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We partially replicate and extend Shepard, Hovland, andJenkins's (1961) classic study oftask
difficulty for learning six fundamental types of rule-based categorization problems . Our main
results mirrored those of Shepard et al ., with the ordering of task difficulty being the same as
in the original study . A much richer data set was collected, however, which enabled the genera-
tion of block-by-block learning curves suitable for quantitative fitting. Four current computa-
tional models of classification learning were fitted to the learning data : ALCOVE (Kruschke,
1992), the rational model (Anderson, 3991), the configural-cue model (cluck & Bower, 1988b),
and an extended version of the conf`igural-cue model with dimensionalized, adaptive learning
rate mechanisms . Although all ofthe models captured important qualitative aspects ofthe learning
data, ALCOVE provided the best overall quantitative fit . The results suggest the need to incor-
porate same form of selective attention todimensions in category-learning models based on stim-
ulus generalization and cue conditioning.

Recent years have seen an avalanche of newly proposed
models of category learning and representation . As such
models grow increasingly more sophisticated, there is a
need to develop increasingly more rigorous testing grounds
so that one may choose among them . Most previous at-
tempts to test alternative models have focused on the end
products of categorization by observing patterns oftrans-
fer data following an initial learning phase . In the spirit
of developing more rigorous tests, there has been a re-
newed interest in understanding details of the category
learning process (see, e .g ., Estes, 1986 ; Estes, Camp-
bell, Hatsopoulos, & Hurwitz, 1989 ; Nosofslcy, Kruschke .
& McKinley, 1992) . Beyond simply predicting transfer
data following the completion of category learning, the fol-
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lowing question arises : How well can alternative models
predict patterns of classification during the entire learn-
mg sequence?
The purpose of our study was to collect a rich set of

classification learning data that would provide a useful
testing ground for the numerous models that have been
proposed . A seemingly infinite variety of learning para-
digms are available, but we hoped to collect some learn-
ing data teat researchers might regard as fundamental .
Although the ultimate goal of categorization researchers
is the development of a model that can account for all
forms of classification phenomena, it seems worthwhile
to focus initial efforts on primary and basic forms of clas-
sification (earning data .
A classic study of category learning is the one reported

by Shepard . Hovland . and 7enlcins (196I), who studied
the difficulty of learning six fundamental types of cate-
oorization problems . Their results proved to be highly di-
aono5tic far ruling opt various models of classification
IearriinQ based solely on elementary principles of stimu-
lus generalization and cue conditioning . As will be seen,
their data continue to challenge current models of clas-
sifcation [earning .

In the first part of our article . we will review the de-
si,n and rceults of Shepard et al .'c (1961) elebant and in-

Copyright 1994 Psychonomic Society. Inc . 352



MODELS OF CLASSIFICATION LEARNING 353

fluential study . We will then report a partial replication
and extension of that study . By using then basic paradigm,
while collecting a more extensive data set, we should pro-
vide a fundamental testing ground for formal models of
classification [earning . Finally, we begin [he testing pro-
cess by quantitatively fitting three formal models to the
observed learning data : Anderson's (1991) rational model,
Kruschke's (1492) ALCOVE model, and an extended ver-
sion ofGZuck and Bower's (1988b) configural-cue model .
The Shcpard et al . (1961) tasks are examples of "rule-

based" category learning problems . Simple determinis-
tic logical rules allow one to classify all exemplars with
perfect accuracy . By contrast, the computational models
that we test in this article were developed primarily to
account for the learning of fuzzy, ill-defined category
structures. Nevertheless, we argue that it is important to
understand how these models fare with data from sim-
pler rule-based classification tasks . To the event that these
models are adequate for learning both rule-based and ill-
defined structures, we may presume that a single unified
process accounts for both types of learning . To the ex-
tent that the models apply to only one class of tasks, we
might infer the existence of multiple learning strategies .
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This would then give rise to further questions regarding
how and why alternative learning strategies take prece-
dence. Indeed, it is probably for the reasons just stated
that current researchers have repeatedly reached back to
the rule-based tasks ofShepard et a! . (1961) as a canoni-
cal data base for evaluating models of human classifica-
tion learning (Anderson, 1991 ; Estes, 1994 ; Gluck &
Bower, 1988b; Kruschke, 1992 : Nosofsky, 1484) .

A Review of Shepard et al .'s (1961) Study
In Shepard et al .'s (1961) study, subjects were tested

an six basic types ofclassification problems . In each prob-
lem, there were eight stimuli constructed from three
binary-valued dimensions . Four of the stimuli belonged
to one category, and the other four stimuli to a second
category . These constraints result in six problem types,
which are illustrated by the cubes in Figure 1 . The ver-
tices of the cubes represent individual stimuli . The oval
vertices represent stimuli assigned to Category 1, and the
rectangular vertices represent stimuli assigned to Cate-
gory 2 . Each face ofa cube represents a value along one
ofthe binary-valued dimensions . For ease of description,
we imagine that the dimensions correspond to shape
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Figure 1 . Top: The six ti pes of categorization problems tested bs Shepard, Hovfand,
and Jenki2s (1951) . The eight stimuli are denoted by the corners of the cubes. Assign-
rnents; to categories are denoted b,, the ovals or rectangles that enclose thestimulus num-
bers . Bottom : lllustrati%e example in which the stimuli varc along the dimensions of shape
(square Ns. triangle), color (black cs . white), and size (large vs. small) .
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(square vs, triangle), color (black vs . white), and size
(large vs . small), as is illustrated in the bottom part of
Figure 1 . Any assignment of stimuli to categories, with
four stimuli in each of the two categories, can be rotated
or reflected onto one of the six structures shown in the
figure .
The simplest category structure is the Type I problem.

Here, information about only one dimension (shape in the
example in Figure 1) is necessary to solve the problem .
For Type n, exactly two dimensions are relevant . In the
Figure 1 example, black squares and white triangles are
assigned to Category 1, whereas white squares and black
triangles are assigned to Category 2 . Information about
size is irrelevant to solving the problem. Note that Type II
is the exclusive-or problem along its two relevant dimen-
sions. The Type VI problem is the most complex cate-
gory structure, with all three dimensions being equally
relevant to solving the problem. Stating a logical rule for
Type VI in terms of values on each of the component di-
mensions amounts to enumerating the stimuli in each of
the categories .' Finally, Types III, IV, and V are inter-
mediate in structural complexity between Type n and
Type VI. All three dimensions are relevant, but to dif-
fering extents . These three types can be described as "sin-
gle dimension plus exception" structures . For example,
for Type V, squares are assigned to Category 1 and tri-
angles to Category 2, except the small white square is
switched with the small white triangle . We discuss the
subtle structural differences among the Type III, IV, and
V problems later in our article .
Shepard et al . (1961) measured the difficulty of learn-

ing these problem types in terms ofthe number of errors
that subjects made until they reached a criterion. They
found that Type I was the easiest classification to learn,
followed by Type II, followed by Types III, IV, and V,
which were about equal in difficulty, and finally Type VI.
(This ordering of difficulty pertains to subjects' initial
encounters with each problem type, not to some more in-
tricate transfer effects that were also observed in their
studies.)
Ofparticular interest was that the Type II problem was

learned with fewer errors than were Types III, IV, and
V, whereas a variety of models based on stimulus gen-
eralization and cue conditioning predicted the opposite or-
dering of difficulty . Recall that in the Type II problem
only two dimensions are relevant, whereas in Types III-V
all three dimensions are relevant . Shepard et al . (1961)
suggested that for the Type II problem, subjects may have
learned to focus attention on the two relevant dimensions,
whereas for Types III-V, subjects had to spread atten-
tion across all three dimensions . Such a process might
account for the observed ordering of difficulty . Support
for this interpretation was provided in their original study
and in additional theoretical analyses of Shepard et al .'s
data reported by Nosofsky (1984) and Kruschke (1992) .
This theme of the role of selective attention in classifica-
tion learning serves to highlight some of the model com-
parisons that we report later in our article .

