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Unsupervised stimulus-stimulus redundancy compression, one component of Gluck and Myers’s
(1993) representational theory of the hippocampal-region function, could emerge from the anatomy
and physiology of the entorhinal cortex. This hypothesis is suggested by a physiologically and
anatomically realistic model of the entorhinal cortex derived from a similar model of the olfactory
cortex previously proposed by Ambros-Ingerson, Granget, and Lynch (1990). To the extent that en-
torhinal function can survive damage strictly limited to the hippocampal formation (the H lesion),
this has implications for interpreting the behavioral corisequences of lesions which either do or do
not spare overlying cortical areas. In particular, we expect that the H lesion should not interrupt
stimulus—stimulus redundancy compression, thereby sparing conditioning behaviors, such as latent
inhibition, which are eliminated by broader (H*+) lesions to the hippocampal region, However; such
other behaviors as the context sensitivity of latent inhibition and of learned responses are expected
to be affected by the H lesion. These predictions are consistent with empirical data. The theory also
leads to several novel predictions for behavioral comparisons of intact, H-lesioned, and H++-lesioned
animals on tasks such as sensory preconditioning, compound preconditioning, and easy-hard trans-
fer. A major theme of this paper is to illustrate how a bottom-up model of cortical processing.can be
integrated witha top-down model of hippocampal-region function to yield a more complete mapping

from physiology to behavior.

Although there have been many attempts to character-
ize the functional role of the hippocampal region in learn-
ing and memory, most have treated the region as a single
functional unit (e.g., Buzsaki, 1989; Eichenbaum, in press;
Gluck & Myers, 1993; Hirsh, 1974; McNaughton &
Nadel, 1990; Mishkin, 1982; Nadel, 1992; Squire, 1987).
The hippocampal region, however, comprises several dis-
tinct structures, including hippocampus ficlds CA1l
through CA4, dentate gyrus, subicular complex, and over-
lying areas, including the entorhinal cortex. Recent ad-
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vances in experimental methods (Jarrard, 1989; Zola-
Morgan, Squire, Rempel, Clower, & Amaral, 1992) have
made it possible to selectively study these eemponent
structures. This has led to several surprising discoveries
in which behaviors previously thought to be hippocampal
dependent have instead been shown to depend primarily
on cortices overlying the hippocampus (e.g:, Jarrard,
1993; Zola-Morgan & Squire, 1992).

In light of these recent experimental results, researchers
have begun to propose and test putative divisions of func-
tion among distinct hippocampal-region structures (Bun-
sey & Eichenbaum, 1993; Eichenbaum, Otto, & Cohen,
1994; Lynch & Granger, 1992; Squire, 1992), This paper
describes one suich effort: a preliminary mapping of a pre-
vious computational model of hippocampal-region func-
tion onto distinct structures of this region. Our primary
goal here was to identify the functional role of the en-
torhinal cortex in elementary associative learning tasks.

The starting point for this differentiation of function is
a previous connectionist model of the aggregate func-
tional role of the hippocampal region in classical “Pav-
lovian” conditioning. Gluck and Myers (1993) have pro-
posed that the hippocampal region is eritical for the
construction of new stimulus representations that facili-
tate learning. These new representations are assumed to
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compress and differentiate information reflecting both
stimulus—stimulus and stimulus-outcome regularities in
the environment. A connectionist network model which
performs these various representational changes accu-
rately predicts a broad range of conditioning behaviors
abserved in intact animals that are altered or impaired
after damage to the hippocampal region (Gluck & Myers,
1993; Myers & Gluck, 1994).

This model of hippocampal-region processing is il-
lustrative of the class of “top-down” models in behav-
ioral neuroscience which start with a comparison between
the behavior of normal and lesioned subjects, and then
try to derive underlying neural mechanisms than can ac-
count for the difference between these two populations
(Gluck & Granger, 1993). Although such top-down mod-
els may not immediately yield detailed physiological un-
derstanding of the brain region in question, they do rep-
resent an important first step toward understanding the
functional role of specific brain regions. Most impor-
tantly, this modeling approach ensures that the func-
tional interpretation of a neural system is consistent with
the broad base of detailed behavioral analyses provided
by psychological studies of animal learning behavior.

A different, but complementary, approach to compu-
tational modeling in neuroscience begins not with behav-
iory but rather with the underlying anatomy and physiol-
ogy, from which behavior might be derived as an emergent
property of the neural circuitry. A major theme of this pa-
per is to illustrate how such botiom-up modeling of corti-
cal processing can be integrated with our existing top—
down model of hippocampal-region function, to yield a
more complete mapping from physiology to behavior.

We hypothesize that the anatomy and physiology of the
superficial entorhinal cortex was consistent with an emer-
gent clustering function. This suggestion parallels and
draws on a recent bottom-up model of clustering in the
anatomically similar superficial piriform cortex (Ambros-
Ingerson, Granger, & Lynch; 1990; Granger, Ambros-
Ingerson, & Lynch, 1989; Granger & Lynch, 1991); while
the piriform cortex is limited to the olfactory domain,
the entorhinal cortex could cluster information across
the entire spectrum of sensory modalities (see also
Gluck & Granger, 1993). This clustering is identical to
the stimulus—stimulus compression mechanism proposed
as one aspect of hippocampal region function in the top-
down model (Gluck & Myers, 1993).

Our hypothesis suggests that the multiple components
of Gluck and Myers’s (1993) proposed hippocampal-
region function could be dissociated and localized in the
various structures of the region. To the extent that these
subfunctions can exist in isolation, hippocampal lesion
would be expected to yield different behavioral effects
depending on the exact extent of the lesion. There is now
behavioral evidence confirming that at least some en-
torhinal processing can survive such a localized hippo-
campal lesion (Jarrard & Davidson, 1991; Zola-Morgan
& Squire, 1993).

This paper reviews Gluck and Myers’s (1993) top—
down theory of corticohippocampal processing and the
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bottom-up piriform cortex model of Ambros-Ingerson
et al. {1990), and then argues that their model can also be
interpreted as a bottom-up model of superficial entorhi-
nal cortex. This entorhinal model can be included in a
system that represents processing after a selective hippo-
campal lesion; the behavior of this system is compared
with existing behavioral data on classical conditioning
following such selective lesions. The model correctly pre-
dicts that selective hippocampal lesion should spare la-
tent inhibition but not the context sensitivity of learned
responses or of latent inhibition. The model also makes
several novel (and still untested) predictions that behav-
jors should be spared or eliminated after the selective le-
sion, depending on the extent to which they depend on
stimulus—stimulus redundancy compression. Finally, we
cornpare and contrast this hypothesis with other related
models of entorhinal and hippocampal function.

A “TOP-DOWN” MODEL OF
HIPPOCAMPAL-REGION FUNCTION

Early psychological theories of learning sought to char-
acterize the nature of what an animal learns in a condi-
tioning paradigm by formalizing rules for the develop-
ment of elementary associations (Hull, 1943; Pavlov,
1927). These experimental studies led to the development
of many one-process models of conditioning which de-
seribed the formal properties of changes in underlying
associations (Estes, 1958; Mackintosh, 1975; Pearce &
Hall, 1980; Rescorla & Wagner, 1972). Later behavioral
studies, however, suggested that it was not possible to re-
duce to a single associative weight all that an animal learns
during a conditioning experiment. Phenomena which most
clearly implicate the need for multiple learning mecha-
nisms include latent inhibition (Lubow, 1973), sensory
preconditioning (Thompson, 1972), and reversal trans-
fers and shifts (Kendler, Kendler, & Sanders, 1967; Law-
renice & Mason, 1955). These and other similar studies
led to the development of two-process theories of learning
in which the relevance of a stimulus cue could be altered
independently from changes in associative weights (Frey
& Sears, 1978; Schmajuk & Moore, 1988; Trabasso &
Bower, 1964; Wagner, 1978). These two-process models
allow for both stimulus selection, in which the associa-
bility, attention, or representation of a stimulus cue is se-
lectively altered, as well-as for stimulus association, in

"which the selected aspects of the stimulus event are as-

saciated with various other stimuli, especially reinforc-
ing outcomes.

Building on the psychological tradition and behavioral
data which support the distinction between stimulus se-
lection and stimulus association, Gluck and Myers(1993)
proposed a computational theory of hippocampal func-
tion in classical conditioning in which the hippocampal
region is presumed to play a critical role in mediating
stimulus selection but is not necessary for the formation
of elementary stimulus associations. Central to Gluck and
Myers’s computational account of stimulus selection and
hippocampal-region function is the concept of 2 modifi-
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able stimulus representation. Because the similarity be-
tween two stimulus representations determines the ex-
tent to which associations learned to one stimulus wilt
generalize to the other, changes in the underlying stimu-
lus representations can alter the amount of generaliza-
tion between stimuli. Thus, if two stimuli are mapped to
the same response, learning will be facilitated if their
representations are made more similar, or compressed, to
increase generalization between them. Conversely, rep-
resentations can be differentiated, or made less similar,
to decrease generalization if the stimuli are to be mapped
to different responses. The hippocampal region is as-
sumed to compress and differentiate stimulus represen-
tations in exactly this way.

In Gluck and Myers’s (1993) theory, two. constraints
are assumed to govern the degree of compression and
differentiation within the hippocampal-region represen-
tations. First, stimulus—stimulus regularities, that is, the
reliability with which two stimuli co-occur, will tend to
cause representational compression. This follows from
noting that if two stimuli are perfectly correlated, gener-
alization between them should be increased. The second
constraint depends on stimulus-outcome regularities:
two stimuli which reliably predict the same future out-
come (a salient or reinforcing event) should have their
representations compressed, while stimuli which predict
different events should have differentiated representa-
tions. Table 1 summarizes these conjectured constraints
on the formation of new stimulus représentations in the
hippocampal region.

The biases to compress and differentiate representa-
tions may often be at odds with each other. For example,
if stimulus A always occurs in context X, there will be a
bias to compress the representations of A and X. If X often
occurs without A, there will be a bias to differentiate their
representations. Which bias prevails will depend largely on
the statistical correlations governing the appearance of
each cue and their mutual predictiveness. The stimulus—
stimulus and stimulus-outcome processes may also be at
odds. If two stimuli never co-occur, stimulus—stimulus
processes will tend to differentiate their representations.
If both stimuli reliably predict the same salient future
event, stimulus-outcome processes will tend to compress
their representations. Which process dominates will de-

Table 1

1 Changes A d to Occur in the Hippocampal

Region During Léarning
Bias to Compress

Repr

Bias to Differentiatc

IF stimuli reliably
occur separately

IF stimuli reliably
co-occur

IF stimuli reliably
predict same predict different
future event futire cvents

Note—The hippocampal region is assumed by Gluck and Myers (1993)
to compress and differentiate stimulus representations to increase and
decrease stimulus. generalization, This process is constrained by
stimulus—stimulus regularity—how reliably stimuli co-occur—as well
as by stimulus-outcome regularity—how reliably stimuli predict the
samé future events.

Stimulus-stimulus
regularity
Stimulus-outcome
regularity

IF stimuli reliably

pend on the strength of the statistical correlations, as well
as on number of exposures. Early in training, before
stimulus-outcome regularities are detected, stimulus—
stimulus processes may tend to dominate, inasmuch as
stimulus-stimulus correlations can be estimated after
only a few exposures. If, however, stimuli predict salient
outcomes, such as the presence or absence of reinforce-
ment, stimulus-outcome processes may eventually dom-
inate the representation.

