimaging and tract-tracing studies do
not strongly support the conclusion that different cortical contri-
butions are leading to the differences observed in our study.
However, given the variable cortical substrate likely involved in
reward and punishment learning, we cannot rule out the possibil-
ity that the observed anterior/posterior separation in reward and
punishment prediction error estimates within the striatum is the
result of distinct cortical contributions.

An alternative hypothesis for the anatomical separation may
reflect modulation of neural activity by different neuromodula-
tors (Daw et al. 2002; Doya 2002; Bromberg-Martin et al. 2010).
Both serotonin (Daw et al. 2002) and distinct populations of dop-
aminergic neurons (Matsumoto and Hikosaka 2009; for review,
see Bromberg-Martin et al. 2010) have been posited to play a
role in aversive learning and are differentially expressed through-
out the striatum (Heidbreder et al. 1999; Matsumoto and Hikosaka
2009). Specifically, two types of dopamine neurons have been
identified: (1) those that are excited by reward and reward-
predicting stimuli and inhibited by aversive stimuli; and (2) those

Figure 3. The model-based analysis identified regions in the right anterior dorsal caudate (A) and
bilateral regions of the ventral putamen (B,C) that were reliably modulated by reward-based PE esti-
mates. Conversely, bilateral regions of the posterior dorsal caudate near the junction between the
head and body of the caudate were reliably modulated by punishment-based PE estimates (D,E).
∗P , 0.01 (Bonferroni correction). (Rew) reward; (Pun) punishment; (PE) prediction error; (dark gray
bars) reward PE activity; (light gray bars) punishment PE activity. Error bars+SEM.
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that are excited by both reward and aversive stimuli and their pre-
dictors (Matsumoto and Hikosaka 2009). The former are located in
the dorsolateral substantia nigra pars compacta which projects
mainly to the dorsal striatum in monkeys and rats (Lynd-Balta
and Haber 1994; Ikemoto 2007). The latter are located in the ven-
tromedial substantia nigra pars compacta and ventral tegmental
area which predominately send projections to the ventral stria-
tum. Matsumoto and Hikosaka (2009) found that the dorsolateral
dopaminergic population responded preferentially to motiva-
tionally salient stimuli, while the dorsomedial population
responded to value-related processes during a Pavlovian condi-
tioning paradigm. The functional dissociation between dopami-
nergic populations corresponds well with the results reported
here obtained by our trial-based analyses, i.e., dorsal caudate
was modulated by feedback (motivationally salient events) while
the ventral putamen correlated with valence. Further, a heteroge-
neous dopaminergic population could contribute to our observed
anatomical separation in the reward and punishment prediction
error modulations.

While our data cannot differentiate between these two alter-
natives, the results highlight the need for more precise functional
delineation of the striatum (see Haber 2003 and Haruno and
Kawato 2006 for models positing dorsal/ventral with anterior/
posterior integration). To this end, seminal work by Yin et al.
(2004, 2005) in rats has demonstrated a functional subdivision
between the dorsomedial and dorsolateral striatum during
instrumental learning tasks. Work by Miyachi et al. (1997, 2002)

has shown a similar dissociation along
the anterior/posterior axis of the stria-
tum in nonhuman primates. Seger
(2008), using fMRI in humans, has in-
vestigated the functional roles of the
distinct regions of the striatum during
categorization learning. Future studies
of associative learning should utilize
functional connectivity and pharmaco-
logical manipulations along the ante-
rior/posterior axis of the striatum in an
effort to improve our understanding of
the functionally distinct subregions of
the striatum.

Lastly, the reliable region-by-period
of training interaction demonstrated a
dissociation between regions that were
active during learning early in training
compared to regions that showed greater
activity with extended training. The
right posterior caudate was robustly
modulated early in training compared
to later, while the right anterior caudate
and hippocampus showed the opposite
pattern of activity, being more active pri-
marily late in training compared with
early in training. The training-related
results reported here differ from previous
studies in both humans (Seger et al.
2010) and monkeys (Hikosaka et al.
1998) that have shown early activation
in the anterior striatum, with gradual
recruitment of more posterior regions
with training. We believe that the dis-
crepancies between our results and prior
studies likely stem from differences in
task design. For example, Seger et al.
(2010) used a deterministic categoriza-
tion task, while here we employed a

probabilistic categorization task. We believe that the probabilistic
nature of the feedback in our task makes participants more reliant
at the beginning of training on nonexplicit mnemonic strategies,
which may involve more posterior regions of the striatum.
However, with sufficient training, participants may begin to
employ more explicit strategies as they become aware of the sto-
chastic contingencies of the task. For example, goal-directed
learning has been shown to be more dependent on the dorsome-
dial striatum in rats (Yin et al. 2005), which is homologous to the
anterior striatum in primates. The pattern of activity observed for
the training-related changes in our study is consistent with this
hypothesis; however, more direct tests are needed to confirm or
reject this possibility.