Goals of Our Replication and Extension
Despite the elegance of its design and its profound in-

fluence, Shepard et al .'s (1961) seminal investigation had
some limitations . First, data were collected from only 6
subjects . To test the reliability and generalizability ofthe
results, it is important to conduct a similar study with a
larger sample . Second, Shepard et al . reported their data
in terms of total number of errors observed for each prob-
lem type . A richer and more intricate data set is yielded
by observing the errors made for each problem type at
different points during the learning sequence . In other
words, it is important to track the actual time course of
learning instead of recording only the cumulative errors
made by the end of learning . Third, the error data were
reported for each problem type as a whole. For several
of the problems, individual items within each category
have distinct statuses . Some of the items within these prob-
lem types are expected to be easier to learn than others .
Tracking the time course of learning for individual items
within each problem type might provide still more useful
information . The goal of our research, therefore, was to
replicate Shepard et al .'s paradigm, but collect a richer
data set by (1) testing more subjects, (2) tracking the time
course of learning for each problem, and (3) studying the
difficulty of learning individual items within various of
the problem types.

Finally, although previous researchers have discussed
the ability of different models to account for qualitative
aspects of Shepard et al .'s (1961) data, in this research
we begin the process ofquantitatively testing such models .
By meeting our goals of testing more subjects, generat-
ing block-by-block learning curves, and studying the dif-
ficulty of learning individual item types, we produce a
rich set of classification learning data that is suitable for
quantitative fitting and that allows for rigorous compari-
sons among the alternative models .

METHOD

Subjects
The subjects were 120 undergraduates from Indiana University,

who participated as part of an introductory psychology course
requirement .

Stimuli and Apparatus
The stimuli were geometric forms with lines that filled their in-

teriors . The stimuli varied along three binary-valued dimensions :
shape (squares or triangles), type ofinterior lines (solid or dotted),
and size (large or small) . These stimuli are fairly representative
of the types of separable-dimension stimuli used in Shepard et al .'s
(1961) original studies . The stimuli were presented on the screens
of CompuAdd 320 computers, and the subjects entered their re-
sponses on the computer keyboards.

Procedure
The logical structure ofthe six problems that were tested is shown

in the top part of Figure 1 . Assignment of physical dimensions and
of the values on each dimension to this logical structure was ran-
domized for each subject and problem that was tested .
Each of the 120 subjects was tested on two classification prob-

lems, for a total of40 subjects per problem. All pairs of problems
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were tested equally often, and the order of problems within each
pair was balanced acroee subtects . The subjects were liven explicit
instructions that the relevant rule and dimensions for the second
problem were chosen independently of those that were relevant in
the first problem.
The procedure for the learning of each problem was sirnular to

the one used by 5hepard et al . (1461) . In the first and second block
of8 tnaIs, each stimulus appearedonce to a random order In each
subsequent block of 16 trials, each stimulus appeared twice is a
random order. (Tins procedure directly follows the one used by
Shepard et al ) On each trial, a stimulus appeared on the screen,
the subject classified it into Category 1 or 2. and feedback was pro-
vided Learning continued until a subject reached a cntenon of 4
consecutive sub-blocks of R trials with no errors, or for a inaxr
mum of 400 trials (25 blocks of 16 trials)

RESULTS

The average probabilities of errors for each problem
in each block of 16 trials are reported in Table I and are
shown graphically in Figure 2 . Note that the means on
[ate blocks reflect zero values for subjects who had al-
ready reached criterion . Our assumption is that the sub-
jects who had reached criterion, and who thereby had al-
ready achieved between 32 and 40 consecutive correct
responses, would have continued to respond without er-
ror if they maintained the same level of motivation and
concentration .

Table 1
Average Error Proportions for Each of Problem Types I-VI

is Stocks 1-25 of Learning
Problem Type

Block l u III N V VI

1 0111 0378 0459 0 422 0 472 0.498
2 0.025 0.156 0 286 0295 0 331 0.341
_ 0.003 0.083 0.223 0222 0 230 0.284
4 0.000 0.456 0 145 0.172 0 139 0.245
5 0 000 0.031 0.081 0 148 0 106 0 217
6 0.000 0.427 0.078 0 109 0 081 0 192
7 0.000 0.028 0 063 0 089 0 067 0 192
8 0.000 0A16 0 433 0063 0 078 0 177
9 0 000 0016 0 023 0 025 0 048 0 .772
10 0.000 0.008 0.016 0 031 0 045 0 f28
11 0.000 0.000 0.019 0019 0.050 0 139
12 0.000 0 002 0.049 0.025 0.036 0.117
13 0.000 0 005 0.008 0.005 0 031 0.203
14 0 000 0 003 0 013 4.000 0.027 0.048

0 OW 0002 0 009 0000 0.016 0.106
16 0 000 0 000 0 013 0.000 0.014 0.206
17 0 00o 0 COO 0008 0.000 0 .014 0.078
is 0000 0 000 0_006 0000 0.014 0.077
19 0 000 0.000 0 009 0.000 0.013 0.078
20 0 000 0 000 0 003 0.000 0.014 0.061
21 0 .000 0 ow 0005 0.000 0.013 0.058
22 o.ooo 0 .000 0 .000 0 .000 0.009 0.042
23 0 .000 0 .0oo 0003 0.000 0.011 0.042
24 0 .000 o .aoa 0005 o.ooo 0.008 0.030
25 0 000 0.000 0.002 0.000 0.008 0.038

Average� _ 0.010 0.032 0.061 0.065 0 475 0 143

Observed Data

i

C
W
v

Block

Figure 2. Average probabilities of errors for each problem in each black of 16 trials. The data from only Blocks
1-16are shown. There were essentially zero erroRduring Blocks 17-ZS for all problems except Type VI (see Table 1) .

2 4 6 8 10 12 14 16



356 NOSOFSKY . GLL'CK . PALVIERI . '_biCKINLEY, ADD GLALTTHIER

As can be seen, the main results closely replicate those
of ShePard et al . (1961) . The fewest errors occurred for
the Type t problem, followed by Type II . followed by
Types TH, IV, and V, which were about equal in diffi-
culty, and finally Type VI . Pair-wise t tests showed that
Type I was learned with significantly fewer errors than
was Type II [t(78) -- 4.353, p < O1] ; that Type II was
learned with significantly fewer errors than were Types
III, IV, and V~[average t(78) _ . .515 . p c O1] ; and
that Types III . IV, and V were learned with significantly
fewer errors than was Type VI [average t(78) = 3227 .
p C .QI] . There were no significant differences among
Types III, N, and V, Figure ~ shows the data separately
for the first and second problems learned . As can be seen,
there was an overall practice effect, with fewer average
errors on the second problem than on the first problem .
However, the overall ordering ofdifficulty for Types I-VI
was the same for the first and second problems learned,
and statistical tests yielded the carne results as for the
pooled data .'
The average number of trials to criterion for Problem

Types I-VI was 44_0 . 85.4, 121 6 . 127.0 . 133.8, and
19§ . 2 . respectively . These results mirror the ones for aver-
age number of errors, with Type I learned more quickly
than Type II; Type LE learned more quickly than Types
III, IV, and V ; and Types III, IV, and V learned more
quickly than Type VI . Across all 240 subject-problem
combinations {120 subjects x 2 problems each}, there
were only 6 cases of a subject failing co reach the learn-
ing criterion : 4 in Type VI, 1 m Type III, and 1 in
Type V .