A system that reflects these representational processes
has been implemented as a connectionist model (Gluck
& Myers, 1993; Myers & Gluck, 1994), as shown in Fig-
ure 1A. One network, a predictive autoencoder {(Hinton,
1989), represents processing in the hippocampal region.
This network is trained by error backpropagation (Parker,
1985; Rumelhart, Hinton, & Williams, 1986; Werbos,
1974); it learns to map from inputs representing stimu-
lus activity, through a narrow internal or hidden layer of
nodes, to output nodes which learn to reconstruct the
stimulus inputs plus a prediction of future events. Be-
cause the internal layer is narrow, as compared with the
input ard output layers, the representations formed in the
internal layer must compress redundant information while
preserving enough information to allow the output to be
reconstructed. In this process, the répresentations tend to
compress and differentiate infotmation on the basis of
both stimulus—stimulus and stimulus-output regularities,
just as the hippocampal region is proposed to do. It is im-
portant to note that this predictive autoencoder, with its
training algorithm, represents only one possible imple-
mentation of the proposed hippocampal-region function;
later in this paper we discuss how part of the function
may be implemented in such a way as to map more di-
rectly onto the biological substrate.

The model further assumes that extrahippocampal re-
gions in the cerebral and cerebellar cortices are the sites
of long-term memory. These sites are assumed to be ca-
pable of simple stimulus association, but not of forming
new stimulus representations. One such long-term mem-
ory network, which is shown on the left in Figure 1A, is
a simplification of some aspects of motor-reflex condi-
tioning in the cerebellum (Gluck, Goren, Myers, & Thomp-
son, 1994). This network has access to a simple correla-
tional learning rule, the Widrow—Hoff rule (Widrow &
Hoff, 1960), which is related both to psychological de-
scriptions of learning (Gluck & Bower, 1988; Rescorla
& Wagner, 1972; Sutton & Barto, 1981} and to biological
plasticity mechanisms such as long-term potentiation
(LTP) (Bliss & Lomo, 1973; Levy, Brassel, & Moore, 1983;
Stanton & Sejnowski, 1989). This learning rule is suffi-
cient to allow the network to learn to map from its exist-
ing representations to an output that is interpreted as the
behavioral response, but not to develop new representa-
tions. However, a separate application of this learning rule
can allow the network to adopt the new representations
constructed in the internal layer of the hippocampal-
region network. Figure 1A shows sparse, fixed connec-
tions between the internal layers of the two networks,
allowing the long-term memory network to copy (a re-
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(A) (8)
Long-Term Hippocampal Long-Term
Memory Region Memory
Responss Stimulug Input
Reinforcement Fasponse Reinforcement

Stimulus Input
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Figurel. A )l ion of the top-down hippocampal- regton model of Gluck and Myers
{1993).(A) The intact model inputispi tothe ’"_ p gion network, which cancom-
pmssanddml i p These. p are biased by sti

as-well asby The new rep constructed in the hippo-

campal-reglon network are acquired by the long—term memory network, which simultaneously learns to map
from these internal representations to an output interpreted as the system’s behavioral response. This long-
term-memory network is based on a prior model of some aspects of motor-reflex learning in the cerebellum
{Gluck et al., 1994). (B) The H*'*-lmoned model: Broad hippocampal-region damage (the H lesion) is simu-
lated by disabling the hipp pal-region network. In this case, the long-te: y network
cannot form new internal representations, although it can still learn new mappings to b ioral resp
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based on its preexisting (and now fixed) internal representations.

coding of ) the evolving hippocampal-tegion representa-
tions. Learning in the hippocampal-region network and
in both layers of the long-term memory network is as-
sumed to proceed incrementally and in parallel, This
model does not focus on the relative speeds of learning
in the two networks or on the time course of transfer of
information from oné network to the other; however, this
general two-component architecture to learning would
certainly allow for a consolidation period during which
informatien is slowly transferred from hippocampal re-
gion to long-term memory (see Alvarez & Squire, 1994;
McClelland, McNaughton, & O’Reilly, 1994; Murre,
1994; Squire, 1987; Winocur, 1990).

Within this connectionist model, broad hippocampal-
region damage (often termed the H** lesion) is simu-
lated by disabling the hippocampal-region network (Fig-
ure 1B). In this case, the long-term memory network can
still learn behavioral responses on the basis of its exist-
ing representations, but can no longer modify these rep-
resentations during learning. Our H**-lesioned model
therefore predicts that hippocampal-region damage will
be maost deleterious to those tasks which require new
stimulus representations, but not those for which preex-
isting or random stimulus representations suffice.

For example, in rabbit eyeblink conditioning, a blink-
evoking corneal airpuff or paraorbital shiock (the uncon-
ditioned stimulus, or US) is rcpeatedly preceded by a
neutral cue, such as a tone or Jight (the conditioned stim-
ulus, or C8); over time, an association develops between

CS and US such that the CS alone can come to elicit an

. anticipatory blink, the conditioned response, or CR (Gor-

mezano, Kehoe, & Marshall, 1983). Under optimal con-
ditions, the acquisition of a CR in this preparation is not
affected by hippocampal lesion (Port, Mikhail, & Patter-
son, 1985), consistent with the model’s prediction that
elementary associative learning should not depend on
the hippocampal region. However, more complex para-
digms which involve significant representational changes
are substantially altered by damage to the hippocampal
region. The intact and H++-lesioned models have been
applied to a variety of these paradigms (Gluck & Myers,
1993; Myers & Gluck, 1994), and we describe a few ex-
amples below.

Behavioral Results: Compression and
Differentiation

One constraint assumed to bias hippocaipal-region
representations is stimulus—stimulus compression of co-
occurring stimuli. For example, if A and B are repeatedly
presented together, their representations become com-
pressed, increasing generalization between them. As a
result, subsequent training to A will transfer to B as well.
The response to B alone will be greater under these con-
ditions than in a control condition in which there is no
preexposure, as shown in Figure 2A (Gluck & Myers,
1993). This phenomenon, known as sensory precondi-
tioning, occurs in intact animals as well (Thompson, 1972).
The H+*-lesioned model, with no representational com-
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Figure 2. Simulation résults with the intact and H--lesioned models, replotted from results reported in Gluck and Myers (1 993) and ‘Vlyers
and Gluck (1994). (A) Sensory preconditioning: Unreinforced preexposure to a compound of two stimuli, AB, followed
to A, results in stronger responding to B alone than in a control condition with no preexposure, in the mtact but not the H“—lesnoned model
Fornix lesion similarly elimi Sensory pr in rabbits (Port & F 1984). (B) C d pr ioning: Unrei;
preexposure to AB slows later training to discriminate A and B, as shown by the less relative difference in responding to A.and B [Diff{A,B)]
in the intact model, Intact rats show compound preconditioning (Lubow et al., 1976); the model predicts H** lesion should eliminate the ef-
fect. (C) Easy~hard transfer: Prior training on an “easy” discrimination speeds later learning of a “hard” discrimination, as shown by the
greater relative difference in responding to the hard stimuli [Diff(H+H - )}, in the intact model. Normal animals show this effect (e.g,
Lawrence, 1952); the model predicts that H* lesiun should eliminate the effect. (D) After training to respond to'a cue A in some context, the
intact; but not the F*+-lesioned, system shows a decrement in responding to A when presented in a novel context. Hippocampal lesion does
eliminate the effect in rabbits (Penick & Solomon, 1991). (E) Latent inhibition: U ced pr to a cue, A, slows later training to
respond to A in the intact, but not the H-lesioned, model. Hipp 1 aspiration or electrolytic lesmn likewise eliminates latent inhibition
in animals (Kaye & Pearce, 1987; Solomon & Moore, 1975). (F) The intact system shows release from latent inhibition with a context shift be-
tween preexposure and training phases. Likewise, latent inhibition is eliminated in intact rats (Bouton & Brooks, 1993; Lubow et al., 1976} by

such a shift.

pression, does not show any sensory preconditioning
effect; fimbrial lesion, which disrupts hippocampal pro-
cessing, is likewise sufficient to eliminate sensory pre-
conditioning in the rabbit eyeblink preparation (Port &
Patterson, 1984).

Unreinforced preexposure to the compound AB retards
later learning to discriminate A and B in the intact model,
for reasons similar to those described above for sensory
preconditioning; compression during the preexposure
phase increases generalization between A and B, making
it harder to subsequently map them to different re-
sponses {Gluck & Myers, 1993). Figure 2B shows this
compound preconditioning effect, which is also ob-

served in intact rats arid normal children (Lubow, Rifkin,
& Alek, 1976); the relative difference Diff(A,B) in re-
sponse rates to the two stimuli following 100 training
epochs is reduced after 20 AB preexposure trials, rela-
tive to a control condition with no preexposure. Again,
this effect is eliminated in the H**-lesioned model; to our
knowledge, this is a novél prediction which remains to be
tested in lesioned animals.

Other behavioral results are assumed to result from
stimulus-outcome differentiation during learning. One
such phenomenon is easy—hard transfer, in which early
training on an “easy” discrimination (e.g., black vs. white)
facilitates subsequent learning of a “hard” discrimina-
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tion along the same dimension (e.g., dark gray vs. light
gray) more than docs an equivalent amount of pretrain-
ing on the hard task itself. During training on the easy
task, the hippocampal-region network is assumed to dif-
ferentiate the representations of the two easy stimuli,
which predict different outcomes. This differentiation
will result in decreased generalization among all stimuli
lying along the same stimulus dimensions. As a result,
subsequent learning of the hard task is facilitated (Gluck
& Myers, 1993). Figure 2C shows that the relative dif-
ference Diff(H+,H—) in response rates to the two stim-
uli in the hard task is greater following pretraining on the
easy task than after cqual pretraining on the hard task it-
self. This effect is also obtained in intact animals (e.g.,
Lawrence, 1952; Riley, 1968; Terrace, 1963), even if the
hard task is a reversal of the easy task (Mackintosh &
Little, 1970). With no mechanisms for stimulus-outcome
differentiation, the H**-lesioned model does not show
the easy-hard transfer effect. This prediction that easy—
hard transfer should depend on the hippocampal region
has not been tested in hippocampal-lesioned animals and
remains a novel prediction of the theory.

Behavioral Results: Contextual Processing

This account of hippocampal-region function aiso pro-
vides an interpretation for many contextual effects in in-
tact and lesioned animals. For example, under many con-
ditions, intact animals trained to respond to a stimulus,
A, in one context, X, show a decreased responding if A
is presented in a new context, ¥ (Antelman & Brown,
1972; Good & Honey, 1991; Honey, Willis, & Hall, 1990;
Kim & Fanselow, 1992; Penick & Solomon, 1991). Fig-
ure 2D shows this response-decrement effect in the intact
model as well (Myers & Gluck, 1994). During training
to respond to A in context X, several representational
processes operate in the intact model. Since A always ap=
pears. in conjunction with X, there is a bias toward
stimulus-stimulus compression; this is opposed by
stimulus—stimulus differentiation which operates be-
cause the context X often occurs without A. At the same
time, the system learns that reinforcement is contingent
on the prescnce of A—but not.X alone—and so stimulus-
outcome mechanisms will tend to differentiate the rep-
resentations. These various constraints are summarized
in Table 2.