In summary, these data suggest that the striatum is playing a
multifaceted role in the learning of associations through reward
and punishment. During the probabilistic associative learning
task, both a dorsal/ventral and anterior/posterior functional dif-
ferentiation emerged from our analyses. The distinction between
the dorsal and ventral striatum may reflect unique contributions
to the learning of arbitrary associations, with the ventral striatum
tracking valence while the dorsal striatum tracks motivationally
salient events such as feedback. The anterior/posterior divide for
both the model-based and amount of training analyses, on the
other hand, may reflect the processing of unique informational
content, neuromodulator function, the division of labor between
goal-directed and habitual mnemonic function, or, more likely,
some combination of all three.

Figure 4. (A) An ROI in the right posterior caudate showed a reliable modulation by the amount
of training, with greater activity for trials during the first half of training compared to the second
half. (B) ROIs in the right anterior caudate and right hippocampus were also modulated by the
amount of training but showed the opposite pattern of activity. These regions showed greater activity
during the second half of training compared to the first half. (Ant) Anterior; (HPC) hippocampus;
(Caud) caudate; (red Ø) punishment trial correctly responded to—no feedback; (red sad face) punish-
ment trial incorrectly responded to—feedback; (green happy face) reward trial correctly responded
to— feedback; (green Ø) reward trial incorrectly responded to—no feedback. Error bars+SEM.

fMRI study of reward- and punishment-based learning

www.learnmem.org 708 Learning & Memory

 Cold Spring Harbor Laboratory Press on November 8, 2011 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


Materials and Methods

Participants
Twenty-eight right-handed volunteers (12 male, mean age 21.7,
age range 19–31), with normal or corrected to normal vision
and no history of neurological disease or psychiatric illness, par-
ticipated in the experiment. All gave written informed consent.
Participants were recruited from the University of California,
Irvine, community and were paid for their participation. Seven
participants were excluded from further analysis because they
did not have a sufficient number of trials to reliably estimate the
hemodynamic response for several conditions of interest, leaving
21 participants for the final analyses.

Experimental task
The behavioral task was previously published in Bódi et al. (2009).
Before scanning, participants were informed that they would be
presented with four images. Participants were instructed to select
which category (A or B) they believed each image belonged to via
an MR-compatible button box. They were informed that, follow-
ing their choices, they would win points, lose points, or receive
no feedback. Participants were not told which images were paired
with which outcome and were required to learn the associations
through trial-and-error. Participants were instructed to win as
many points as possible; each participant began the experiment
with 500 points.

A trial began with the presentation of one of the four images,
with the question “Is this an ‘A’ or a ‘B’?” below the image, fol-
lowed by the two possible categories. Stimuli were presented for
3000 msec. Each image marked the beginning of either a reward-
or a punishment-based trial. Responses were collected during
the presentation of the stimulus. Following the participant’s
response, the selected category was outlined by a circle and
was followed by feedback: +25 points and a green happy face
for reward-based trials, 225 points and a red sad face for
punishment-based trials, or nothing (Fig. 1A). A 1000-msec
intertrial-interval separated the presentation of the next stimulus,
marking the beginning of the next trial. The total trial length was
4000 msec.

During reward-based trials, when participants selected the
optimal category, they received reward feedback with an 80%
probability. They received no feedback for the remaining 20% of
trials. If the participants selected the nonoptimal category, they
received reward feedback 20% of the time, and for the remaining
80% of trials they received no feedback. Similarly, on the
punishment-based trials, when participants selected the optimal
category, they received no feedback 80% of the time, while on
the remaining 20% of trials the same selection was associated
with the receipt of punishment. If they selected the nonoptimal
category, they received no feedback on 20% of the trials and pun-
ishment on the remaining 80% of trials.

In addition to learning trials, perceptual baseline trials were
randomly presented during the experiment. During the baseline
trials a random visual static pattern was presented along with
two boxes that differed slightly in their opacity (target continu-
ously varied between 11% and 17% greater opacity than the
nontarget). Participants were instructed to select the brighter of
the two boxes. Baseline trials were introduced to induce jitter
between trial types, to aid in the estimation of the hemody-
namic response, and to establish a reference for the signal for
the trial types of interest (Dale and Buckner 1997; Burock et al.
1998).