In Problem Types z . II, and VI, all individual items have
the same logical status, ca the sense that their roles within
the category structure arc all logically the same . How-
ever, in Types III, IV . and V, all stems do not have the
same structural roles, and some may be easier to learn
than others .

In Type IV, for example . Stimuli 1 gad 8 can be char-
acterized as central members of their categories, whereas
the remaining stimuli are peripheral members-sec Fig-
ure I . (Recall that the Type N structure can be described
by a single-dimension-plus-exception rule . In the Type N
problem, a central member is one that always participates
in the single-dimension rule and is newer considered an
exception, whereas peripheral members will sometimes
serve as exceptions, depending nn which dimension is
used for the rule .) Likewise, in the Type III problem,
Stimuli 1, 2, 7, and 8 can be described as central mem-
bers and Stimuli . . 4 . 5, and 6 as peripheral members .
And in the Type V problem, there are three distinct types
of items : Stimuli 1 and 5 are central, Stimuli 2, 3, 6, and
7 are peripheral, and Stimuli 1 and 8 are exceptions . (The
exceptions are the stimuli [hat violate the only single-
dimension rule that is available for the Type V problem .)
We recorded detailed learning curves for each of these

item types in Problems DTI, TV, and V and found that, for
ail problems, the central members were learned witty
fewer errors than the peripheral members were, whereas

the exccptiom had the most errors of all . Because the for-
mal models that we test subsequently in our article all suc-
cessfully predict this qualitative pattern of resultti, and the
quantitative fit, of the models to these data turned out not
to be diagnostic . we will not consider the individual item-
type data further .'

OVERVIEW OF THREE FORMAL MODELS
OF CLASSIFICATIONLEAR.1'L~G

In this section, we test three quantitative modeiti on their
ability to predict our classification leazztino data : Kruschke~s
(1992) ALCOVE model, Anderson's (1991) rational model.
and an elaborated version of Gtuck and Bower's (19$8b)
configural-cue model, These three models stand among
the leading modes of classification learning in the field
today, with each model being able to characterize a wide
variety of fundamental classification phenomena (for
reviews, see Anderson, 1990, 1991 : Gluck, Bower, &
Hee, 1989 ; and Nosofsky & Kruschke, 1992) . To date,
however, there have been few attempts to develop quan-
titative tests to compare these models . This goal of com-
paring the ability of the models to quantitatively predict
fundamental sets of learning data was the primary moti-
vation for the present study .
Because ALCOVE and the rational model have been

discussed in detail in several previous articles (e .g ., Ander-
son, 1990 . 1991, Kruschke, 1992 ; Nosofsky & Kruschke,
I992), we wi3i summarize them here only briefly . We will
provide a more extended discussion of the elaborated
configural-cue model .
A common assumption made when fitting all three

models is that the stimuli are composed of three binary-
valued dimensions, as illustrated by the structures in Fit
ure 1 . In other words, we assume that the psychological
dimensions that compose the objects correspond directly
to the physical dimensions. Furthermore . because assign-
ment ofphysical dimensions to the logical structures that
define each category was randomized in our experiment,
the intrinsic salience ofeach logical dimension is assumed
to be equal . Although some logical dimensions are more
diagnostic than others for determining category member-
ship, it is the models' job to learn these diagnostic itics .

ALCOVE
ALCOVE is an extended version of the well-known

context model of classification (Media & Schaffer, 1478 ;
Nosofsky, 1986) . It extends the context model by plac-
ing it in a connectionist framework and providing It with
the learning mechanisms found in adaptive networks
(G1uck & Bower, 1488a ; Rumelhart, Hinton, & Williams,
1986) . According to ALCOVE, people represent cate-
oories by storing individual exemplars in memory, and
then form associations between these exemplars and the
categories to be learned . Exemplars are represented as
points in a multidimensional psychological space . When
an object is presented, it activates each exemplar accord-
ing to its similarity to that exemplar, with simi.laratv a de-
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Figure 3. Average probabilities of errors for each problem in each block of 16 trials, shown ceparatel~ for the
first and second problems learned.
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crcasin'- function of distance in the space (Shepard, 1987) .
The extent to which each category is activated is deter-
mined faintly by the similarity of the object to the stored
exemplars and by the strength of association between the
exemplars and the alternative categories . For example,
if an object is highly similar to a set of exemplars that
are strongly associated to category ~I, then, when that ob-
ject is presented, category A will be strongly activated .
An important component assumption of ALCOVE is

that selective attention processes cast modify similarities
among objects in floe multidimensional space ( :tOSOFSkV .
1986) . Selective attention is represented by a set of
weights that "stretch" and "shrink" the space along its
component dimensions . In general, ALCOVE learns to
attend selectively to the dimensions that arc relevant to
solvin, a classification problem and to i-nnre the dimen-
tiIons that are irrclevant .
Formally, ALCOVE is a three-layered, feed-forward

connectionist network as illustrated m Figure 4 . The in-
put nodes code the values on the psychological dimen-
sions that compose the stimuli . The hidden nodes repre-
sent locations in the multidimensional space in which the
exemplars are embedded . Each hidden node corresponds
to a unique training exemplar . The output nodes code the
degree to which each category is activated . The input
nodes arc sated to the hidden exemplar nodes by dimen-
sional attention weights, and the hidden exemplar node,;
are connected to the output nodes by a set of association
wezahts .
When object i is presented . each exemplar nodel is ac-

tivatLd by the function

ay - CXp1-X1_1CYm~Xam-xJmll " 111

where x, and xj�, are the values of exemplars i andI on
dimension m (constrained to be either 0 or 1 for the present
binary-valued stimuli illustrated in Figure 1) ; x is an over-

Category nodes .

f w Learned association
weights .

Exemplar nodes .

/ lP

Learned attention
strengths .

~, Stimulus dimension
nodes.

Figure 4. illustration of. the structure of the aLCOV'E model.

all sensitivity parameter that scales distances in the psy-
choiogzcat space ; and a,, is the (learned) attention weight
on dimension m . This activation function assumes a city-
block metric for computing distance in psychological
space and an exponential decay function for transform-
ing distance into similarity (Shepard . 1987) . Thus, the
more similar an exemplar is to an input item, the greater
will be the activation of the hidden node that represents
the exemplar .
The output of category node A is given by

DA - [�rQr.,lk),q,

where w;A is the (learned) association weight between ex-
emplar node j and output node A, and the sum is over
all exemplar nodes . The probability that item i is classi-
fied in category A is given by

P(Af f) T (On-b)((Oa+On-2b), (3)

where h is a background noose constant (Estes . 1994 .
\osofsky & Kruschke, 1992 : Nosofsky et al ., 1992) .
ALCOVE learns the attention weightti, am, and associ-

ation weights . wyA, on a trial-by-trial basis by means of
back propagation {Rumelhart et al ., 1986} . The precise
learning rules are derived and presented by Kruschke
(1992) .

In the present application of ALCOVE, there are four
flee parameters : the overall sensitivity parameter (x) for
scaling distances in the space (Equation 1) ; the back-
ground noise constant (b) for transforming category out-
puts into response probabilities (Equation 3) ; and learn-
m~ rates, Xw and X~, for updating the exemplar categon~
association weights and dimensional attention weights .
respectively (see Kruschke, 1992) .