Which of these various representational mechanisms
dominates depends on environmental regularitics and on
the-amount of training. Early in training, before the cor-
relation between A and reinforcement is learned, stimulus-
outcome mechanisms will be weak. On the other hand,
stimulus—stimulus regularities can be determined after
only a few exposures. Since A perfectly predicts X but X
predicts either A’s presence or A’s absence, there will be
a net tendéncy for stimulus-stimulus compression of A
and X. If A is subsequently presented in a new context,
Y, the new inputs will activate this representation of A
less strongly than usual; in turn, the behavioral response
may be less strongly activated than usual, as shown in
Figure 2D. The H*-lesioned model does not show this
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Table 2

Representational Changes During Response Acquisition

Bias to Compress
A=X

Bias to Differentiate
A=A, X=not A

Stimulus—stimulus

regularity
AX=US,

X alone=no US

Stimulus-outcome
regularity

Note—Representational changes during training to respond.to cue A in
context X. A appears only in context.X, and so there is a bias to compress
the representations of A and X. Since X often appears without A, some
stimulus-stimulus differentiation also occurs. Since A predicts rein-
forcement (the USY while X alone does not, there is stimulus-cutcome
differenitiation of A arid X. The net effect is to differentiate the repre-
sentations of A and X, decreasing generalization between them, and fa-
cilitaling learning to discriminate them. However, because stimulus-
outcome regularities may become apparent only after some training,
timul i ion may dominate early in training.

effect, since it has no compression mechanisms; consis-
tent with this expectation, ablation of dorsal hippo-
campus and subiculum suffices to eliminate the context-
shift decrement in rabbits (Penick & Solomen; 1991).

However, the representations in the intact model con-
tinue to evolve with time. As the mapping between A and
US is repeatedly trained, stimulus-outcome processes
eventually come to dominate, decreasing generalization
betweerl A and X, to facilitate learning to respond only
when A is present. As the representation of A becomes
highly differentiated from X, the response to A is acti-
vated strongly, regardless of the context, and remains
strong even in the new context, Y. The response decre-
ment shown in Figure 2D for the intact model is only a
transient plienomenon and is eliminated after overtrain-
ing the intact model in the original context (see Myers &
Gluck, 1994, for further details). This is consistent with
data from the conditioned emotional response paradigm
showing that the response decrement after context shift
is eliminated with extensive training in the original con-
text (Hall & Honey, 1990).

Another context-related behavioral phenomenon is lfa-
tent inhibition: unreinforced preexposure to cue A slows
later acquisition of a response to A (Lubow, 1973). The
intact model shows this effect as well (Figure 2E; see
also Myers & Gluck, 1994). During the preexposute phasc,
there are opposing biases to compress and differentiate
the representations of A and the context, X, in which it
occurs, by virtue of the fact that A perfectly predicts X,
but X only partially predicts A. There is also a very
strong tendency toward stimulus-outcome compression,
since both A and X are equally predictive of no salient
outcome. Table 3 summarizes these various representa-
tional constraints. The net result is therefore a tendency
to compress the representations of A and X. This com-
pression increases the generalization between A and X,
and also simply decreases the amount of representational
resources allocated to. encode specifically for the pres-
ence of A. Both of these processes interfere with subse-
quent learning to respond to A but not to X alone; stimulus-
outcome differentiation comes to undo this compression,
allowing the discrimination to be acquired, but learning
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Table 3
1 Changes During Unreinforced Preexposure

P

Bias to Compress Bias to Differentiate

Stimulus—stimulus A=X X=A, X=not A
regularity
Stimulus-outcome AX=no US, AX=no US,

regularily X alone=no US X alone=mno US

Note- -Representational changes during preexposure to cue A in con-
text X. A appears only in context X, and so there is a bias to compress
the representations of A and X. Since X often appears without A, some
stimulus—stimulus differentiation also occurs. Since ncither-A nor X
predict reinforcemient (the US), there is a streng tendency for stimulus-
outcome compression of A and X. The net cffect is to compress the
representations of A and X, increasing generalization between them
and impeding subsequent learning to discriminate them.

is slower than in a control condition where there was no
initial compression of cue and context. Again, the H™-
lesioned model does not show this effect, consistent with
data showing that latent inhibition is also eliminated
after hippocampal aspiration or electrolytic lesion (Kaye
& Pearce, 1987; Solomon & Moore, 1975; but see also
below).

Since latent inhibition is assumed to result from in-
creased generalization between cue A and context X, and
a resulting decrease in representational resources. allo-
cated to encode for A, a context shift between preexpo-
sure and acquisition phases interferes with the effect.
There is immediate release from the problem of over-
generalization between A arid X—at least if the new con-
text ¥ is sufficiently different from X. While there is still
the problem that the representation of A has been re-
duced, that can be overcome relatively quickly by strong
stimulus-outcome differentiation mechanisins in the
subsequent acquisition phase. As a result, latent inhibi-
tion is eliminated in the intact model by a context shift
between preexposure and acquisition phases (Myers &
Gluck, 1994). Figure 2F shows that the context shift may
even speed learning, relative to a control condition: if the
acquisition il context Y is very different from the preex-
posure context X, and the representation of A has been
compressed with context X, the net Tesult may be a rep-
resentation which already distinguishes A from Y. Sim-
ilarly, in intact rats and in children, preexposure to a
stimulus in one context has been found to facilitate sub-
sequent learning about that stimulus in a novel context
(Lubow et al., 1976), reversing the latent inhibition ef-
foct found when the stimulus is trained in the original
context. Context switch also eliminates latent inhibition
in a rat conditioned-suppression paradigm (Bouton &
Brooks, 1993).

MODELING THE
SELECTIVE CONTRIBUTIONS
OF ENTORHINAL CORTEX TO
HIPPOCAMPAL-REGION PROCESSING

The model behaviors described above arise from the
interplay, and often opposition, between representational
compression and differentiation and between stimulus—

stimulus and stimulus-outcome correlations. Stimulus—
stimulus learning may be quite fast, while stimulus-
outcome learning, which requires detecting stimulus-
reinforcement correlations, may be slower but stronger in
the end. Given that these processes can be partially dis-
sociated and that they occur at different speeds and
strengths, it may be possible that they represent different
subfunctions of the hippocampal region and that they
are situated in different anatomical loci.

The top-down hippocampal-region model presented
by Gluck and Myers (1993), and described above, con-
siders these processes to operate within an undifferenti-
ated system representing the aggregate representational
role of the hippocampal region. The hippocampal region
actually consists of many highly differentiated struc-
tures, -as shown in Figure 3. The primary pathway for
sensory input to the hippocampal region is through the
superficial entorhinal cortex, which, in turn, is affer-
ented by the perirhinal cortex, the parahippocampal cor-
tex, and a full range of higher sensory and associational
cortices (Schousboe et al., 1993; van Hoesen & Pandya,
1975); from the entorhinal cortex, information travels
through the hippocampal formation, including the den-
tate gyrus and fields CAl through CA4 of the hippo-
campus before returning through deep layers of entorhi-

Limbic cortex,
4ensory-specific and
muylti-modai association:
areas throughout cortex

|

Parahippoc.

Cortex Fornix

Hippocampal
Formation
Vs

Periurant
Path

Dentate
Gyrus

Entarhinat
Cortax
{Layer Ill}
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rV & Vi

Figure 3. Schematic representation of major information flow
pathways in the hippocampal region, The entorhinal cortex receives
signals from the limbic cortex and sensory-specific and multimodal
association areas (via the perirhinal and parahippocampal cortices).
The perforant pathway carries projections from the superficial en-
torhinal cortex 1o the dentate gyrus, and information travels thence
to hippocampal fields CA3 and CAl, the subiculum, and back to the
deep layers of the entorhinal cortex, which project back to the sensory
association areas. There are many additional pathways not shown
here, i ions betv the fornix and subcortical struc-
tures, including the thalamus and septum. After Amaral, Ishizuka, &
Claiborne (1990) and van Hoesen (1982).
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nal cortex to the same cortical areas from which it orig-
inally arrived (Witter, Groenewegen, Silva, & Lohman,
1989). Various other pathways exist as well, particularly
the fornix, which carries information bidirectionally be-
tween the hippocampus and such subcortical structures
as the septum and thalamus (Swanson, 1979). An im-
portant consideration of any hippocampal-region model
is how it can be mapped onto the local architecture and
information pathways of the region.

As a first step towards this goal, we consider here what
might be the particular contribution of the superficial
entorhinal cortex to hippocamipal-region processing. We
consider a model which—although originally proposed
as a model of piriform cortex—also captures many as-
pects of entorhinal anatomy, physiology, and plasticity.
This model performs stimulus—stimulus clustering of its
inputs, related to the redundancy compression which is
assumed to constrain hippocampal-region representa-
tions (Gluck & Granger, 1993). Thus, we propose that, in
the same way as the piriform cortex may cluster olfac-
tory information, the entorhinal cortex may cluster in-
formation across the full polymodal range of its inputs.
In terms of our larger theory of hippocampal-region func-
tion, we propose that representational functions may be
performed in different subregions, with the entorhinal
cortex contributing a stimulus—stimulus redundancy com-
pression finction and other structures adding further repre-
sentational constraints, possibly in a largely sequential
fashion.

A Model of Learning in Piriform Cortex

Granger and his colleagues (Granger & Lynch, 19915
Granger et al., 1989; Ambros-Ingerson etal., 1990) have
noted that hierarchical clustering of ador inputs can
emerge from the superficial layers of the primary olfac-
tory (piriform) cortex. A computational model of this
process, based on the induction and expression rules for
synaptic strengthening via LTP in the piziform cortex
(Jung, Larson, & Lynch, 1990; Kanter & Haberly, 1990),
is shown in Figure 4. In brief, LTP of bulb—cortex synapses
in the model causes an increase in the similarity of cor-
tical responses to any of a range of similar inputs. The
cortical response thereby comes to correspond to a fam-
ily or cluster of inputs: a given cortical response simply
signals membership of the input in a given cluster (¢.g.,
“fruit” odors vs. “meat” odors vs. “floral” odors). This
functional operation is equivalent to statistical cluster-
ing, and has been previously described as a consequence
of correlative learning rules in network models by many
researchers (Grossberg, 1976; Kohonen, 1984; Rumel-
hart & Zipser, 1985; von der Malsburg, 1973).