Participants completed either eight (n ¼ 21) or four (n ¼ 7,
typically resulting from scheduling or scanner difficulties) scan-
ning runs. Participants that completed eight runs were presented
with a second stimulus set after the first four runs to increase the
number of trials during which participants were actively learning
new associations. The order of stimulus sets was counterbalanced
across participants. A run consisted of 40 learning trials (each
learning image was presented 10 times per run) and 20 baseline
trials for a total of 60 trials per run. Trial order was randomly deter-
mined. Each run lasted 4 min.

Calculation of the stimulus learning curves
We employed a logistic regression algorithm (Smith et al. 2004) to
calculate a learning curve for each stimulus, which was used to
derive an area under the curve (AUC) estimate to evaluate learning
rate differences for both learning conditions (reward vs. punish-
ment). The binary performance for each stimulus (1, if the response
was optimal and 0, if the response was not optimal) was used to cal-
culate the probability of a correct response based on the number of
trials using a Gaussian randomwalk modelas the stateequationand
a Bernoulli model as the observation equation. Representative
learning curves can be seen in Supplementary Figure 1.

MRI acquisition
Imaging data were collected on a Philips 3.0 T scanner (Best)
equipped with an 8-channel SENSE (Sensitivity Encoding) head
coil at the Research Imaging Center (RIC) (Irvine, CA). Functional
images were acquired using a T2∗-weighted, echoplanar single-
shot pulse sequence (|TR, 2000 msec; TE, 26 msec; flip angle,
70˚; matrix size, 128 mm × 128 mm; FOV, 180 mm × 180 mm;
SENSE factor, 2.5; slice thickness, 1.8 mm; interslice gap,
0.2 mm) with an in-plane acquisition resolution of 1.5 ×
1.5 mm. Thirty-five coronal slices were acquired along the long
axis of the hippocampus covering the majority of the MTL and
the basal ganglia, encompassing approximately half of the cortex.
One hundred twenty volumes were acquired during each run. To
allow for T1 equilibration, the first four volumes of each run were
discarded. Whole-brain anatomical images were acquired using a
sagittal T1-weighted magnetization-prepared rapid gradient echo
(MP-RAGE) scan (TR, 11 msec; TE, 4.6 msec; flip angle, 18˚; matrix
size, 320 mm × 264 mm; FOV, 240 mm × 150 mm; slice thick-
ness, 0.75 mm; resolution 0.75 mm isotropic; 200 slices, coregis-
tered with the fMRI data).

Image processing and cross-participant registration
Data analyses were performed using Analysis of Functional
Neuroimages (AFNI) software (Cox 1996). Functional volumes
from each scanning run were corrected for differences in slice
acquisition and realigned to the first volume. Functional data
were then coregistered in time and three dimensions. Any time
points with .3˚ rotation or 2 mm translation were eliminated
from further analysis. All data for each participant were concat-
enated across runs. Functional data were iteratively spatially
smoothed using AFNI’s 3dBlurToFWHM which estimates the
intrinsic smoothness of the residuals and then spatially smoothes
the functional data until obtaining the targeted smoothness—in
our case, an isotropic 3-mm FWHM Gaussian kernel. We function-
ally defined ROIs by setting a voxel-wise threshold of P , 0.02
with a connectivity radius of 1.6 mm and a spatial extent thresh-
old volume of 118 mm3, resulting in an overall family-wise error
corrected alpha-probability of P , 0.05 as determined by Monte
Carlo simulations (AFNI’s AlphaSim program).

Cross-participant alignment began with the whole-brain spa-
tial normalization of each participant’s T1-weighted MP-RAGE to
the Talairach atlas (Talairach and Tournoux 1988) using a
12-parameter affine transformation matrix. This initial registra-
tion provides a rough first pass, removing large spatial shifts
between participants prior to our subsequent region of interest
alignment (ROI-AL) approach (Stark and Okado 2003). Fine-tuned
cross-participant registration was accomplished using Advanced
Normalization Tools (ANTs), a powerful diffeomorphic alignment
algorithm (Avants et al. 2008) that creates a 3D vector field to map
each participant’s brain space into a template space. We used each
participant’s structural scan to create a custom central tendency
template. Following the template generation, each participant’s
MP-RAGE was warped into the custom template space. The result-
ing transformation parameters were subsequently applied to the
functional data.

Statistical analysis of functional imaging data
Subject-specific behavioral design matrices were created contain-
ing the following regressors: reward trials that were optimally
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responded to and received feedback (RO+; correct); reward trials
that were optimally responded to and did not receive feedback
(RO2; were correct but told incorrect); reward trials that were not
optimally responded to and did not receive feedback (RNO2;
incorrect); reward trials that were not optimally responded to and
received feedback (RNO+; were incorrect but told correct); punish-
ment trials that were optimally responded to and did not receive
feedback (PO2; correct); punishment trials that were optimally
responded to and received feedback (PO+; were correct but told
incorrect); punishment trials that were not optimally responded
to and did not receive feedback (PNO2; were incorrect but told
correct); and punishment trials that were not optimally responded
to and received feedback (PNO+; incorrect). Nuisance regressors
coding for drift in the MR signal were also included in the design
matrix.