In a previous theoretical analysis, Nosofsky (194)
showed that the exemplar-based context model correctly
predicted the order ofdifficulty for the six types of prob-
lems in Shepard et al .'s (1961) study, as long as it was
assumed that subjects came to optimize the distribution
ofattention weights over the dimensions that compose the
exemplars . The ALCOVE model, which extends the con-
text model m a connectioreist framework, provides a mech-
anism by which these optimal weights can be learned, and
Kruschke (1992) verified that ALCOVE indeed predicts
the correct ordering . The model learns to attend to the
single relevant dimension that defines the Type I prob-
lem, to split attention between the two relevant dimen-
sions that define the Type II problem . and to distribute
attention optimally among the three dimensions that are
relevant for solving the Types III-VI problems . The
present research represents the first attempt, however, to
test ALCOVE'S ability to quantitatively predict the clas-
sification learning data in Shepard et al .'s paradigm .

Rational Model
According to Anderson's (1991) rational model, exem-

plars are grouped into clusters during the learning pro-
cess . AE any point dunn- the learning sequence . the prob-
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abilitv that an exemplar loins a cluster is determined jointly
by the prior probability of each cluster and by the simi-
lanty of that exemplar to the cluster's central tendency
The prior probability of joining a cluster 1% determined
by the current size of each cluster and by the value of
a coupling parameter, which is a free parameter in the
model . When the value of the coupling parameter is large,
exemplars tend to join preexisting clusters, whereas when
the value of the coupling parameter is small, exemplars
tend to start their own new clusters . The similarity of an
exemplar to a cluster's central tendency is computed by
using an interdimcnsional multiplicative rule that is iso-
morphic: [o the similarity rule assumed in the context
model (Anderson, 1990 . Nosofsky, 1991) .
There is a mechanism in the rational model for com-

puting the probability that membership in each cluster
signals a given category label. Thus, when an item is pre-
sented, the probability of its category label can be com-
putcd by summing the probability that it belongs to each
cluster. weighted by the probability that each cluster sig-
nals a given category label .

In the present situation, the baseline version ofthe ra-
tional model has three free parameters : a coupling param-
eter (c) [hat influences the prior probability for items to
loin preexisting clusters or form new ones ; a dimensional
salience parameter (sD) for computing suni.lariues between
items and the central tendencies of the clusters ; and a cat-
egory label salience parameter (sl .) . In Anderson's frame-
work, the category labels assigned to stimuli are treated
in the wine manner as values on the other stimulus di-
mensions . However, because the category label dunen-
sion has a special psychological status, it is reasonable
to use a separate free parameter (SO to represent that the
salience of the category label may be distinct from the
saliences ofthe other stimulus dimensions . In addition to
influencing the similarity between items and clusters, the
category label salience parameter influences the estimated
probab~ities that individual clusters signal alternative cat-
caory labels (for details, see AnderSOn, 1990, pp . 103,
105, 143) .
To give the rational model additional flexibility for fit-

ting data, we also provide it with a response-mapping pa-
rameter (r) for transforming estimated category label
probabilities to observed response probabilities . Let pA
denote the rational model's estimated probability that stem
i signals category label A . Then the actual probability that
the subject makes response A is given by

FA = PA/ CPA+Pa~-

Anderson's (1990, 1991) presentation of the model . If
r = 1, then the present model reduces to the version pre-
sented by Anderson (1990) . Thus, this generalized model
must ft the present classification learning data at least as
well as the version without the response-mapping param-
eter. It is important to acknowledge that Anderson (1990,
1991) assumed only a monotonic relation between [he es-
timated probabilities of the rational model and observed
response probabilities . Nevertheless. it is critical to explore
the ability of the model to yield good quantitative fits to
data as well . Use of the present response-mapping param-
eter is a reasonable way to begin such an exploration .

In a previous theoretical analysis, Anderson (1991)
showed that the rational model yielded fairly good qualita-
tive predictions of the order of difficulty of learning the
six problem types . Roughly, the model learns to classify
items more efficiently when exemplars with the same cate-
gory label aye grouped into the same internal clusters . and
exemplars with different category labels are grouped into
distinct clusters . The Type I problem is learned most effi-
ciencly because all members of Category A are grouped
into one cluster, and all members ofCategory B are groped
into a second cluster. The Type II problem is also learned
efficiently, because only two distinct clusters are formed
for the members of each category (e.g ., Pairs 1-2 and
7-S form clusters for category A-see Figure 1) . Types
III, IV, and V are learned less efficiently, because, de-
pending on the precise sequence of learning exemplars,
there is often a "singleton" cluster that is formed which
consists ofonly one exemplar, and this last exemplar takes
a long time to learn . Type VI is learned least efficiently
because the categories break up entirely into singleton
clusters .
Although promising in the respects noted above, the

qualitative predictions of the rational model presented by
Anderson (1941 . Figure 13) also differed in certain ways
from the data observed ire the present study . For exam-
pie, in contrast to the present results, the advantage for
Type II over Types III, IV, and V did not emerge until
around flock 5 . Also, during the later learning blocks,
performance on Type N actually became worse than per-
formance on Type VI . Finally, the overall level of per-
formance on all of the problem types was considerably
worse than that observed in the present study . It remains
to b? seen whether or not a more exhaustive search of
the parameter space will locate parameters that allow the
rational model to provide adequate quantitative fits to the
classification learning data in Shepard et al .'s (1961)
paradigm .

When r = 1, observed response probabilities match those
that are estimated by the rational model, whereas when
r > 1, observed response probabilities will be more ex-
treme (closer to 0 or d) than the estimated probabilities .
(See Maddox & Ashby . 1993 . for a previously success-
ful gee of Such a response-mappzn, parameter in tests in-
volving tiosofsky's . 1986 . generalized context model.)

It is critical to understand that providing the rational
model with this response-mapping parameter generalizes

Configural-Cue Model
The configura2-cue model (Glucic, 1991 ; Gtuck &

Bower, 1988b ; Gluck et al ., 1989), based on Rescorla
and Wagner's (1972) description of classical condition-
in--, is a two-layered network model in which the con-
nection weights are learned by the least mean squares
(L'.vIS) rile (Widrow & Hoff, 1960) . The structure ofthe
configural-cue network is illustrated in Figure 5 . The in-
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Figure 5. Illustration of the stricture of the cvnFgural-cue mode[.

gut nodes in the network code all configurations of fea-
tures (i .e ., single features, pairs of features, triples of fea-
tures, etc .) that compose the items . Presentation of an
n-dimensional stimulus pattern corresponds to pre~enta-
tion of the complete power set of all possible subsets of
that pattern . For example, presentation of a small white
square would cause seven input nodes to become active :
small, white, square, small-white, small-square, white-
square, and small-white-square (see Figure 5) . In the
present case, the stimuli are composed of three binary-
valued dimensions, so the network has 26 input nodes (5
single nodes . 12 double nodes, and $ triple nodes), 7 of
which are activated on each trial . If input configuration
i is present in a stimulus pattern on trial r, input node i
receives an activation of 1, a, (t) = l ; otherwise, the in-
put node receives an activation ofzero, a, (t) = Q . Cluck
(1991) demonstrated [hat this configural representation um-
plies approximately the same exponential-decay stimulus

generalization gradient found in ALCOVE and the rational
model .
The actzvations on all input nodes are multiplied by the

connection weights currently existing m the network,
which are then summed to form outputs . Specifically, the
output received by category node A is given by