This clustering phenomenon emerges solely from feed-
forward activity in the olfactory system model. Incorpo-
ration of the extensive feedback system from cortex back
to the olfactory bulb causes iterative responses from the
bulb—cortex system from which more complex structure
emerges; in particular; finer grained subclusters evolve
within the initial coarse clusters. After having learned a
number of floral odors, the initial sampling of another

123

lateral olfactory tract (Input t‘rom bulb)
A\ 1/ il

AV iz -
Cortical
Layer | ———a]
Cortical
Layer Il % e
Cortical
Layer I
- ’l \ —
ey P
output to anterlor olfactory nucleus
(and back to bulb)

Figure 4. Schematic representation of olfactory systeny model pro-
posed by Ambros-Ingerson et al. (1990), including feedforward con-
nections fronr the olfactory buth to the piriform cortex, and feedback
inhibition from the cortex to the bulb, Layer 1T pyramidals are inhib-
ited by Iayer Il interneurons with dense local connectivity; layer IT
activity in turn forms an inhibitory mask on bulb activity. A model of
these systems, involving a learning rule based on physiological mech=
anisms of repetitive sampling (the olfactory-hippocampal theta
rhythm) and correlative characteristics of synaptic long-tern poten-
tiation, learns to self-organize a similarity-based hierarchy for classi-
fying stimuli.

floral odor (e.g., a rose) causes feedforward activation of
those cortical cells associated with the floral cluster.
Learning in the feedback pathway from these cortical
cells back to the bulb inhibitory layer causes that feed-
back inhibition to be selective to those portions of the
bulb response correlated with the cortical “floral” cluster
response. Resampling of the odor arrives against the
background of this feedback inhibition, masking out the
portion of the bulb response that corresponds to the flo-
ral cluster and passing on only the portion of the response -
specific to the particular (rose) odor. The resulting new
cortical response therefore corresponds to those compo-
nents of the odor that differ among various members of
the cluster. Subsequant samples yield ever finer grained
subclusters, distinguishing individual odors. Thus, the
model generates a nyultilevel hierarchical memory which
is traversed sequentially from general to more specific
during recognition (Ambros-Ingerson et al., 1990).

Applying the Piriform Cortex Model to the
Entorhinal Cortex

The posterior extent of the piriform cortex elides con-
tinuously with the adjacent lateral entorhinal cortex, and
their superficial layers are closely related anatomically
and physiologically, suggesting the possibility of related
functionality (Price, 1973; van Hoesen & Pandya, 1975;
Woodhams, Celio, Ulfig, & Witter, 1993). Noting this
anatomical similarity, Gluck and Granger (1993) pro-
posed that the entorhinal cortex may perform functions
analogous to those identified in the primary olfactory
cortex: similarity-based clustering of inputs. The rele-
vance of the olfactory modeling studies to the entorhinal
cortex is based on anatomical, physiological, and plas-
ticity characteristics of the two regions.
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Anatomy. The primary anatomical characteristics mod-
eled in the superficial fayers of the piriform cortex were
apical dendrites, a ratio of roughly 100:1 excitatory-to-
inhibitory cells, radial axonal arborization of inhibitory
interneurons sufficient to contact roughly 100 excitatory
cells, and random feedforward synaptic connectivity. All
these feedforward constraints hold for the superficial
entorhinal cortex as well. The superficial entorhinal cor-
tex contains small layer II pyramidal or modified stellate
cells with spiny apical dendrites which receive sparse
nontopographic synaptic contact from afferents in layer [
{van Hoesen & Pandya, 1975). Both AMPA- and NMDA-
type glutamate receptors are apparently colocalized at
the synaptic targets of these afferents (Monaghan &
Cotman, 1985). As in the olfactory system, the primary
layer LI cells receive feedforward and feedback inhibi-
tion from GABAa and GABAD cells in layers I and II
(Kohler, Wu, & Chan-Palay, 1985), and the feedback inter-
neurons densely contact neighboring excitatory cells
within a limited radius (Kohler, 1986). Lacking feedback
connections to inhibitory cells in its inputs structures,
the entorhinal cortex would not be expected to perform
the repetitive cyclic subclustering found in the piriform
model, but the feedforward clustering step is supported
by the similar anatomy.

Physiology. The primary physiology modeled in the
olfactory system study included the well-established
synchronous rhythmic firing of the system at the 5- to
8-Hz theta rhythm during exploration and learning in
freely moving animals {Macrides, 1975; Macrides, Eichen-
baum, & Forbes, 1982), dendritic summation approxi-
mated by linear sums with superposition (Anton, Granger,
& Lynch, 1992, 1993; Anton, Lynch, & Granger, 1991),
lateral excitatory—inhibitory interactions over the period
of individual theta peaks causing competitive behavior
(Coultrip, Granger, & Lynch, 1992). All of these mod-
eled features are equally applicable to the superficial
entorhinal network.

Plasticity. Synaptic LTP has been shown to occur in
piriform cortex, induced via brief bursts of activity at the
naturally occurring theta rhythm, both in vivo (Roman,
Staubli, & Lynch, 1987) and in vitro (Jung et al., 1990;
Kanter & Haberly, 1990). This form of synaptic plastic-
ity possesses the key properties required of a learning
mechanism—rapid induction (seconds), long duration
(weeks), and high capacity (via synapse specificity)—
and is thus considered a leading candidate mechanism
for learning (see Granger & Lynch, 1991, for a review).
LTP with the same characteristics (NMDA-dependent,
theta-induced) has been reported in the superficial en-
torhinal cortex (de Curtis & Llinas, 1993).

[n sum, there are important points of correspondence
between the anatomical, physiological, and plasticity
characteristics of superficial entorhinal and piriform
cortices, including the primary characteristics that gave
rise to the emergent functionality found in the modeling
studies of the piriform cortex. To the extent that entorhi-
nal and piriform cortices share these properties, similar
functionality may be expected to emerge.

A notable difference between these two cortical struc-
tures is their input. While the piriform cortex receives af-
ferents only from the olfactory bulb, the entorhinal cor-
tex receives inputs from the full spectrum of modalities
as well as from supramodal association cortices and para-
limbic areas (Woodhams et al., 1993). Thus, while the
piriform cortex might perform hierarchical clustering of
olfactory signals, the entorhinal cortex could perform
clustering among stimuli in different modalities (e.g.,
sound and vision) or among the polymodal features of a
single stimulus.

A second important difference, already noted, between
the piriform and entorhinal cortices is the lack of in-
hibitory feedback connections from the entorhinal cortex
to its inputs, which gave rise to masking of portions of
the input in the olfactory system model. In the absence
of such feedback, only the initial feedforward step of
nonhierarchical clustering would be expected to occur.
There are intense connections from the entorhinal cortex
back to the neocortex (van Hoesen, 1982), but instead of
performing a masking function, our model assumes that
these connections guide the storage of hippocampal-
region-mediated representations in neocortical long-term
storage sites.

The hypothesized model of entorhinal function may
thus be summarized as follows (full implementation de-
tails are given in the Appendix). The netwotk consists of
uhits representing superficial entorhinal excitatory layer I
cells, sparsely afferented by multimodal inputs. The units
are grouped into patches whose members are assumed to
contact and be contacted by an inhibitory interneuron.
The result of excitatory~inhibitory interaction in each
patch is the emergence of lateral competition, which
modeling has shown causes only the most activated tar-
gets to respond, thereby approximating “winner-take-
all” activity. The activation of these winning units across
the network defines a new representation of the stimulus.
The winning nodes undergo LTP-like increment to in-
crease their likelihood of winning the competition when
similar inputs are presented in the future. This network,
shown in Figure 5, performs unsupervised learning, since
the clusters formed are independent of any reinforce-
ment or stimulus-outcome pairing relationships. Its op-
eration is similar to many other unsupervised competitive
clustering networks proposed previously (e.g., Gross-
berg, 1976; Kohonen, 1984; von der Malsburg, 1973).

Relationship to Postulated Hippocampal-Region
Function

In the previous section, an analogy between models of
piriform and entorhinal cortex suggested that the super-
ficial entorhinal cortex could perform an unsupervised
clustering of its inputs. This clustering would reflect sur-
face similarities among stimuli, but it would also reflect
stimulus—stimulus redundancy. If two stimulus features
appear together, they will be treated by the model as a sin-
gle, compound stimulus, and will be assigned member-
ship ina cluster according to the most salient features of
each component stimulus. If one of thc component fea-
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Figure 5. A model of the superficial entorhinal cortex, adapted
from the piriform cortex mode! shown in Figure 4. Stimulus inputs
sparsely exclte mrget pyramidal cells, whlch m turn activate local

y cells, The feedback ilences all but the
meost strongly activated pyramidal cells; these “winning” cells un-
dergo synaptic plasticity, making them more likely to respond
strongly to similar inputs in the future. Other “losing” cells undergo
plasticity; making them less likely to respond to similar inputs. As
emergent behavior, this unsupervised, competitive algorithm gener-
ates stimulus clustering: inputs with similar surface structure tend to
be mapped to the same outpuls Addltlonally, co-occurring stimuli

tend to be input king processes in the ol-
factory system model, which depe'nd on repetitive sampling mecha-
nisms and on feedb the piriform cortex and

olfactory bulb, are not assumed in the entorhinal medel.

tures is later presented alone, it will be treated as a de-
graded version of the compound, and will generally be
assigned to the same cluster. Therefore, learning about
the compound will generalize to the components (Lynch,
1986). This assignation of co-occurring stimuli to the same
representational cluster effects the kind of stimulus—
stimulus redundancy compression which Gluck and Myers
(1993) previously proposed as one constraint biasing
new stimulus representations in the hipj. ycampat region.

We therefore hypothesize that the entorhinal cortex
contains sufficient circuitry to implement stimulus—
stimulus redundancy compression. This, in turn, implies
that the remaining representational constraints,shown in
Table 1 would be implemented elsewhere in the hippo-
campal region. One possibility would be that various
hippocampal-region structures each impose one kind of
representational constraint and operate in assembly-line
fashion, each contributing to the evolving representa-
tion. Such an assembly-line hypothesis has previously
been proposed as consistent with the curious unidiree-
tionality of conniéctions within the hippocampal forma-
tion (Lynch & Granger, 1992): for example, the superfi-
cial entorhinal cortex generates many more afferents to
the dentate gyrus and hippocampal field CA3 than it re-
ceives back. from them (Witter, 1993). It has also been
noted by Levy (1990) that, because the entorhinal cortex
is so much larger than the hippocampus, the signal pass-
ing from the entorhinal cortex must be made as efficient
as possible by reducing redundancy; this is consistent
with the clustering or compression function we propose.

In the next section, we present a connectionist model
which incorporates this entorhinal network together with
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a long-term memory network. We propose that this
model corresponds to the functioning that remains after
an H lesion, which selectively damages hippocampal
formation without otherwise disrupting the entorhinal
cortex. The behavior of this model compares to the be-
havior of H-lesioned animals on several classical condi-
tioning tasks for which stimulus—stimulus redundancy
compression is expected to be critical.

A MODEL OF
ENTORHINAL-CORTICAL FUNCTION

The intact model of Figure { A contains both a network
representing the hippocampal region, and a network rep-
resenting long-term memory processes in the cerebral or
cerebellar cortex. The hippocampal-region function in
this top-down model is undifferentiated, and the H**-
lesioned madel of Figure 1B, which deletes the hippo-
campal network, therefore compares to a broad lesion
which disables all hippocampal-region processing. We
now introduce a third model, which is intermediate be-
tween these two and represents the processing presumed
to remain after selective hippocampal formation damage
which does not include the entorhinal cortex. This H-le-
sioned model is shown in Figure 6. In this model, the rep-
resentations formed in the entorhinal network are ac-
quired by the long-term memory network, just as in the
intact model; now, however, these representations are bi-
ased only by the constraint of stimulus—stimulus redundancy
compression.