A deconvolution approach based on multiple linear regres-
sion was used to analyze the fMRI data for each participant. The
hemodynamic response for each vector is estimated using nine
time-shifted design matrices modeled as tent functions, estimat-
ing the BOLD activity from 0 to 16 sec after the onset of the trial.
The resulting b coefficients represent activity vs. baseline for each
vector at a given time point in each voxel. The summed b coeffi-
cients (4–12 sec after trial onset) were used as the model’s estimate
for each regressor of interest. The resulting summed b coefficients
for trial types RO+, RNO2, PO2, and PNO+ were used for group-
level analyses—repeated-measures ANOVA with factors learning
condition (reward-based, punishment-based) and outcome (correct,
incorrect), testing for significant effects across the group.

In a separate yet related analysis, we assessed the BOLD activ-
ity correlated with the amount of training. To perform this analy-
sis, we ran a separate multiple regression model using regressors
similar to those of our original analysis; however, we further split
the conditions of interest according to whether they were experi-
enced during the first two runs of the experiment (first half) or the
last two runs of the experiment (second half) for each stimulus set.
For those participants who received eight experimental runs, the
second four runs were split in a manner similar to the original four
runs—doubling the number of events that constituted our con-
ditions of interest. At the group-level, we utilized a linear
mixed-effects model to identify reliable differences across the
group for learning condition (reward, punishment), outcome (cor-
rect, incorrect), and amount of training (first half, second half).
Separate control analyses were performed to account for the pos-
sibility that the resulting BOLD modulation was, in part, due to
differential responding to PE estimates or correlations with RT.
In the control analyses, regressors for demeaned PE estimates
and RT measurements were added to the GLM to account for these
potential confounding factors.

Last, to assess BOLD activity related PE estimates, we mod-
eled each participant’s performance using a Q-learning algorithm
and derived trial-specific PE estimates using a delta learning rule
(Widrow and Hoff 1960). We used demeaned PE estimates as aux-
iliary behavioral information to parametrically assess changes in
BOLD activity correlated with PE estimates. The trial-by-trial PE
estimates were convolved with a canonical basis function. The
resulting time-series was correlated with each participant’s func-
tional data using multiple linear regression. The subject-specific
design matrices included regressors for reward-based events oc-
curring, punishment-based events occurring, PE estimates for
reward-based trials, PE estimates for punishment-based trials,
along with regressors of no interest coding for drift in the MR sig-
nal. The b coefficients for the reward- and punishment-based PE
estimates were used for subsequent repeated measures ANOVA
at the group level.

Computational learning model
We modeled each participant’s performance using a Q-learning
algorithm (Watkins 1989). Action values were updated using the
delta rule (Widrow and Hoff 1960): Ai(t + 1) ¼ Ai(t) + h[d(t)]; t is
the trial number, i is the selected category (A or B),h is the learning
rate, and d is the error estimate reflecting the difference between
expected and received outcomes, E—Ai. The expected value, E,

was 1 for reward-based trials that received feedback, 21 for loss-
based trials that received feedback, and 0 for any trials that did
not receive feedback. We used the trial-specific error estimate, d,
for subsequent parametric analysis of the fMRI data. The temporal
structure of each trial only facilitated the estimation of the
trial-by-trial PE estimate; therefore, we used the delta rule rather
than the temporal difference algorithm here (Sutton and Barto
1998).

In the model, the associative value for each category began at
0.50. We used a softmax action selection algorithm (Sutton and
Barto 1998) to determine the probability that each category would
be selected based on the trial-specific associative values: Pi(t) ¼
exp[bAi(t)]/

∑
exp[bAi(t)], where b is the inverse temperature

amplifying the differences between action values for high values
of b or making the actions equally likely for low values of b.

The best fitting learning rate, h, and inverse temperature, b,
were determined using maximum likelihood estimations. Across
participants, we systematically incremented h (0.01 to 1) and b

(0.5 to 5), calculating for each pair of estimated parameters
the negative log-likelihood of the probability that the current
response would be made by the participant: L ¼

∑
2lnPi(t). For

each participant, we estimated the best fitting parameters by
selecting the set of model parameters that gave the lowest value
of L. A single set of model parameters (the average of the parame-
ters across all participants) were used to derive the final prediction
error estimates: h ¼ 0.41; b ¼ 3.73 (Supplemental Table 1).
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