0A(t) _ Euf(t)w~~.t(t), (5)

where w;A(t} is the weight on the connection that links
input node a to output node A on trial t . An analogous
expression is used to compute the output received by cat-
egory node B . The probability of a category A response
is given by the same decision rule as that used in AL-
COVE (Equation 3)_

All weights in the network art initialized to zero . Learn-
ing ofweights takes place by using the delta or least mean
squares (LMS) rule (Widrow & Hoff. 1960) . When cat-
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egorv A feedback is presented, output node ri receives a
teaching signal of z,4(t) = 1 and output node B receives
a teaching Signal of Za{t) = 0. (When category B feed-
back is presented, the reverse teaching signals arc pro-
vided.) The error at output node A is given by

6A (t) W i.A(r) - OA (t) "

and likewise for the error at output node B. All weights
in the network arc then updated by using the rule

w'ra(t-~-Y) = WA(t) + M.a(t)ai(r)~ (7)

where w,A(t) is the connection weight from input node i
to output node A on trial t, and X is the learning rate pa-
rameter . In our present tests of the configural-cue model,
separate learning-rate parameters arc allowed for the con-
nections from single nudes, double nodes, and triple nodes
to the output nodes . The standard configural-cue model thus
has four free parameters : the background noise constant
(b) in Equation 3, and learning rates X,, Az, and a, for sin-
gIe, double, and triple nodes, respectively .'
Gluck and Bower (I9$Sb) used the configural-cue

model to simulate learning of the six Shepard et al . (1961)
tasks . A single learning rate was used far ail weights .
Regardless ofthe learning rate, the model predicted a con-
sistent ordering of difficulty . Most important, the over-
ail ordering late in learning was found to he z [ III C
II C N < V C VI . With the exception of misordenng
Types II and III, therefore, the configural-cue model was
fairly successful at accounting for the relative difficulty
ofthe six problems . As Gluck and Bower explain (1988b,
pp . I87-189), the successes of the model derive from a
combination of its confgural representation of the stim-
uli, and the interactive, error-driven nature of the LMS
learning rule, which learns associations for frequent and
consistent cues more quickly than for infrequent and in-
consistent cues.
Why, however, does the model fail to predict that peo-

ple learn the Type II problem more quickly than Type III?
Consider the structure of the Type II and Type III prob-
lems shown in Figure 1 . There are no single-feature cues
that are consistently associated with either category for
either type ofproblem- For the Type II problem, there are
only two double-feature cues that are consistently asso-
ciated with category A (black-square and white-triangle),
whereas for the Type III problem, there are three double-
feature cues that are consistently associated with cate-
gory A (small-black, large-square . and black-square) .
(An analogous set of cues with the same structure is as-
sociated with category B.) Because more cue configura-
tions exist far classifying items in the Type III structure
than in the Type II structure, the confgural-cue model
tends to learn the Type III structure more quickly .
Why do human subjects tend to learn the Type II struc-

ture more quickly? A likely reason is that in the Type II
structure, both double-feature cues are defined over the
same dimensions (i .e ., color and shape for the example
in Figure 1) . By contrast, in the Type III structure, each
ofthe relevant double-feature cues is defined over a dif-
ferent pair of dimensions (i .e . color-shape, size-shape,

and size-color) . Presumably, human subjects learn to at-
tend selectively to dimensions when solving the classifi-
cation problems, and this process facilitates the learning
of the Type uproblem. We hypothesized, therefore, that
to improve the cvnfigural-cue model's ability to predict
classification learning, mechanisms needed to be added
that would allow the model to learn to selectively attend
to dimensions .

Configural-Cue Model with Dimensionalized,
Adaptive Learning Rates
We present here an extended version of the combral-

cue model that we referto as the dimensionalizedadaptive-
learning rate (DALR) model (Gluck, Glauthier, & Sutton,
1992) . This DALR model is based on recent advances in
adaptive-learning procedures for neural networks (Jacobs,
1988 ; Sutton, 1942a, 1992b) . Most important for the
present purposes, the DALR model incorporates mecha-
nisms that allow the configural-cue model to learn to selec-
tively attend to dimensions .
Two key ideas underlie the DALR model . First, whereas

in the standard configural-cue model the learning rates on
each of the connections remain constant daring training,
in the extended model there is a meta-learning process that
dVnainically modifies each leaning rate_ incorporating a
dynanucally modifiable learning rate provides a mechanism
for adjusting the salience of individual cues . Specifically,
the model learns to assign higher learning rates to those
connections in the network that ace highly diagnostic for
solving a given problem. From a psychological perspec-
tive, this enhanced learning rule is analogous to adding an
attentioaal component to the confrguraI-cue model . Atten-
tion is conceptualized here as an enhanced tendency to
change the strength of a given cue's associations . (see
Frey & Sears, 1978 ; Mackintosh . 1975 ; and Pearce &
Hall, 1980, for similar psychological ideas about the learn-
ing of cue-specific saliences and assoeiabilities .)
A second key idea behind the DALR model is that it

is provided with a "knowledge" of the underlying dimen-
sional structure of the stimuli . In the standard configural-
cue model, information about the dimensional structure
ofthe stimuli is basically discarded from the input repre-
sentation . For example, the model does not represent the
relationship between black and white as being any differ-
ent from the relationship between black and large . Each
dimension value is represented 5y a unique input node
that is either activated or not activated, depending on its
presence or absence in the input pattern .

It follows that even with the metalearning process de-
scribed above, there is still no form of dimensionalized
attention learning in the standard configural-cue model .
because separate learning rates can arise for each distinct
configuration of dimension values . For example, sepa-
rate teaming rates can occur for the input nodes black-
square and white-triangle . which are defined over the
same dimensions
Thus . we introduce a structural modification to the

model by linking the learning rates for given dimensions
and configurations of dimensions . For example, connec-
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lions from the nodes for "large" and "small" share a sin-
gle learning rate, allowing attention (in the form of a high
learning rate) to be focused on the entire dimension of
"size" rather than on specific dimension values . When the
cue "small" is relevant to the classification task, the net-
work increases the linked learning rate for size, thus as-
signing more attention to the cue "large" as well . Like-
wise, all connections from double nodes defined over the
dimensions of size and shape (large-square, large-triangle,
small-square, small-triangle) share a single learning rate,
and so forth.
We describe the formal implementation ofthis extended

DALR model in the Appendix . We use five free parame-
ters to fit the DALR model to the classification learning
data : an initial learning rate (Xo) that applies to all con-
nections in the network; a background noise constant (b)
that is used in the decision rule (Equation 3) ; and three
separate metalearning parameters for adapting the learn-
ing rates on connections from single, double and triple
nodes (B,, 92, and 8,, respectively) . These metalearning
parameters are used to dynamically adjust the learning
rates on each of the (dimensionalized) connections in the
network.