Most early hippocampal-lesion studies involved aspi-
ration of the hippocampus; in these lesions, the overlying
entorhinal and other cortices were generally damaged.
Even more selective lesion, such as electrolytic destruc-
tion of the hippocampus, which does not damage en-
torhinal cell bodies directly, still severs entorhinal fibers
of passage through the hippocampus (cf. Honey & Good,
1993). More recently, new techniques such as ibotenic
acid injection (e.g., Jarrard, 1989) have-made it possible
to destroy hippocampa! cell bodies while leaving fibers
of passage intact. These lesions include the hippocam-
pus—and often the dentate gyrus (cf. Davidson, McKer-
nan, & Jarrard, 1993; Honey & Good, 1993)— but not the
overlying parahippocampal structures, including the en-
torhinal cortex, petirhinal cortex, and parahippocampal
cortex. The fact that ibotenate lesion often results in less
severe impairment than the broader aspiration lesions in-
dicates that at least sorne parahippocampal processing
can survive selective hippocampal lesion (Eichenbaum
etal., 1994; Jarrard, 1993; Zola-Morgan & Squire, 1993).
1t should be noted, however, that the converse is not true:
selective entorhinal lesion effectively isolates the hippo-
campus by destroying its primary source of sensory
input (Amaral & Witter, 1989) and the primary route for
hippocampal output back to cortex (Swanson, 1979).
Studies of parahippocampal region processing typically
involve lesion to several structures within the area, mak-
ing it difficult to specify the precise function of the en-
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torhinal cortex as distinct from other parahippocampal
region structures. Apparently, the perirhinal cortex pro-
cesses largely visual information, while the parahippo-
campal cortex processes spatial information; together,
these two areas provide two-thirds of the input to the en-
torhinal cortex (Zola-Morgan & Squire, 1993). However,
some processing in the parahippocampal and perirhinal
cortices apparently can survive entorhinal damage (Mur-
ray, Gaffan, & Mishkin, 1993; Murray & Mishkin, 1986);
therefore, although we cencentrate here on the particu-
[ar function of the entorhinal cortex, additional func-
tionality is probably provided by other parahippocampal
region structures.

Anothier important differerice between ibotenate and
aspiration lesion is that the former spares subiculum; al-
though this structure, together with the dentate gyrus, is
often considered to form a functional unit with the hippo-
campus proper (cf. Eichenbaum et al., 1994), its precise
functions are undetermined. Therefore, the lesion which
would be most precisely comparable to the selectively le-
sioned, entorhinal-cortical model would be an ibotenate
lesion of the hippocampus together with dentate gyrus
and subiculum, but sparing the entorhinal cortex. In the
absence of empirical data regarding the effects of such a
lesion, we will concentrate on comparing the entorhi-
nal-cortical model to animals with ibotenate lesions of
the hippocampus alone. Such animals presumably have
residual entorhinal function like that assumed in the
model; they may have additional function in their sub-
iculum as well, which the model does not consider. For
this reason, the following analysis focuses on several be-
haviors assumed to depend heavily on stimulus—stimulus

I lesion which spares entorhinal processing (the H lesion).

redundaricy compression, for which the entorhinal cortex
is assumed to be both necessary and sufficient.

1t should be noted at the outsct that the behavioral re-
sults shown for the H-lesioned model should not neces-
sarily be quantitatively compared with the data shown in
Figure 2, representing performance of the intact and
H**-lesioned models. Gluck and Myers’s (1993) intact
model is a top-down, abstract model, with learning pro-
cedures based on connectionist learning rules more
closely related to traditional psychological theories of
learning than to physiologically based rules for synaptic
plasticity. Thus, while the intact model’s behavior may
be qualitatively comparable to that of normal animals,
neither its learning rules nor its capacityare related to bio-
logical substrates. In contrast, the connectivity and
learning rules found in-the newer H-lesioned model pre-
sented here seek a closer rapprochement with biology.
This implies that this H-lesioned model cannot neces-
sarily be equated at a quantitative level of detail with the
intact model in ferms of capacity, functionality or speed.
For example, while it is possible to say that both the in-
tact and H-lesioned models can learn a simple conditioned
discrimination, it is not appropriate to directly compare
the models’ relative speed to learn this discrimination.
Rather, the nature of the model comparisons seen in Fig-
ures 7 through 10 will be based on within-group ordinal
relationships between the difficulty of various training
tasks compared with subsequent transfer tasks. As we
shall see in the following sections, the H-lesioned model
shows the same pattern of training and transfer effects as
the intact model on tasks that depend uniguely on stim-
ulus—stimulus redundancy compression. In contrast, for
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Figure 7. Laterit inhibition in the H-lesioned model. Learning tore-
spond to a cue, A, is retarded (reflected in more trials required to
reach criterion responding) after 50 epochs of i preexp
sure to A than in a‘control ition with no preexp ¢, Buring the

Xp phase, ion is d to in-
crease generalization between A and the contexf, hindering later
learning to respond to A but not to the context alone. Similarly, rats
with i 1 lesions show a latent inhibition
effect(Honey&Good,l”ﬁ) Latent inhibition is not abolished by a
context shift between preexposure and acquisition; in fact, there is &
slight (nonsignificant) increase in latent mhllnuon amer context shlft
in the H-lesioned model. Similarly,

lesions abolish the context ity of latent i o in rats
(Honey & Good, 1993),
Response
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1
[l ContextXx

Context Y
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Figure 8. Absence of response decrement with context shift in the
H-lesioned model, After 200 epochs of training to mpond tocue A in
context X, thereis little or inthe when A is pre-
sented in a novel context, ¥. Withno dlﬁemnﬂaﬂnn mechanisms, there
is a net tend to compress the repr of A with the context
X in which it always appears. The task of responding selectively to A
can be learned only by ignoring all but those aspects of the represen-
tation that are sclectively active when A is present; these aspects ig-
nore contextual information, and so wi]l not be affected by a context
shift. Similarly, ive (ib I lesions abelish the
response decrement after context smﬁ in rntx (Honey & Good, 1993).

tasks that reflect the other representational biases shown
in Table 1, the H-lesioned model behaves more like the
H+-lesioned model of Gluck and Myers (1993).
Ultimately we would like to develop an integrated and
physiologically based intact model which would include
dissociable entorhinal and hippocampal components.
This would allow us to make guantitative comparisons
among the models by showing that an initial intact model
can be altered in different ways to produce behavioral con-
sequences analogous to different lesion types. This goal,
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however, is beyond the scope of the current paper. Here,
in this paper, we have a more modest aim: we wish to
show that the physiologically based model of the olfac-
tory cortex developed by Granger and his colleagues pro-
vides a framework for interpreting Gluck and Myers’s
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Response B A+ anly
toB E1 100 AB- epochs,
. then A+
H-lesioned Model
(B)
Diff(A+, B-) H A+, B- only
08 [ 100 AB- epochs,
then A+, B-
0.6
0.4
0.2
Q
H-lesioned Model
9. i results ding on sti u re-

dundancy compression are maintained in the H-lesioned model, in-
cluding sensory preconditioning (A) and compound preconditioning
(B). These effects have not been tested in H-lesioned animals, and so
represent novel predictions of the model.

Diff(H+, H-) 200 epochs
0.6 Easy task,
then 800
epochs Hard
task
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Hard task

0.4

0.2

0
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Figure 10. Easy-hard transfer, whlch Tequires other representa-
tional processes beyond sti ion, is not main-
tained in the H-lesioned modeL Thereis even a sllght (nonsignificant)
trend for learning on the hard task to be facilitated after pretraining
on the hard—not easy—task, as indicated by a greater ability to re-
spond differently to the stimuli in the hard task: Diff(H+, H—) is
larger in the hard-hard condition thin in the easy-hard condition.
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(1993) redundancy compression as being a result of en-
torhinal and/or parahippocampal processing. Even with
the limited hybrid model shown in Figure 6, it is possi-
ble, however, to make some important comparisons to be-
havioral analyses among different lesion groups, as de-
sctibed below,

Latent Inhibition

Figure 2E illustrates how the intact, but not H*'-
lesioned, model shows a latent inhibition effect, whereby
unreinforced preexposure to a cue, A, retards Jater ac-
quisition of a response to A. As shown in Table 4, latent
inhibition in the intact model results from the interplay
of several representational processes during the preex-
posure phase; one is a bias for stimulus-outcome com-
pression of cue A and the context, X, which both predict
no particular salient outcome. There are also opportuni-
ties for stimulus—stimulus compression, because A al-
ways appears in X, as well as for stimulus—stimulus dif-
ferentiation, since X does not always appear with A.

In contrast, the H-lesioned model has the capacity for
neither stimulus-outcome differentiation nor stimulus—
stimulus differentiation. As a result, only stimulus—
stimulus compression of A and :X occurs during the pre-
exposure phase. The result is the same in both models—
compression of the representations.of A and X, as shown
in Table 4—although additional mechanisms operate in
the intact model. Since the representations of A and X
are compressed in the H-lesioned model, there is still a
latent inhibition effect: subsequent learning to discrimi-
nate A from X alone is retarded. During the subsequent
acquisition phase, the intact model is assumed to redif-
ferentiate the representations of A and X. The H-lesioned
model cannot-do this. The only way for it to solve the
task is for the long-term memory network, as it acquires
the compressed entorhinal representations, to learn se-
lective responses based on the representations as they
are. This can be done by weighting connections to the out-
put nodes from just these internal layer nodes that are ac-
tive (or not active) exactly when A is present. As long as
at Jeast some such nodes exist in the compressed repre-

Table 4
Changes During Unreinforced Preexposul
Bias to Differentiate

Bias to Compress
A=X

Stimulus—stimulus
regularity

Stimulus-outcorne
regularity
Note—Reptesentational changes during preexposure to cue A in con-
text X. Shaded areas are representational biases that arc found in the
intact, but not the H-lesioned, model. In both models, A appears only
in context X, and so there is a bias (o compress the representations of
A and X, In the intact model, there are two additional processes. Since
X often appears without A, stimul imulus dif iation occurs,
since A and X both predict no particular cutcome, stimulus-outcome
compression of A and X also occurs. In both the intact and H-lesioned
models, the net effect is to compress the representations-of A and X,
increasing generalization between them and slowing subsequent learn-
ing to discriminate them. Thus, both intact and H-lesioned models
show a latent inhibition effect.

sentation, the task can still be learned. However, without
the facilitating influence of differentiating between A
and X during acquisition, this learning in the lesioned
model is slower than in a control condition in which rep-
resentations have not been previously compressed. As a
result, the H-lesioned system shows a latent inhibition
effect (Figure 7). Similarly, rats with selective, ibotenate
hippocampal lesions show latent inhibition (Honey &
Good, 1993).! In a taste-aversion paradigm, rats with
ibotenate lesions even show increased latent inhibition,
consistent with an interpretation that selective hippo-
campal lesion results in overcompression of cue and con-
text (Reilly, Harley, & Revusky, 1993).2

Release From Latent Inhibition with Context Shift

The above analysis suggests that even though the
H-lesioned and intact animals show similar compression
of cue A and context X during unreinforced preexpo-
sure, the processes by which they subsequently learn to
discriminate A and X are quite different. The intact model
can use hippocampal-dependent stimulus-outcome dif-
ferentiation, whereas the H-lesioned model can only search
for features of the existing representation which already
differentiate A and X alone. The difference in these pro-
cesses is made evident during a transfer task, such as a
shift to a new context, ¥, between the preexposure and
acquisition phases. Figure 2F shows that a context shift
eliminates latent inhibition in the intact model.

By contrast, a context shift does not eliminate latent
inhibition in the H-lesioned model, as shown in Figure 7;
there is even a slight (nonsignificant) increase in the
epochs needed to learn in the new context. During the
preexposure phase, representational compression is as-
sumed to result in increased generalization between
cue A and context X, as well as simply reducing the rep-
resentational resources allocated to encode for the pres-
ence of A in the environment. Shifting to a new context,
¥, may eliminate the first problem but not the second.
Learning to discriminate the presence of A, and respond
selectively to it, still requires finding aspects of the rep-
resentatiorl that respond strongly when A is present, but
not to the context alone when A is absent (or vice versa).
This will still slow learning relative to a control condi-
tion with no-preexposure. Consistent with this interpre-
tation, a selective ibotenate hippocampal lesion suffices
to eliminate the context sensitivity of latent inhibition in
rats (Honey & Good, 1993).

Response Decrement After Context Shift

A similar distinction between representational mech-
anisms in the intact and H-lesioned models occurs dur-
ing simple acquisition of a response to a cue A in con-
text X. The representational processes that occur during
A+ acquisition are schematized in Table 5. In the intact
model, there is stimujus—stimulus compression (since A
predicts X) and stimulus—stimulus differentiation (since X
does not always predict A). There is also strong stimulus-
outcome differentiation, since A predicts reinforcement
but X alone does not. Early in training, before stimulus-



HIPPOCAMPAL AND ENTORHINAL FUNCTION

Table S
Repr i Changes During Response Acquisition
Bias to Compress Bias to Differentiate
Stimulus—stimulus A=X

regularity
Stimulus-outcome
regularity

Note—Representational changes during acquisition of a rcsponse to
cuc A in context X. Shaded areas are representational biases that are
found in the intact, but not the H-lesioned, model. In both models, A
appears only in context X, some stimulus—stimulus compression of A
and X occurs. In the intact model, there are two additional processes.
Since X often appears without A, there is stimulus—stimutus differen-
tiation of A and .X; since A predicts reinforcement (the unconditioned
stimulus, or US) but X alone does not, there is stimulus-outcome dif-
ferentiation of A and X, Thus, there is a net tendency to compress the
representations.of A and X in the H-lesioned model, but an eventual
net tendency to diffe iate rep ions of A and X in the intact
model.

outcome regularities are learned, enough compression
may occur so that there is a response decrement if A is
presented in a new context, ¥, as shown in Figure 2D. As
training progresses, and stimulus-outcome differentia-
tion comes to.dominate, the response may remain strong
in a new context.

In the H-lesioned model, by contrast, only stimulus—
stimulus compression occurs, as shown in Table 5. By its
nature, this compression impedes the task of learning to
differentiate cue and context and respond selectively when
A is present. In order to learn this task, the long-term-
memory network must map from these compressed rep-
resentations to responses, focusing on those aspects of
the representation which still discrithinate between the
presence and absence of A. The nodes in the internal layer
that are strongly active only when A is present (or only
when A is absent) will be weighted most heavily. By se-
lectively weighting these nodes, the network in effect ig-
nores all other aspects of the representation, including con-
textual information. As a result, the learned response is
relatively insensitive to subsequent contextual shifts, as
shown in Figure 8. This is consistent with the failure of con-
text shift to disrupt learned responding in rats with selec-
tive ibotenate hippocampal lesion (Honey & Good, 1993).

This interpretation is also consistent with results indi-
cating that dorsal hippocampal lesions, which spare the
entorhinal cortex, affect contextual fear conditioning. In
normal tats, forward pairing of a tone stimulus with foot-
shock results in conditioned freezing to the experimental
context. Lesioned rats have been shown to condition to the
tone but not to the context, showing a selective impairment
in contextual conditioning (Phillips & LeDoux, 1994).
Like in the context-shift experiments, this indicates that H-
lesioned animals tend to ignore contextual information ifa
predictive cue is present, just as our theory predicts.

Other Behavioral Predictions

In addition to contextual tasks, the selectively lesioned,
entorhinal-cortical model can be applied to the full do-
main of tasks modeled by the original intact and H**-
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lesioned models in Gluck & Myers (1993). To the extent
that these tasks can be neatly classified as depending
primarily on stimulus—stimulus redundancy compression
or predictive differentiation mechanisms, they should be
spared or altered in the entorhinal-cortical model.

For example, the intact model shows sensory precon-
ditioning (Figure 2A) and compound preconditioning
(Figure 2B), both explained in terms of stimulus—stimulus
redundancy compression during preexposure to the com-
pound AB. The H-lesioned model, which also has
stimulus—stimulus compression, continues to show both
effects (Figure 9). This contrasts with the failure of the
H~+-lesioned model to show either effect. Sensory pre-
conditioning has been shown to be eliminated by fornix
lesion, which does not explicitly darnage the entorhinal
cortex (Port & Patterson, 1984). However, fornix lesion
disrupts a hippocampal input—output pathway, and the
functional results may be quite different from those fol-
lowing direct hippocampal ablation (Jarrard, 1993, 1994).
It is not yet clear whether sensory preconditioning will
survive a selective (ibotenic) hippocampal lesion, as our
hypothesis predicts. Compound preconditioning has not
been explored after any form of hippocampal damage,
and so the behavior of both the H**-lesioned and
H-lesioned models represent novel predictions which re-
main to be tested empirically. The models expect that
both effects should be eliminated by broad hippocampal-
region damage which includes the entorhinal cortex, but
be spared by selective hippocampal damage which does
not include the entorhinal cortex.

Conversely, other effects in the intact model are assumed
to depend on processes not available in the H-lesioned
model. The easy-hard transfer of Figure 2C is not ob-
tained in the H-lesioned model (Figure 10) because it de-
pends on stimulus-outcome differentiation mechanisms.
If anything, pretraining on the easy task results in slightly
slower learning of the hard task than does pretraining.on
the hard task itself, although the difference between the
two conditions is not statistically significant. Again, to
our knowledge, this effect has not been explored in ani-
mals with any form of hippocampal lesion.

The predictions described in this section remain to be
tested empirically, comparing selective (ibotenate) hippo-
campal lesion with broader damage that includes ento-
rthinal cortex. While there have been many studies of se-
lective hippocampal lesion (e.g;, Eichienbaum et al., 1994;
Jarrard, 1993; Zola-Morgan & Squire, 1993), most of
these have not involved simple conditioning tasks—with
the exceptions noted.above. It should also be mentioned
that there are other conditioned behaviors which are known
to be disrupted by broad H** lesion but not by selective
H lesion, including negative patterning and conditional
discrimination (Jarrard, 1993). These behaviors are not
as neatly attributable to compression and differentiation
processes as are those described above, and therefore it is
less clear what -our model predicts.

Negative patterning, for example, involves learning to
respond to two components (A+, B—)but not their com-
pound (AB—). A solution to this task requires forming
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compound representations (AB, etc.) which our hypoth-
esis predicts would occur in the entorhinal cortex. How-
ever, in the example of negative patterning, the solution
further requires that the compound representation be dis-
tinguished from the component representations; nega-
tive patterning requires not just compression but also a
critical differentiation of components and compounds.
This is beyond the scope of our simple model of com-
pression; as A and B become compressed, the compo-
nents, by definition, become less distinguishable. As a
result; the model responds in the same way to A, B, and
AB, and the H-lesioned model incorrectly shows severe
difficulty in learning negative patterning (simulations
not shown). Similar causes lead to an incorrect prediction
of distuption on conditional discrimination (simulations
not shown). Therefore, if, as we hypothesize, the ento-
rhinal cortex performs redundancy compression, there
must be additional processes present in the H-lesioned
animal—but not in our H-lesioned model—which allow
configuration to occur. The H-lesioned animal retains a
number of hippocampal-region structures besides the
entorhinal cortex, including the subiculum (and often parts
of the hippocampus itself). It also retains perirhinal and
parahippocampal cortices. Each of these structures doubt-
less contributes an important component of hippocampal-
region processing and it will doubtless be an important
challenge for future modeting to develop a physiologi-
cally based interpretation of their functional role. With
the present model, however, it is important to stress again
that our H-lesioned model represents the entorhinal pro-
cessing which is assumed to survive selective hippo-
campal lesion, and does not address the possible roles of
these other related structures which may survive the
H lesion.

RELATIONSHIP TO OTHER THEORIES OF
ENTORHINAL -HIPPOCAMPAL FUNCTION

Eichenbaum, Otto, and Cohen (1994) have also ad-
dressed the selective contribution of the entorhinal cortex
to hippocampal-region processing. They have suggested
that the parahippocampal region (including the entorhi-
nal cortex) functions as an intermediate-term buffer
(Eichenbaum et al., 1994), while the hippocampal for-
mation mediates the representational processing which al-
lows for the generalization of learned associations in novel
tasks (Eichenbaum et al., 1994). Although intermediate-
term memory differs from the stimulus—stimutus com-
pression function we have proposed for the entorhinal
cortex, the two. functions are complementary: In real-
world situations, events which conceptually co-occur
may not actually coinitiate or coterminate; intermediate-
term storage of Tecent events might allow the system to
cluster stimuli which reliably occur close together in
time. Conversely, the intermediate-term store probably
has to perform some sort of clustering to reduce the in-
formation passing through it. Analyses of the anatomical
structure reveal that the entorhinal cortex contains many
more afferents than efferents, and this supports the sug-

gestion that the entorhinal cortex compresses informa-
tion into a more efficient signal (Levy, 1990). Thus, al-
though our hypothesis and that of Eichenbaum et al.
(1994) suggest different functions for the entorhinal cor-
tex, we feel that these functions are complementary and
even interdependent (Gluck, Myers, & Goebel, 1994).

The remaining relational processing which Eichen-
baum et al. presume occurs in the hippocampus can sim-
ilarly be related to our own hypothesis. They suggest that
hippocampal-mediated representations emphasize the
relations between stimuli, and that they can be applied
flexibly in novel situations (Eichenbaum, Cohen, Otto, &
Wible, 1992; Eichenbaum, Otto, & Cohen, 1992). This is
consistent with our suggestion that the hippocampus de-
velops new stimulus representations which emphasize
predictive features (and implicitly de-emphasize irrele-
vant information). This may allow the flexible use of these
representations in new contexts whose irrelevant fea-
tures may differ from the initial learning environment.

More recently, Bunsey and Eichenbaum (1993) have
suggested that the patahippocampal region also mediates
the “fusion” of co-occurring or nearly coincident stimuli;
this process is functionally identical to the redundancy
compression function described here and in Gluck and
Myers (1993). It is interesting to note that whereas their
“fusion” theory derives from behavioral observations com-
paring paired-associate learning in intact, hippocampal-
lesioned, and parahippocampal-lesioned animals, our sim-
ilar “compression” theory arises from an integration of
both physiologically based and behaviorally based com-
putational models of hippocampal-region function. The
convergence of these two widely different approaches to
theory development is hopefully a sign that stimulus
compression is a useful and accurate description of para-
hippocampal-region function.

We have not yet addressed the anatomical substratcs
which might underlie the remaining representational pro-
cessing assumed to occur in the hippocampus—namely, al-
tering altering stimulus representations based on stimulus-
outcome regularities. Other workers, however, have
considered bottom-up models of hippocampal function.
Treves and Rolls (1994) have suggested that hippo-
campal field CA3 functions as an autoassociator which
can reconstruct stored patterns from partial or noisy ver-
sions; O’Reilly and McClelland (1994) have assumed
similar functionality in CA3. Such an autoassociator is
related to the more powerful autoencoder which we have
envisioned as a model of the aggregate hippocampal re-
gion (Gluck & Myers, 1993). McNaughton and Nadel
have gone further to assume that the autoassociator in the
hippocampus can additionally predict the next state in a
transition matrix (McNaughton & Nadel, 1990); a sim-
ple example of this prediction occurs in our autoencod-
ing hippocampal-region network, which learns to output
a prediction of the future in terms of an anticipatory re-
sponse (the CR).