FITTING THE MODELS
TO THE LEARNING DATA

Because there were essentially zero errors for most of
the problems past Block 16, we fitted the models to the
learning data from Blocks 1-16 only . The learning curves
were fitted with all parameters held fixed across the six
problems . We used two criteria of fit for evaluating the
models . The first criterion was to minimize the sum of
squared deviations (SSD) between predicted and observed
error proportions across all 6 problems and 16 learning
blocks (96 data points) . A difficulty with using SSD as
a criterion of fit, however, is that not all data points have
the same error variance . Proportions close to zero or unity
have very small error variances, so deviations in these
regions are potentially quite important. Thus, we also fit-
ted the models by using a weighted least squares crite-
rion . The weighted sum of squared deviations (WSSD)
is found by summing the squared deviations between pre-
dicted and observed error proportions weighted by 1/a2,
the inverse of the variance of each cell proportion (see,
e.g ., Bishop, Fienberg, &Holland, 1975). Assuming bi-
nomial variability, the error proportion q; has variance
q;(1-q;)lN, where N is the number of observations .' In
this article, we report fits based on both the unweighted
and weighted SSD measures . Fortunately, in our analy-
ses of the main data set, both measures lead to the same
conclusions, and we focus primarily on the unweighted
SSD measure in discussing the results .
To fit each of the models, 100 random stimulus se-

quences were generated. The characteristics ofeach ran-
domsequence matched the constraints in our experimen-
tal design . For any given set ofparameters, a model was
used to generate predictions based on each random se-

quence . These 100 sets ofpredicted values were then aver-
aged, and the averaged values constituted the predictions
that were fitted to the observed data . The ALCOVE,
configural-cue, and DALR models were fitted to the data
by using a hill-climbing parameter search routine . Vari-
ous different starting configurations of the parameter
values were used in these searches, in an attempt to guard
against local minima . The same hill-climbing routine was
also used to fit the rational model. However, the rational
model may be especially prone to local minima, because
even small changes in parameter values can sometimes
lead to dramatically different predictions from that model.
(Small parameter changes can lead the model to form dif-
ferent clusters, resulting in markedly different behavioral
predictions.) In a special attempt to guard against local
minima for the rational model, therefore, a "grid search"
was also used, which consisted of checking a huge num-
ber of possible combinations of parameter values . Both
the hill-climbing and the grid search methods led to the
same best-fitting parameters .

MODEL-FITTING RESULTS

The summary fits for ALCOVE, the standard configural-
cue model, the DALR model, and the rational model are
reported in Table 2, and the best-fitting parameters are
reported in Table 3 . The predictions of the four models,
based on the minimum SSD criterion, are shown graphi-
cally in Figures 6-9 .
Among the four models, ALCOVE provides the best

overall quantitative account of the learning data . AL-
COVE accounts for 95.5% of the variance in the learn-
ing data for the six problems taken together . The remain-
ing three models, which provide roughly the same overall
fits as one another, account for an average of 86.3 % of
the variance . The advantage for ALCOVE is fairly con-
sistent across all the problem types, as indicated by the
individual-problem SSDs that are reported in Table 2 .
Furthermore, the advantage holds regardless of whether
one adopts the SSD or WSSD criterion of fit (see Table 2) .

Visual comparison of Figures 6 and 2 reveals that AL-
COVE does quite well at capturing the pattern of learn-
ing data . It predicts a clear advantage for the Type I prob-
lem, followed by Type II, by Types III, N, and V, which
are roughly equivalent, and finally by Type VI, which
lags clearly behind .
By comparison, inspection of Figures 7-9 reveals ob-

vious shortcomings in the predictions of the remaining
models . As expected, the standard configural-cue model
(Figure 7) predicts incorrectly that the Type III problem
is learned more quickly than the Type II problem. Fur-
thermore, the model predicts only a slight advantage for
Type u over TypesIV and V, in contrast to the observed
data . There is also not enough of an advantage for the
Type I problem over the remaining problem types.
The extended DALR configural-cue model (Figure 8)

improves on the standard model, at least with regard to
the qualitative trends noted above-but the improvement



MODELS OF CLASSIFICATION LEARNING 363

Table lA
Sum of Squared Deviations (,SSD) Between Predicted and

Observed Error Probabilities in Blocks 1-16 for Problems I-'Y"1
Problem

Model S II III N V VI SSD RMSD %Var
ALCOVE 002 .012 004 005 012 028 .061 .025 95 .5
Conftgural cue 025 034 036 424 .012 039 .172 .042 87 .5
DALR 02I 032 039 043 005 .071 <11 .447 84.5
Rational .061 .026 .R26 .025 .011 033 .182 04,4 86.8
'dote-RMSD = rootmean squared deviation `7oVar = percentage of variance accounted
for . All models were fitted by searching for the fixed set of parameters that aunimized
overall SSD across the six problem types The resulting SSI1s for each individual problem
type are also shown .

Table 2S
Weighted Seem of Squared Deviations (WSSD) Between Predicted
and Observed Error Probabilities in Blocks 1-16 for Problems I-VI

Problem
Model I Ii [II 1V V VI WSSD

ALCOVE 024 .306 .028 112 104 297 0871
Configural cue 214 285 .519 .502 173 431 2 063
DALR 087 360 402 .532 .078 422 1 881
Rational 737 123 719 .821 .630 1.515 4 .545
Note-All models were fitted by searching for the fixed set ofparame-
ters that minimized overall WSSD across the six problem types. The
resulting WSSDc for each individual problem type arc also shown,

is not sufficient to yield a satisfactory quantitative fit . By
incorporating the disnensionalized adaptive learning rates,
the extended model correctly predicts the rapid learning
thatoccurred for the Type I problem . In addition, it now
predicts slightly better performance on the Type II prob-
lem than on the Type III problem . But the quantitative
difference in performance between Types a and III is far
too small in magnitude in relation to what is observed in
the data . We also tested versions of the DAi.R model in
which separate initial learning rates were allowed for con-
nections from single, double, and triple nodes, but these
elaborated models provided only modest improvements
in quantitative fit .
An intriguing question is why the DALR model fails

to predict enough of an advantage for the Type u prob-
lem over Type III, despite the fact that a dimensionalized
selective-attention mechanism has been added to that model.

In an attempt to answer this question, we tracked the con-
nection weights that were learned by the best-fitting ver-
sion of the DALR model . As expected, for the Type u
problem, the model learned to assign very large weights
to the two perfectly diagnostic doublet eves for each cate-
gory . For example, ifwe use the illustration from Figure 1,
the model learned to assign large weights to the connec-
tions linking black-square and white-trzang2e to cate-
~ory A . No other connections received very much weight.
Also as expected . for the Type 91 problem, the model
learned to assign large weights to the three perfectly diag-
nostic doublet cues for each category (black-square, large-
square, and small-black for category A) . Because these
doublet cues are defined over different pairs of dimen-
sions, however, the weights assigned to [been were not
as large as those foe the Type II problem, Thus, this as-
pect of the DALR model worked precisely as anticipated .

Table 3
Sect-Fitting Model Parameters

Model Parameters

SSD Criterion
ALCOVE x = 6 330. AW = 179, a, = 405, h -- .011
Configural Cue A, = 004, a, = 048, X, -- 079, b = .015
DALR an = .064 9, -- 104, 9, = 463, 9, -- 010, b = 028
Rational c = 31R, rn = 488. sL .(k16 . r = .930

WSSD Criterion

ALCOVE x = 5 09.. X� = 246. AQ -- 442 . b = 00092
CnnCiaural cue a, -- 046 X, - 092, a, -- 065 h - 001 1
DALk a, = 059. R . = 3;7, 9. X75. 9, = 000, 5 = 0017
Rational c = ?IS, sn - 4$R, r, 046, r -- 1 496

dote-SSD, sum of squared deNiatiens, WSSD, ueichted sum of squared deviations



364 NOSOFSKY, GLUCK, PALM$RI, MCKINLEY, AND GLAUTHIER

ALCOVE
0.7

e

x I

g 0.4- %;, %A&%
W
0

Ilk
4. si, `.Y

A~ \ p
TS;`

.1

.__ --

2 4 6 8 10 12 14 16
Block

Figure 6. Learning curves for the six problem types predicted by ALCOVE.