Along similar lines, Lynch and Granger (1992) have
suggested that specific physiological characteristics of
plasticity in hippocampal field CA1 may yield the fune-
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tion of anticipatory signaling of expected continuations
of sequences. This idea that the hippocampus functions
as a predictor of future events has also been explored by
Gray (1985), Levy (1985), Treves and Rolls (1992), and
others. If, as we have suggested, the hippocampus con-
structs new representations based on the predictive value
of stimuli, it would be reasonable to consider that it might
further be able to reconstruct a representation of the ac-
tual predicted. future event and compare that with what
was actually experienced. In sum, therefore, a number of
bottom-up models of the hippocampus suggest it could
be quite capable of performing the stimulus-outcome dif-
ferentiation which our model assumes and which would
not be mediated by the entorhinal cortex.

Other researchers have éxamined the hypothesis that
the hippocampus represents a fast “one-trial” learning
system distinct from the slow, incremental learning that
occurs in the cortex (McClelland et al., 1994). In light of
this, it is interesting to note that learning in our proposed
entorhinal model is also very fast, with at least coarse
clusters developing after as little as a single exposure to
a stimulus (see also Granger et al., 1989). Such a system
might be relevant during the kinds of recognition tasks
that are impaired in humans after hippocampal-region
damage (e.g., Haist, Musen, & Squire, 1991). However,
consolidation of memories from the hippocampus to the
cortex is usually meant to imply declarative (or episodic)
learning; this is fundamentally different from the incre-
mental conditioned learning which our model addresses.
Although several researchers have begun to develop com-
putational models that address the issues of fast versus
slow learning and the role of the hippocampus in the
consolidation of long-term memories (Alvarez & Squire,
1994; McClelland et al., 1994; Murre, 1994}, it remains
an important challenge for the future to relate the phe-
nomena and theory of memory consolidation in episodic
learning to the range of representational deficits observed
in conditioning studies of hippocampal-lesioned animals.

In other modeling, Schmajuk and his colleagues (e.g.,
Schmajuk & DiCarlo, 1992) have suggested that the spe-
cial ¢ircuitry of the hippocampal region allows it to com-
pute error backpropagation, a powerful form of learning
algorithm which we have also used in our intact model.
In particular; they argue that thc hippocampal region
(1) forms and stores configural associations, and (2) com-
putes and broadcasts an aggregate error signal which is
necessary for stimulus competition of the kind described
by Rescorla and Wagner’s (1972) model of associative
learning. Their models account for an extensive range of
behavioral data from the classical conditioning domain,
including many of the same phenomena addressed by
our model.

The Schmajuk and DiCarlo (1992) model, however,
differs from ours in some specific and important predic-
tions, First, while we have used backpropagation as a con-
venient approximation to derive the representational re-
coding suggested by the underlying qualitative theory,
Schmajuk and DiCarlo interpret the backpropagation
algorithm more literally and employ it as an integral part
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of their model. Thus, the Schmajuk-DiCarlo model is
more concerned than ours with showing that a biologi-
cally plausible implementation of backpropagation could
exist in the hippocampus. A second major difference be-
tween the models is that the Schmajuk-DiCarlo model
predicts that the hippocampus is necessary for both the
acquisition and the storage of configural associations. Our
model does not make sich task-specific predictions. In-
stead, our model argues that hippocampal lesion disrupts
representational processing; configural associations are
simply an example of a task which generally requires new
stimulus representations and therefore is often disrupted
by hippocampal lesion. However, our H*-lesioned model
does have (fixed) stimulus representations, and there is
always some small probability that these random repre-
sentations suffice to solve any given particular task. By
this argument, there may be instances in which config-
ural learning is niot disrupted or instances in which con-
figural tasks are learnable by the hippocampal-lesioned
animal. Although this is an important conceptual distinc-
tion between the models, it may be difficult to test, be-
cause it requires a priori knowledge of how stimuli are
represented by an individual animal: Furthermore, al-
though our model predicts that configural associations
are eventually stored outside the hippocampal region, and
therefore become hippocampal-independent, the consol-
idation period required for this transfer is likewise gen-
erally indeterminate.

Although the Schmajuk—DiCarlo model can account for
many conditioning data, it fails to address the hippocampal-
dependent phenomena that involve such stimulus—
stimulus assoctations as latent inhibition and sensory pre-
conditioning, phenomena which are addressed by the
Gluck-Myers model and central to the analyses we have
presented here and elsewhere (Gluck & Myers, 1993;
Myers & Gluck, 1994).

The Schmajuk—DiCarlo model also predicts that the
hippocampus is required for stimulus competition, and
therefore expects such effects as blocking, conditioned inhi-
bition, and overshadowing to be hippocampal-dependent.
Contrary to the expectation of the Schmajuk-DiCarlo
model; conditioned inhibition is hippocampal-independent
(Solomon, 1977), although overshadowing has been shown
to depend on an intact hippocampus (Schmajuk, Spear,
& Isaacson, 1983). Inthe Gluck and Myers (1993) model,
stimulus competition effects occur both in the hippo-
campal network, as a result of representational changes,
and in the long-term memory network, as a result of the
reinforcement modulation underlying the error-correct-
ing learning procedure. The H**-lesioned model main-
tains the latter kind of stimulus competition, predicting
that conditionéd effects which can be explained in terms
of either kind of competition may be weakened by hip-
pocampal lesion, but will not necessarily be eliminated.
Two example effects are blocking (Kamin, 1969) and
overshadowing (Kehoe & Gormezano, 1980), in which
strongly associated cues prevent other cues from gaining
associative strength. Both effects are shown in the fully
lesioned model, predicting that both effects should not
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be eliminated by broad hippocampal-region damage
(Gluck & Myers, 1993). These predictions contrast with
the assumption in the Schmajuk-DiCarlo model that the
hippocampus is critical for all forms of stimulus selec-
tion, and therefore that hippocampal damage should
eliminate both blocking and avershadowing.

Contradictory empirical results have been reported for
these phenomena. For example, early data suggested that
blocking depends on an intact hippocampus (Solomon,
1977), while more recent studies have had difficulty repli-
cating this result (Garrud et al., 1984). The assumption
that the hippocampus is critical for blocking is also at odds
with data and theory which argue for a sufficient cere-
bellar circuit for blocking and overshadowing in motor-
reflex conditioning (see Donegan, Gluck, & Thompsen,
1989: Gluck, Goren, et al., 1994). In contrast to the im-
plications of the Schmajuk-DiCarlo model, the afore-
mentioned anatomical and behavioral data seem to sup-
port the idea, made explicit in our corticohippocampal
theory, that the hippocampus. is one, but not the only,
substrate of stimulus selection in associative learning.

More recently, Schmajuk (1994; Schmajuk & Blair,
1993) has suggested the particular contribution of the
entorhinal cortex to Schmajuk and DiCarlo’s {1992) model
of hippecampal-region function is stimulus competition,
while the hippocampus proper is responsible for config-
ural association. They therefore predict that localized
hippocampal lesion, which does not otherwise damage
the ‘entorhinal cortex, sheuld eliminate the configural
but not the stimulus-competition function. Such empiri-
cal data as exist are somewhat consistent with this idea
(see Schmajuk, 1994), although furthér empirical stud-
ies are certainly indicated, as mentioned above in the
context of testing our own model of entorhinal function.
The stimulus competition function Schmajuk and Blair
proposed is quite distinct from the stimulus—stimulus
clustering we have proposed as an entorhinal function. In
fact, our entorhinat stimulus—stimulus clustering is prob-
ably more closely relaied to the configural function that
Schmajuk and Blair assign not to the entorhinal cortex
but to the hippocampus proper. Until such time as more
empitical data become available, it may be difficult to
provide a definitive discrimination between these two
accounts. However, future experiments which address
the selective role of the entorhinal cortex in stimulus
competition and in stimulus—stimulus clustering are in-
dicated to properly evaluate these two models.

SUMMARY AND DISCUSSION

Gluck and Myers (1993) proposed that the hippocarpal
region is critically invelved in the construction of internal
representations of stimuli. These representations are con-
strained to compress or differentiate information based on
both stimulus—stimulus and stimulus-outcome regulari-
ties. In turn, representational similarity affects the amount
to which associations generalize across stimuli. This sim-
ple representational account of hippocampal-region fune-

tion is sufficient to accurately predict a wide range of con-
ditioned behaviors in the intact and lesioned animal.

The present paper presents the hypothesis that the pro-
posed representational function can be subdivided and
distributed among different anatomical structures within
the hippocampal region. Specifically, anatomical and phy-
siological clues suggest that stimulus—stimulus rcdun-
dancy compression occurs in the entorhinal cortex; the
remaining representational changes would then occur in
other hippocampal-region structures. We have imple-
mented this hypothesis by considering an unsupervised
competitive network representing superficial entorhinal
cortex clustering mechanisms; the new clustered repre-
sentations formed by this network are then made avail-
able to a long-term memory network which can acquire
these representations but not construct its own. This
model can be compared to beliavior in an animal with a
selective hippocampal lesion which does not damage the
entorhinal cortex (the H lesion), and predicts the survival
of such behaviors as latent inhibition and sensory precon-
ditioning, which can arisc solely from stimulus—stimulus
redundancy compression but do not require other hippo-
campal-mediated representational changes. As described
earlier, empirical data show that such a limited lesion does
not destroy latent inhibition, but does disrupt contextual
processing effects, consistent with the model predictions.
However, other of the madel’s behavioral predictions re-
main to be tested. For example, H-lesioned animals are
expected to continue to show sensory preconditioning and
compound preconditioning, but not easy—hard transfer.

A cornerstone of our hypothesis is that entorhinal cor-
tex and sensory cortices may be performing similar
stimulus—stimulus redundancy compression functions.
Whereas sensory cortices deal with a single modality,
the entorhinal cortex would be well placed to compress
stimuli across modalities or compress cross-modal fea-
tures of a single stimutus. This implies that entorhinal
damage may have dramatically different effects, de-
pending on whether a task uses unimodal or multimodal
stimuli. For example, sensory preconditioning is as-
sumed to depend on tedundancy compression of two
cues during a phase of unreinforced preexposure. If the
two cues are from different modalities, this effect should
be sensitive to entorhinal damage; if the two cues are
from the same modality, compression processes within
the sensory cortex might well be able to produce the ef-
fect. This aspect of task demands has not received a great
deal of empirical attention in lesioned animals, although
it has been well studied in behaviorat studies in intact an-
imals. An interesting set of empirical studies would be to
test sensory preconditioning or compound precondition-
ing after selective (ibotenate) hippocampal lesion, com-
paring unimodal and polymodal task versions.

An obvious limitation of our current model is that al-
though we have constructed a bottom-up model of the
entorhinal cortex, allowing us to implement an H-lesioned
model, we have not yet presented a bottom-up model of

“hippocampus proper. This is cleatly a direction for future
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work. One of the important issues here is whether it is
possible for the system to operate in a truly serial fashion,
with the hippocampus operating on previously com-
pressed entorhinal data, or whether there must be recip-
rocal pathways allowing hippocampal processing to in-
fluence entorhinal compression. it seems likely that at
least some reciprocity is necessary to ensure that neces-
sary, predictive information is not overcompressed and
lost by unsupervised entorhinal processing. A second
important issue will be the role of subcortical input on
hippocampal processing. The hippocampus receives an
important subcortical input via the fornix, and also out-
puts through the fornix. One purpose of this exchange
may be to modulate hippecampal processing between
learning or storage and retrieval states (cf. Haas, 1983;
Hasselmo & Schnell, 1994). One advantage of develop-
ing a bottom-up model of the hippocampus that ad-
dresses fornical influence will be to generate predictions
regarding the effects of fornix lesion. At this point, it
seems likely that fornix transection results not in elimi-
nating hippocampal activity but in disrupting it, and that
this disruption may be more severe than outright lesion
(Berry & Thompson, 1979; Jarrard, Okaichi, Steward, &
Goldschmidt, 1984). This idea is broadly consistent with
ourmeodel, in which simple tasks may be learnable with-
out hippocampal-region involvement, but disrupted hippo-
campal representations could prevent stable selutions
from being constructed altogether (cf. Gluck & Myers,
1993). A bottom-up model of the hippocampus that can
be incorporated with our entorhinal model into a more
complete model of intact processing will allow some of
these issues to be explored.

Perhaps the primary implication of this paper 1s that
further work is clearly needed to more carefully reexam-
ine the effects of selective lesions of hippocampal forma-
tion versus lesions of surrounding cortical tissue on sim-=
ple conditioning tasks. To date, there has been a dearth
of such empirical studies. Selective-lesion studies have
instead largely concentrated on such higher level tasks as
delayed nonmatching in monkeys (Zola-Morgan et al.,
1992), odor discrimination learning in rats (Eichenbaum
et al., 1994), and conditional and spatial learning in rats
(Jarrard, 1993). Animals display dramatically different
behaviors on these tasks when the entorhinal cortex is le-
sioned and when the hippocampus alene is damaged.
However, our model is currently too limited to address
these higher level tasks. Our model does not address tem-
poral information, and therefore cannot simulate delays
between stimulus presentations. It also does not address
the issues of hippocampal involvement in one-trial learn-
ing such as may underlie episodic or declarative memory
(Squire, 1987) or the consolidation period during which
episodic memories become independent of hippocampal
mediation (McClelland et al., 1994; Squire, 1987). Ex-
tending the present theoretical framework to incorporate
and address these other phenomena is an important chal-
lenge for future work.

The simplest kind of learning for which selective le-
sion studies do exist is forced-choice learning, a type of
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operant conditioning in which the subject is required to
respond to a stimulus with one of a finite set of possible
responses. Although this is more complex than the clas-
sical conditioning we have considered, it is still a form
of incremental learning which should be possibie with a
few superficial extensions to our model. In particular,
Fichenbaum and his colleagues have found that while
rats with hippocampal damage (via fornix lesion) are
able to learn normally if stimuli are presented succes-
sively, they are greatly impaired if stimuli are presented
simultaneously (Eichenbaum, Fagan, Mathews, & Cohen,
1988). Eichenbaum has suggested that these results imply
that the hippocampal region is critical for learning rela-
tionships between stimuli (Eichenbaum et al., 1988; Eich-
enbaum, Mathews, & Cohen, 1989). Since the difference
between successive and simultaneous discrimination is
one of stimulus—stimulus co-occurrence, we expect that
stimulus—stimulus compression and differentiation in
our model may have a critical influence on learning these
tasks. Again, this remains as a challenge for further in-
vestigation and theoretical analysis.

Even within the limited domain of classical condition-
ing, we have attempted to demionstrate that top-down be-
haviorally constrained computational modeling and bot-
tom-up physiologically motivated models can interact
and inform one another. We take the convergent impli-
cations of these distinct methodologies as suggestive of
how both approaches can contribute to the development
of a unified understanding of hippocampal-region func-
tion in learning and memory.
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NOTES

1. An.alternate control condition for latent inhibition is to give an
equal amount of “sit” time (context-only preexposure). We have simu-
lated this by comparing simulations that receive 100 blocks of unrein-
forced exposure to A in context X with simuilations that receive 100
locks of unreinforced exposure to & alane. This is followed in both
groups by 100 blocks of training to respond to A in X: In.this casc, the
“sit” group gives an avérage conditioned résponse to A of 0:82(5D 0.25),
while the preexposed group gives an average response of only 0.56
(SD 0.31). This is-a highly significant difference [¢(18) = 1.961, p-<
.05], confirming the latent inhibition effect in the model.

2. We thank one of the anonymous reviewers of this paper for mik-
ing us aware of this behavioral rcsult.

APPENDIX
Simulation Details

This appendix describes the H-lesioned mode! proposed in this paper and shown in Figure 6. (The intact
and H**-lesioned models and the data plotted in Figure 2 are described in Gluck & Myers, 1993, and Myers

& Gluck, 1994.)

Stimuli

Input to the system consists of a 16-element vector; the first 8 elemmients signal the presence or absence of
conditioned stimuli (CSs), while the last 8 elements are nonvarying and represent background or contextual
cues. The actual stimuli used in the experiments reported here are given below.

context X (no CS): 0.00.00.00:00.00.00.00.01.00.01.00.01.00.01.00.0

CS A(inX):
CS B (inX):
CS AB (in X):

1.01.01.01.00,00.00.00.01.00.01.00.01.00.0 1.0.0.0
0.00.00.00.01,01.01.01.01.00.01.00.01.00.01.00.0
1.01.01.01.01.01.01.01.01.00.01.00.0 1.0:0.0 1.0 0.0

A context shift is implemented simply by mverting the'context bits:
context ¥ (no CS): 0.00.00.00.00.00.00.00.00.01.00.01.00.01.00.01.0

CSA(nY)

101.01.01.00.00.0000.00.01.00.01.00.01.00.01.0
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For the easy task, the following stimuli are used:
CSE+: 0.90.9090.9010.10.10.11.00.01.00.01.00.01.00.0
CSE~: 0.10.10.10.1090.909051.00.01.0001.00.01.00.0

For the hard task, the following stimuli are used:
CSH+: 0.550.550.550.550.45 0.450.450.451.00.01.00.01.00.0 1.0 0.0
CSH-: 0.450.45 0.450.45 0.55 0.550.550.551.00.01.00.01.00.01.00.0

Criterion for learning was reached when for 10 consecutive epochs, the system response was greater than 0.8
for all reinforced trials and less than 0.2 for all nonreinforced trials. The Diff measure reported in figures de-
scribing discrimination tasks is the normalized difference between the average response io the positive and
negative stimuli. All simulation data shown in Figures 7-10 are averaged over 10 randomly initialized sim-
ulation runs.

Entorhinal Network

The entorhinal network is adapted from the piriform clustering model (Ambros-Ingerson et al., 1990;
Granger et al., 1989) and consists of a single layer of 100 nodes, divided into five nonoverlapping patches of
20 nodes each. Nodes in one patch are all reciprocally connected with a single local inhibitory feedback cell.
As input is preserited to the network, each node, #, calculates its output, y,, as:

Yn =ZW;~,.1D
i

whete /, is the ith elemient of the input vector and w;,, is the weight from that element to node r of the net-
work. After outputs are computed, the “winner” of each patch is selected as the node with maximum output,
,- The feedback node is assumed to inhibit and normalize output so that, within each patch, the winning node
outputs 1.0 while all other nodes output 0.0. The winning nodes then update their weights as

Aw,, = o L, (1.0—y,):
Every node that is not a winner updates its weights as

Aw, = a~1,(0.0-y,),
where o= 0.001 and &~ = 0.0001.

The entorhinal network weights, w;,,, are initialized randoinly with a uniform distribution and normalized
s0 that for each node n,
2 w,=1
i

The original piriform model also assumes repetitive sampling and additional feedback inhibition to mask
input features, which allow hierarchical cluster formation. These additional assumptions are not included in
the entorhinal model as it is not clear whether such functional connections exist between the entorhinal cor-
tex and its input structures.

Long-Term Memory Network

The long-terni-memory network is adapted froi the long-term network of the original hippocampal-region
model presented in Gluck and Myers (1993) and represents a simplification of the cerebellar model presented
in Gluck et al. (1994). Stimulus inputs feed into an internal or hidden layer of 10 nodes, which each compute

output y; as:
s :f(XWUI.)W,»,
i

where I, is the ith element of the input vector, w;, is the weight from that element to hidden node j, 6;is the
bias of nade f, and f(x) = 1/(1+e~¥). The output of these hidden nodes feed into a single output node &, which
computes its output y; as:

Vi '—"f(zwjkyj)-'—ek)
i

where y, is the output of hidden node J,/(x) s defined as above, and 6 is the bias of output node k. y; is treated
as the behavioral response of the system, and interpreted as the strength or probability of a CR on the cur-
rent trial,
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The long-term-memory network is trained by independent applications of the LMS learning rule (Widrow
& Hoff, 1960} on each of its layers. The upper layer of weights w), are updated as:

Awy = BA-voy,.
where A represents the strength or salience of the US: A=1if US is present and A = 0 otherwise; y, is the out-
put of hidden node j and learning rate §= 0.5 if A =1 and § = 0.05 otherwise. The bias 8, is trained as if it
were a weight from a hidden unit which always outputs 1.0.
Simultaneously, the lower layer of weights w; are trained as:

Aw,i=BE~y)

where learning rate fis defined as above, and bias 6; is trained as a weight from an input which always out-
puts 1.0. E; is an aggregate training signal from the entorhinal network defined as:

E; = 2 YijYnn
w

where y, is the output of entorhinal network node #, and v,,; is the connéction strength from entorhinal node n
to hidden node j in the long-term-memory network.

The Jower layer of weights in the long-term-memory network are initialized from a uniform distribution
in the range [—0.3 ... +0.3], with added variance provided by initializing two weights per hidden unit in the
range [—3 ... +3]. The upper layer of weights and all biases are also initialized from a uniform distribution
in the range [—0.3 ... +0.3]. The connection strengths from the entorhinal network to the long-term-memory
network are initialized to 0.0, with a random two connections per long-term-memory network hidden node
initialized in the range [—0.3 ... +0.3] and normalized to sum to 1.

“Training Schedules

At the start of each experiment, the system is initialized by running for 500 trials with a null input vector
and A4 = 0. (The purpose of this initialization is to establish system weights and biases such that there is an
initial tendency not to respond to novel vectors; before such initialization, system responses are about 0.5 for
a novel vector.) Subsequent training occurs in epochs or blocks of trials. Each epoch consists of one presen-
tation of each CS, and additional context-alone trials in a ratio of 20;1 with CSs. So, for example, A+ train-
ing would involve epochs of 10 context-only trials, 1 A+ trial, and 10 more context-only trials; A+B~
epochs involve 10 context-only trials, T A+ trial, 20 context-only trials, 1 B— trial, and 10 more context-only
trials. Reinforcement (e.g., on A+ trials) is signaled by setting A = 1; otherwise A="0.

(M ipt received Septembér 2, 1994;
revision accepted for publication November 22, 1994.)