Configural Cue Mode!
0.7-

0.6-

0.5-

j0.4-
~S

2-
w
d n . tii

Is, X

51~, y. -

2 4 6 8 10 v12 .14 16
Block

Figure 7. Learning carves for the six problem types predicted by the coQCiguraitue model.

--;--

111

iv

V

t

--+--
!1

fll

IV

V

VI



MODELS OF CLASSIFICATION LEARNING 365

DALR

2
L

W
a

0

o.

o.

0.4

W

Q- 0.3

0.2

0.1

L.

2 4 6 8 10 12 14 16
Block

Figure S. IxarniuR curves far the six problem types predicted by the DALR model.

Rational Model

S
t

i

S
~.S
CtiLS

t

~--
-- yL v i~ :

2 4 6 8 10 12 14
Block

Figure 9, Learning cones for [he sir problem tppes predicted 4v the rational model.

--.-'

fll
-fl-
IV

V

VI j

i

I

V
--,,r .

16



366 tiOSOFSKY, GLLCK, PALMERZ, ?vICKI\LEX, AND GLA[7THIER

A surprising result, however, was that for the Type III
problem, the DALR model also learned to assign moder-
ately large weights to connections from some of the sin-
glet cues . Consider again Figure 1, and note that for the
Type III problem, the individual dimensions ofshape and
color, although not perfectly diagnostic, are partially di-
agnostic ofcategory membership, 'three ofthe four scares
are assigned to category A. and three of the four triangles
are assigned to category B. Likewise, three of the four
black objects are assigned to category A, and three of the
four white objects are assigned to category B. Thus, overall
performance is benefited if, in addition to attending to the
perfectly diagnostic doublet cues, the model learns to at-
tend to the partially diagnostic singlet cues . Indeed, the na-
ture ofthe adaptive-iearrring-rate mechanism in the DALR
model is to assign higher learning rates to whatever cues
are diagnostic of category membership. In a nutshell, then,
a plausible explanation for why the DALA model learns
the Type III problem nearly as efficiently as the Type II
problem is because it takes simultaneous advantage of both
the doublet-cue associations and singlet-cue associations
that are relevant to solving that problem. We provide fur-
ther discussion of the implications of this learning pro-
cess in our General Discussion .

Like the configural-cue model, the rational model (Fig-
ure 9) also predicts better performance on the Type IIT
problem than on the Type II problem, at least with the
present parameter settings . Another shortcoming of the
rational model is that learning on the Type I problem oc-
curs too slowly, and there is not much separation between
the Type I learning curve and the remaining leaning
curves . As we noted earlier, Anderson (1441, Figure 13)
reported predictions for the rational model in which dif-
ferent parameter settings were used, and in which per-
formance was markedly better on the Type I and Type II
problems than on the remaining problems. Unfortunately,
with these alternative parameter settings, the rational
model vastly underpredicts the overall level of perfor-
mance that was observed in our experiment . (It also cnis-
pzedicts other qualitative features ofthe learning data that
we discussed earlier.) We have been unable to find pa-
rameter settings for the rational model flint yield perfor-
mance levels close to those observed in our experiment
while at the same time correctly ordering the difficulty
ofthe problem types. It may be that, like the configural-
cue model, a form of dimensionalized attention learning
needs to be added to the rational model to improve its
quantitative predictions . In addition, perhaps an alterna-
tive mechanism for converting internal estimated proba-
bilities to observed response probabilities world yield im-
proved quantitative fits .
The attention-learning mechanism in ALCOVE is crit-

ical in allowing that mode! to correctly predict the data .
A restricted version ofALCOVE arises by holding fixed
the attentional [earning rate at a,, = 0 . This restricted
model yields a fit that is far worse than that of the foil
model (SSD -- 202. RMSD = .046. %variance -- 85 .3) .
It predicts worse performance on the Type 11 problem than

on Types III and N, and performance on Type II that is
nearly as poor as that on Type V . Learning on the Type I
problem also proceeds too slowly . This conclusion about
the importance of attention learning in exemplar-based
models of classification agrees with earlier ones reached
by Nosofsky (1994) and Kruschke (7992)-

GENERAL DISCUSSION

The main purpose ofthis research was to collect a rich
set of learning data that would be useful for providing
quantitative tests of current models of classification learn-
ing. We used Shepard et al .'s (1961) classic paradigm,
but we collected more detailed data and tested more sub-
jects than in the original study . Our general patterns of
results replicated those observed in the original study.
However, by recording detailed learning curves for each
of the problems, we obtained a data set suitable for quan-
titative testing.
Our initial quantitative tests were focused on ALCOVE,

the rational model, and the configural-cue model . These
models are among the leading candidates in the field to-
day, but there have been few attempts to develop quan-
titative comparisons to test among them. When learning
data from all six problem types were analyzed simulta-
neously. ALCOVE provided the best overall fit, yield-
ing learning curves that matched the observed data nicely .
Aclear shortcoming ofthe configural-cue model aid the
rational model is that they failed to predict the magnitude
ofthe advantage observed for the Type I and Type II prob-
lems over Types III-V and VI .
Because only a subsetof dimensions is relevant far solv-

ing file Types I and II problems, it seems likely that some
form ofdimensionatized, selective attention process is in-
volved, and this process is well captured by the attention-
learning mechanism in ALCOVE . It seems likely that the
quantitative predictions ofthe configural-cue model and
the rational model could be improved if they too incor-
porated forms of dimensionalized attention learning .
We made an attempt to incorporate a dimensionaiized

attention-learning mechanism in the elaborated DALR
configural-cue model . Although this mechanism led to im-
provements in the qualitative predictions of the model,
it still had quantitative shortcomings . An analysis of the
pattern of connection weight learning in that model indi-
cated that a likely reason for its quantitative shortcom-
ings is that the model learned to attend simultaneously to
multiple configurations ofcues (e .g ., black-square, large-
square, small-black, square, black) . In other words, it
attempted to take simultaneous advantage of all and what-
ever forms of diagnostic evidence were available in the
stimulus patterns . It may be that people are more natu-
rally inclined to team to attend selectively to a more lun-
ited set of cues . If this suggestion is correct, further im-
provements in the confgural-cue model could probably
be achieved by designing certain capacity limits into the
attention-learning mechanisms . We leave this idea as a
project for future exploration and research .
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Another issue is that the present models were fitted to
averaged learning data, and not to the data of individual
subjects . Although averaged data may sometimes obscure
patterns observed at the individual subject level, we have
good reason to believe that, in the present study, the aver-
aged data are at least fairly reflective of individual sub-
ject behavior . Before generating our averaged learning
curves, we inspected histograms ofindividual subject er-
rors on each of the problem types. These histograms ap-
peared to be symmetric and unimodal, with no extreme
oudiers. We believe that these histograms of individual
subject errors could be fitted quite well by simply allow-
ing variability in the parameter values (e .g ., the learning
rates) across individual subjects . However, we leave this
ambitious goal ofactually fitting distributions ofindivid-
ual subject behaviors as another issue for future research .
The learning tasks used in this study involved rule-based

categories . In another recent theoretical investigation in-
volving rule-based categories, Choi, McDaniel, and Buse-
meyer (1993) compared alternative network models on
their ability to predict patterns of classification learning
data in some concept identification tasks reported by
Salatas and Bourne (1974) . Choi et al . (1993) found that
as long as one incorporated certain prior biases into the
structure ofthe network, ALCOVE again provided an ex-
cellent description of the pattern ofresults. Thus, the ap-
plicability of ALCOVE in this domain of learning rule-
based categories appears to have some generality . Whether
similar patterns of results will be observed in situations
involving more ill-defined categories remains an open
question. Conceivably, alternative classification strategies
operate under different learning conditions, and the
configural-cue model and the rational model may show
advantages in other domains.
Acentral claim of Shepard et al . (1961) was that their

results implicate some form of abstraction or selective at-
tention to dimensions during the course of classification
learning . This attention-learning process is in some sense
limited in capacity . Focusing attention on fewer dimen-
sions allows for better performance on classifications that
are defined over those dimensions . This same basic mes-
sage echoes loudly in the present replication and exten-
sion of their study. Models of stimulus generalization and
cue conditioning in human learning that do not incorporate
some form of limited-capacity, selective attention mech-
anism for dimensionalized stimuli have difficulty account-
ing for the pattern ofresults observed in these fundamental
classification tasks .
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DOTES

L By recodmg dimension values, Type VI becomes the panty prob-
iem Assign logical value 1 to dimension values square, black, andlarge,
and assign value 0 to dimension values triangle, white, and small. Any
stimulus with an odd number of 1s belongs to Category 1, whereas any
stimulus with an even number of is belongs to Category 2
2. Technically . the t tests reported for the pooled data are invalid,

because each sub1cct participated in two problems and the observations
across groups are therefore not completely independent Because the
same statistical results were obtained for the first problem taken by it-
self. however, this does not appear to be a mayor concern with respect
to describing the general pattern of results .
3 The learning curves for the individual item types acid the detailed

recultc of fining the alternative models to the item-type data are avail-
able from the authors on request .
4 . Some additional technical details regarding the configura3-cue model

and ALCOVE include the following . First, on rare occasions, the out-
puts for the configural-cue model can take on slightly negative values
When the Equation 3 response rule is applied, negative outputs are trun-
cated to zero. Second, in calculating the error signal (Equation 6) . we
found that "humble" teachers provided slightly better fits than "street"
teachers did. (The same finding was observed for ALCOVE ) When
a humble teacher is used, the error is defined to 6e zero if the magni-
tude of the output, in either the positive or the negative direction, ex-
ceeds the magnitude of the teaching signal (see Kruschke, 1992, for
details) . The results reported m this article are for the models that used
humble teachers, but the general conclusions do not depend on which
type of teaching signal is assumed Finally, we also fitted versions of
ALCOVE and the confgurai-cue model that used exponential transfor-
mations of outputs in the choice rule, instead of raw outputs, bat these
versions gave slightly wore fits than the present versions did
5 . Because m the present experiment all cell proportions were based

on the same number of observations, however, N was simply deleted
from the A'S5D computation . Fn addition, m cases in which there were
zero error proportions, weadopted the convention that q, -- 112N (see,
e .g ., Bishop et al, . 1975)

APPE;1'DIX
Formal Description of the DALR Model

In this Appendix, we provide a formal description of the man-
ner in which the dimensionalized, adaptive lcanung rate (DALR)
model extends the standard configural-cue model . A descrip-
tion of the haste (nondimensional) ALR network model of clas-
sification learning can be found in Gfucket al . (1992) . As noted
in the text, the DALR model is based on recent advances m
adaptive-learning-rate methods for neural networks . 'Phase meth-
ads are motivated primarily by engineering considerations, with

the goal of increasing the learning efficiency of the networks
It is an open question whether or not these methods have a nat-
ural psychological or neural interpretation .

Adaptive-learning-rate methods are metalearning algorithms
for adapting step-size parameters (i .e ., learning rates) during
a learning process, which in the present case is the LUIS rule .
Consider, for example, one of the weights m a cvnncctionist
network and how it changes over time. If the weight changes
are all in the same direction (e .g , all increases) this signifies
that the step-size parameter is too small . The weight could reach
its asymptotic value more quickly if it took larger steps . On the
other hand . if the weight changes are in opposite directions (e.g .,
first up and then down) this signifies that the step-size parame-
ter is too large . The basic idea behind current adaptive-leamcng-
rate methods is to adjust the step size according to the correla-
hon between successive weight changes, with the goal of obtaining
zero correlation . (A positive correlation signifies that weight
changes have been in the same direction ; a negative correlation
signifies that weight changes have been in opposite directions .)
The particular mechanism used to form the dimeusionafizcd
adaptive-learning-rate configural-cue model tested in this arti-
cle was proposed by Sutton (L992a) and is known as the in-
cremenral delta-Gar-defta (IDSD) algorithm,

Specifically, with this iDSD algorithm, there is a different
learning rate a,,, for each connection from input node c to out-
put node A, and similarly for connections to any other output
nodes . These learning rates change according to a metalearn-
mg process . The standard learning rule (Equation 7) becomes

K'=n(r-'--l) = Win(r) - X1A(t11)SA(t)a1(0 . (A1)

where the learning-rate parameters are now indexed by trials,
t- 1 . (The a,,a are indexed by t+ 1 rawer than t to indicate that
their update, by a process described below, occurs before the
w,a update .) 7"o ensure that the learning rakes remain positive .
they are expressed and stored in the form X�,(t) = exp[6,A(t)1 .
The IDBD alcyarrthm updates the Q�, by

~~,a(r+1) = 01.,(t) + BSA(r)af(0h1A(W_VX1A (r), (A2)

where B is 8 positive constant, the metalearning rate, and h1A
is a memory variable associated with each connection from in-
put node i to output node A. The memory variable indicates
whether the recent errors associated with a given connection
weight have been positive or negative . To indicate this infor-
mation, the memory variable is initialized at zero and updated by :

h~A(t~z) = h~,~(t1f1-~~A(t~l)a~(~))'
~ ~~A(r-1)S,a(r)a#) . (A3)

where [x]' is z, ifz > 0, else 0 . The first term in the preceding
equation is a decay term-the product a�,(t+ 1)a ;(t) is normally
zero or a positive fraction, and this causes a decay of h,,a toward
zero . The second term increments h,,a by the previous error,
assuming that cue i was present m the input pattern [a, (t) = 1J .
The memory, h � a, is thus a decaying trace of the cumulative
sum ofrecent errors associated with the presence ofcue i (Sut-
ton, 1942a) .
lots from Equation A2 that if the present error . S,a(r), matches

the sign of file cumulative sum of recent errors, h� ,(r), the learn-
ing rate on the connection from input node i to output node A
will be increased . [f the signs mismatch, the learning rate will
be decreased . This aloonthm, therefore, provides one way of in-
stantianng the key idea behind adaptive-learning-rate methods-
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namely, that of adjusting learning-rate parameters according to
the correlation between successive weight changes
As we discussed previously in the text, the DALR model in-

troduces a form of dimensioruilized attention learning by link-
ing the learning rates for given dimensions and configurations
of dimensions As noted earlier, m the present experimental de-
sign, the configural-cue model has 26 input nodes . By linking
learning rates . however, we reduce the number ofunique learn-
ing rates from 26 to 7 for each of the two output nodes . (Unique

learning rates occur nn connections from nodes defined over
the dimensions of size, shape, color, size-shape, size-color,
shape-color, and size-shape-color .) ;Vote that each connection
retains its own unique history variable, h,A ; thus, there are 7
distinct learning rates and 26 history variables for each of the
two outputs .
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